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Abstract. We investigate the first moment of the second derivative
of quadratic Dirichlet L-functions over the rational function field. We
establish an asymptotic formula when the cardinality of the finite field
is fixed and the genus of the hyperelliptic curves associated to a family
of Dirichlet L-functions over Fq(T ) tends to infinity. As a more general
result, we compute the full degree three polynomial in the asymptotic
expansion of the first moment of the second derivative of this particular
family of L-functions.

1. Introduction

In 1918 Hardy and Littlewood [9] proved that as T →∞

(1.1)

∫ T

1
|ζ(12 + it)|2dt ∼ T log T.

In 1928 Ingham [11] proved a more general result by showing that as
T →∞

(1.2)

∫ T

1
ζ(µ)(12 + it)ζ(ν)(12 − it) ∼

T

µ+ ν + 1
(log T )µ+ν+1,

where ζ(µ)(s) denotes the µth derivative of ζ(s) and ζ(0)(s) = ζ(s). By using

the simple fact that ζ(µ)(12 − it) = ζ(µ)(12 + it), it follows that

(1.3)

∫ T

1
|ζ(µ)(12 + it)|2dt ∼ T

2µ+ 1
(log T )2µ+1,

which can be used to give (1.1) when µ = 0.
The next step in the study of moments of derivatives of the Riemann

zeta function was given by Gonek. In 1984 Gonek [8], in a beautiful paper,
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established discrete analogues of (1.1) − (1.3). If L = 1
2π log T

2π , one of the
main results of his paper can be stated as

∑
1≤γ≤T

ζ(µ)(ρ+ iαL−1)ζ(ν)(1− ρ− iαL−1)

= (−1)µ+ν
(

1

µ+ ν + 1
−H(µ, ν, 2πα)−H(ν, µ,−2πα)

)
T

2π
(log T )µ+ν+2

+O(T (log T )µ+ν+1),

(1.4)

where ρ = β + iγ denotes the non-trivial zeros of ζ(s) and

(1.5) H(µ, ν, 2πα) = µ!
∞∑
l=0

(2παi)l

(l + µ+ 1)!(l + µ+ ν + 2)
.

In 1988 Conrey [4] studied derivatives of the fourth moment of the Rie-
mann zeta function. Extending and generalizing Ingham’s result he proved

(1.6)

∫ T

1
|ζ ′(12 + it)|4 ∼ 61

1680π2
T

(
log

T

2π

)8

and that

(1.7)
π2

6
C2,m ∼

1

16m4
,

as m→∞, where

(1.8) Ck,m = lim
T→∞

T−1
(

log
T

2π

)−k2−2km ∫ T

1
|ζ(m)(12 + it)|2kdt.

Recently, by studying the moments of the derivative of characteristic poly-
nomials in U(N), Conrey, Rubinstein and Snaith [5] have formulated the
general conjecture that

(1.9)
1

T

∫ T

0
|ζ ′(12 + it)|2kdt ∼ akbk(log T )k

2+2k,

where the constant ak is the same arithmetic factor that appears in the
conjecture for the moments of the Riemann zeta function and is given in
terms of a complicated Euler product, and the bk is the constant coming
from Random Matrix Theory, that, in this case, is given in terms of the
modified Bessel function of the first kind.

The main object of this paper is to study moments of derivatives of L-
functions in the function field setting. In this note, we establish the first
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moment of the second derivative of quadratic Dirichlet L-functions associ-
ated to hyperelliptic curves over a finite field. The main theorem of this
paper can be seen as a function field analogue of Ingham’s result (1.3) when
µ = 2 for L-functions over the rational function field.

2. Main Theorem

Before we enunciate the main theorem of this paper, we need to present
some basic facts on function fields. The main reference being used for this
purpose is the book by Rosen [13].

Let Fq be a finite field of odd cardinality q = pa, with p a prime. We
will denote by A = Fq[T ] the polynomial ring over Fq and by k = Fq(T ) the
rational function field over Fq.

The zeta function attached to A is defined by the following Dirichlet series,

(2.1) ζA(s) :=
∑
f∈A
monic

1

|f |s
for Re(s) > 1,

where |f | = qdeg(f) for f 6= 0 and |f | = 0 for f = 0. We can easily prove
that

(2.2) ζA(s) =
1

1− q1−s
.

The quadratic Dirichlet L-function of the rational function field k is de-
fined to be

(2.3) L(s, χD) =
∑
f∈A

f monic

χD(f)

|f |s
for Re(s) > 1,

where χD is the quadratic character defined by the quadratic residue symbol
in Fq[T ], i.e.,

(2.4) χD(f) =

(
D

f

)
,

and D is a square-free monic polynomial. In other words, if P ∈ A is monic
irreducible we have

(2.5) χD(P ) =

{
0, if P | D,
1, if P 6 |D and D is a square modulo P,
−1, if P 6 |D and D is a non square modulo P.

For a more detailed discussion about Dirichlet characters for function fields
see [13, Chapter 3] and [3, 6].
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In this paper, we work with the family of quadratic Dirichlet L-functions
that are associated to polynomials D ∈ H2g+1,q, where

(2.6) H2g+1,q = {D ∈ A, square-free, monic and deg(D) = 2g + 1}.

In this case, the L–function associated to χD is the numerator of the zeta
function associated to the hyperelliptic curve defined by the affine equation
CD : y2 = D(T ) and, consequently, L(s, χD) is a polynomial of degree 2g in
the variable u = q−s given by

L(s, χD) =

2g∑
n=0

A(n, χD)q−ns

=

2g∑
n=0

∑
f monic
deg(f)=n

χD(f)q−ns.(2.7)

(see [13, Propositions 14.6 and 17.7] and [3, Section 3]).
This L–function, as it is expected, satisfies a functional equation. Namely

(2.8) L(s, χD) = (q1−2s)gL(1− s, χD).

The Riemann hypothesis for curves, proved by Weil [14], tell us that all the
zeros of L(s, χD) have real part equals 1/2.

The main theorem established in this note is:

Theorem 2.1. Let Fq be a fixed finite field with q odd and D ∈ H2g+1,q.
Then
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∑
D∈H2g+1,q

L
′′
(12 , χD)

=
2

3

|D|
ζA(2)

(log(q))2(IJ) + 2
|D|
ζA(2)

(log(q))2
(
I(J2 −K)

)
+

4

3

|D|
ζA(2)

(log(q))2
(
I(J3 − 2KJ − J +M)

)
+

2

3

|D|
ζA(2)

(log(q))2I

([g
2

]
+ 3

[g
2

]2
+ 2

[g
2

]3)
+ 4(log(q))2I

|D|
ζA(2)

g2
([

g − 1

2

]
+ 1

)
+ 4(log(q))2(IJ)

|D|
ζA(2)

g2

+
2

3

|D|
ζA(2)

(log(q))2(IJ) + 2
|D|
ζA(2)

(log(q))2
(
I(J2 −K)

)
(2.9)

+
4

3

|D|
ζA(2)

(log(q))2
(
I(J3 − 2KJ − J +M)

)
+

2

3

|D|
ζA(2)

(log(q))2I

([
g − 1

2

]
+ 3

[
g − 1

2

]2
+ 2

[
g − 1

2

]3)

+ 4g(log(q))2

([
g − 1

2

]2
−
[
g − 1

2

])
|D|
ζA(2)

I

+

(
−1 + 2

[
g − 1

2

])
4g(log(q))2

|D|
ζA(2)

(−IJ)

+ 4g(log(q))2
|D|
ζA(2)

I(J2 −K) +O
(
|D|7/8(logq |D|)2

)
.

Where I, J,K and M are defined as in Lemma 3.6, [x] indicates the integer
part of x and |D| = q2g+1.

Using that 2g + 1 = logq |D| the next result follows as a simple corollary.

Corollary 2.1. Let Fq be a fixed finite field of odd cardinality q. Using the
same notation as in the theorem we have,

(2.10)
∑

D∈H2g+1,q

L
′′
(12 , χD) ∼ 1

6

|D|
ζA(2)

(log(q))2I(logq |D|)3,

as g →∞.

Remark 2.2. The natural question to ask is why not to compute the mean
value for L

′
(12 , χD)? The answer is that the mean value of L

′
(12 , χD) is, in

some sense, trivial to obtain by using the results of [3]. The main reason is

that one has a simple formulae for L
′
(12 , χD) in terms of L(12 , χD). Thus

the mean value L
′′
(12 , χD) gives the novel information about moments of

derivatives of this family of L-functions.
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Remark 2.3. Mean values of L(0)(12 , χD), i.e. first moment of quadratic
L-functions over function fields, were firstly studied by Hoffstein and Rosen
[10] and recently by Andrade and Keating [3], Florea [7] and Jung [12].

Remark 2.4. We will denote by
∏
P products over monic and irreducible

polynomials in Fq[T ]. The sums over polynomials are assumed to be sums
over monic polynomials unless the contrary is stated.

3. Preparatory Results

This section is devoted to present all the necessary preliminary results
that will be used in the proof of the main theorem in the next sections. Our
first preliminary result is:

Lemma 3.1 (“Approximate” Functional Equation). Let D ∈ H2g+1,q. Then
L(s, χD) can be represented as

(3.1) L(s, χD) =
∑

f1 monic
deg(f1)≤g

χD(f1)

|f1|s
+ (q1−2s)g

∑
f2 monic

deg(f2)≤g−1

χD(f2)

|f2|1−s
.

Proof. The proof of this Lemma is to be found in [3, Lemma 3.3]. �

The next lemma is taken from Andrade–Keating [3, Proposition 5.2] and
it is about counting the number of square–free polynomials coprime to a
fixed monic polynomial.

Lemma 3.2. Let f ∈ A be a fixed monic polynomial. Then for all ε > 0 we
have that

(3.2)
∑

D∈H2g+1,q

(D,f)=1

1 =
|D|
ζA(2)

∏
P monic
irreducible

P |f

(
|P |
|P |+ 1

)
+O

(
|D|

1
2 |f |ε

)
.

Our next lemma is that

Lemma 3.3.

(3.3)
∑

l monic
deg(l)=n

∏
P |l

(1 + |P |−1)−1 = qn
∑

d monic
deg(d)≤n

µ(d)

|d|
∏
P |d

1

|P |+ 1
.

Proof. This is Lemma 5.7 in [3]. �

We now can prove our next auxiliary result.

Lemma 3.4. Let l ≥ 0 be an integer. Then we have

(3.4)
∑

d monic
deg(d)>[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1
(deg(d))l = O

(
glq−g/2

)
.
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Proof. ∑
d monic

deg(d)>[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1
(deg(d))l

≤
∑

d monic
deg(d)>[g/2]

µ2(d)

|d|
∏
P |d

1

|P |
(deg(d))l

=
∑

h>[g/2]

∑
d monic
deg(d)=h

hlq−2h(3.5)

=
∑

h>[g/2]

hlq−h

� glq−g/2.

�

Lemma 3.5. With the same notation as before, we have

(3.6)
∑

d monic

µ(d)

|d|
∏
P |d

1

|P |+ 1
=
∏
P

(
1− 1

|P |(|P |+ 1)

)
.

Proof. This is Lemma 5.9 in [3]. �

The next lemma can be seen as a generalization of the previous lemma.

Lemma 3.6. Let

(3.7) I =
∏
P

(
1− 1

|P |(|P |+ 1)

)
,

(3.8) J =
∑

P monic
irreducible

deg(P )

|P |(|P |+ 1)− 1
,

(3.9) K =
∑

P monic
irreducible

(deg(P ))2(|P |(|P |+ 1))

(|P |(|P |+ 1)− 1)2
,

and

(3.10) M =
∑

P monic
irreducible

(deg(P ))3(|P |(|P |+ 1)(|P |(|P |+ 1) + 1))

(|P |(|P |+ 1)− 1)3
.

Then we have that,

(i)

(3.11)
∑

d monic

µ(d)

|d|
∏
P |d

1

|P |+ 1
deg(d) = −IJ.
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(ii)

(3.12)
∑

d monic

µ(d)

|d|
∏
P |d

1

|P |+ 1
(deg(d))2 = I(J2 −K).

(iii)

(3.13)
∑

d monic

µ(d)

|d|
∏
P |d

1

|P |+ 1
(deg(d))3 = −I(J3 − 2KJ − J +M).

Proof. To prove (i), let,

(3.14) f(s) =
∑

d monic

deg(d)
µ(d)

|d|s
∏
P |d

1

|P |+ 1

and

(3.15) g(s) =
∑

d monic

µ(d)

|d|s
∏
P |d

1

|P |+ 1
.

A simple calculation shows that

(3.16) g′(s) = −f(s) log q

and by a variant of Lemma 3.5

(3.17) g(s) =
∏
P

(
1− 1

|P |s(|P |+ 1)

)
.

Computing g′(s) using (3.17) and the product rule gives us

(3.18) g′(s) = g(s) log q
∑

P monic
irreducible

deg(P )

|P |s(|P |+ 1)− 1
.

Combining (3.16) and (3.18) we have that

(3.19) f(s) = −g(s)
∑

P monic
irreducible

deg(P )

|P |s(|P |+ 1)− 1
.

Putting s = 1 proves (i).

Mimicking the proof of (i), by considering f
′
(s) and f

′′
(s) respectively,

one can prove (ii) and (iii) and so obtain the full lemma. �

The last result of this section is about non-trivial sums involving quadratic
characters. It can be proved by using the Riemann Hypothesis for curves
and the Pólya-Vinogradov inequality for function fields.
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Proposition 3.7. If f ∈ Fq[x] is not a square then

(3.20)
∣∣∣ ∑
D∈H2g+1,q

χD(f)
∣∣∣� |D|1/2|f |1/4.

(For a proof see [1, 2]).

4. Proof of the Main Theorem

By taking the second derivative of the approximate functional equation
(3.1) for L(s, χD) we obtain that

L
′′
(s, χD) = (log(q))2

g∑
n=0

n2q−nsA(n, χD)

+ 4g2(log(q))2(q1−2s)g
g−1∑
m=0

A(m,χD)qm(s−1)

+ (log(q))2(q1−2s)g
g−1∑
m=0

m2qm(1−s)A(m,χD)(4.1)

− 4g(log(q))2(q1−2s)g
g−1∑
m=0

mqm(1−s)A(m,χD),

where

(4.2) A(n, χD) =
∑

f monic
deg(f)=n

χD(f).

For s = 1
2 , the equation above simplifies to

L
′′
(12 , χD) = (log(q))2

g∑
n=0

n2q−n/2A(n, χD)

+ 4g2(log(q))2
g−1∑
m=0

A(m,χD)q−m/2

+ (log(q))2
g−1∑
m=0

m2q−m/2A(m,χD)(4.3)

− 4g(log(q))2
g−1∑
m=0

mq−m/2A(m,χD)

= S1 + S2 + S3 + S4.

The task now is to average (4.3) over H2g+1,q. We will accomplish this
task for each of the sums Si, i = 1, . . . , 4 in (4.3).



10 JULIO ANDRADE AND SURAJIT RAJAGOPAL

4.1. Averaging S1. The main result in this section is encapsulated in the
following proposition.

Proposition 4.1. Using the same notation from Lemma 3.6, we have that

∑
D∈H2g+1,q

(log(q))2
g∑

n=0

n2q−n/2A(n, χD)

=
2

3

|D|
ζA(2)

(log(q))2(IJ) + 2
|D|
ζA(2)

(log(q))2
(
I(J2 −K)

)
+

4

3

|D|
ζA(2)

(log(q))2
(
I(J3 − 2KJ − J +M)

)
+

2

3

|D|
ζA(2)

(log(q))2I

([g
2

]
+ 3

[g
2

]2
+ 2

[g
2

]3)
+O

(
|D|7/8(logq |D|)2

)
.

(4.4)

We start by splitting the summation according f being a perfect square
of a polynomial in Fq[T ] and for those f that are not a perfect square. In
other words, we can write the average over S1 as

∑
D∈H2g+1,q

(log(q))2
g∑

n=0

n2q−n/2A(n, χD)

=
∑

D∈H2g+1,q

(log(q))2
g∑

n=0

n2q−n/2
∑

f monic
deg(f)=n
f=�

χD(f)(4.5)

+
∑

D∈H2g+1,q

(log(q))2
g∑

n=0

n2q−n/2
∑

f monic
deg(f)=n
f 6=�

χD(f).

For the non-square contribution (i.e. f 6= �) we can prove the following
lemma.

Lemma 4.2. If f ∈ Fq[T ] is a non-square polynomial then we have
(4.6) ∑

D∈H2g+1,q

(log(q))2
g∑

n=0

n2q−n/2
∑

f monic
deg(f)=n
f 6=�

χD(f) = O
(
|D|7/8(logq |D|)2

)
.
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Proof. We have that

∣∣∣ ∑
D∈H2g+1,q

(log(q))2
g∑

n=0

n2q−n/2
∑

f monic
deg(f)=n
f 6=�

χD(f)
∣∣∣� ∣∣∣ g∑

n=0

n2q−n/2
∑

f monic
deg(f)=n
f 6=�

∑
D∈H2g+1,q

χD(f)
∣∣∣.

(4.7)

We now use Proposition 3.7 to obtain that

∣∣∣ g∑
n=0

n2q−n/2
∑

f monic
deg(f)=n
f 6=�

∑
D∈H2g+1,q

χD(f)
∣∣∣� g∑

n=0

n2q−n/2
∑

f monic
deg(f)=n

|D|1/2|f |1/4

� q
7
4gg2,

(4.8)

and this concludes the proof of the lemma. �

For the f a perfect square of a polynomial in Fq[T ], the calculations are
more involving and laborius. Our main result is given in the next proposi-
tion.

Proposition 4.3. Using the same notation as before, we conclude that

∑
D∈H2g+1,q

(log(q))2
g∑

n=0

n2q−n/2
∑

f monic
deg(f)=n
f=�

χD(f)

=
2

3

|D|
ζA(2)

(log(q))2(IJ) + 2
|D|
ζA(2)

(log(q))2
(
I(J2 −K)

)
+

4

3

|D|
ζA(2)

(log(q))2
(
I(J3 − 2KJ − J +M)

)
+

2

3

|D|
ζA(2)

(log(q))2I

([g
2

]
+ 3

[g
2

]2
+ 2

[g
2

]3)
+O

(
|D|3/4(logq |D|)3

)
.

(4.9)

We can write
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∑
D∈H2g+1,q

(log(q))2
g∑

n=0

n2q−n/2
∑

f monic
deg(f)=n
f=�

χD(f)

= (log(q))2
g∑

n=0

n2q−n/2
∑

f monic
deg(f)=n
f=l2

∑
D∈H2g+1,q

χD(l2).(4.10)

By an application of Lemma 3.2 and Lemma 3.3, and after some arith-
metic manipulations we obtain that

∑
D∈H2g+1,q

(log(q))2
g∑

n=0

n2q−n/2
∑

f monic
deg(f)=n
f=�

χD(f)

=
|D|
ζA(2)

(log(q))2
g∑

n=0
2|n

n2
∑

d monic
deg(d)≤n/2

µ(d)

|d|
∏
P |d

(
1

|P |+ 1

)
+O

(
|D|1/2

g∑
n=0

n2qnε

)

=
4|D|
ζA(2)

(log(q))2
∑

d monic
deg(d)≤[g/2]

µ(d)

|d|
∏
P |d

(
1

|P |+ 1

) ∑
deg(d)≤m≤[g/2]

m2

+O
(
|D|1/2+ε(logq |D|)2

)
.

(4.11)

By performing the sum over m in the previous equation, we obtain
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∑
D∈H2g+1,q

(log(q))2
g∑

n=0

n2q−n/2
∑

f monic
deg(f)=n
f=�

χD(f)

=
4|D|
ζA(2)

(log(q))2
∑

d monic
deg(d)≤[g/2]

µ(d)

|d|
∏
P |d

(
1

|P |+ 1

)(
1

6

(
deg(d)(−1 + 3deg(d)− 2(deg(d))2)

))

+
4|D|
ζA(2)

(log(q))2
∑

d monic
deg(d)≤[g/2]

µ(d)

|d|
∏
P |d

(
1

|P |+ 1

)(
1

6

([g
2

]
+ 3

[g
2

]2
+ 2

[g
2

]3))

+O
(
|D|1/2+ε(logq |D|)2

)
.

(4.12)

We will establish four lemmas that will be used to prove the Proposition
4.3.

Lemma 4.4. We have that,

4|D|
ζA(2)

(log(q))2
∑

d monic
deg(d)≤[g/2]

µ(d)

|d|
∏
P |d

(
1

|P |+ 1

)(
1

6

([g
2

]
+ 3

[g
2

]2
+ 2

[g
2

]3))

=
2

3

|D|
ζA(2)

(log(q))2I

([g
2

]
+ 3

[g
2

]2
+ 2

[g
2

]3)
+O

(
|D|3/4(logq |D|)3

)
.

(4.13)

Proof. We write the sum over d as

(4.14)
∑

d monic
deg(d)≤[g/2]

=
∑

d monic

−
∑

d monic
deg(d)>[g/2]

.

For the sum over all monic d we use Lemma 3.5 and for the sum over deg(d) >
[g/2] we use Lemma 3.4. This completes the proof of the lemma. �

Our next result is given below.

Lemma 4.5. Using the same notation as in Lemma 3.6, we have that

4

6

|D|
ζA(2)

(log(q))2
∑

d monic
deg(d)≤[g/2]

µ(d)

|d|
∏
P |d

(
1

|P |+ 1

)
(−deg(d))

=
2

3

|D|
ζA(2)

(log(q))2(IJ) +O
(
|D|3/4(logq |D|)

)
.(4.15)
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Proof. We write the sum over d as

(4.16)
∑

d monic
deg(d)≤[g/2]

=
∑

d monic

−
∑

d monic
deg(d)>[g/2]

.

For the sum over all monic d we use part (i) from Lemma 3.6 and for the
sum over deg(d) > [g/2] we use Lemma 3.4. This completes the proof of the
lemma. �

Lemma 4.6. Using the same notation as in Lemma 3.6, we find that

12

6

|D|
ζA(2)

(log(q))2
∑

d monic
deg(d)≤[g/2]

µ(d)

|d|
∏
P |d

(
1

|P |+ 1

)
(deg(d))2

= 2
|D|
ζA(2)

(log(q))2
(
I(J2 −K)

)
+O

(
|D|3/4(logq |D|)2

)
.(4.17)

Proof. We write the sum over d as

(4.18)
∑

d monic
deg(d)≤[g/2]

=
∑

d monic

−
∑

d monic
deg(d)>[g/2]

.

For the sum over all monic d we use part (ii) from Lemma 3.6 and for the
sum over deg(d) > [g/2] we use Lemma 3.4. This completes the proof of the
lemma. �

And our last lemma is

Lemma 4.7. We have that,

− 8

6

|D|
ζA(2)

(log(q))2
∑

d monic
deg(d)≤[g/2]

µ(d)

|d|
∏
P |d

(
1

|P |+ 1

)
(deg(d))3

=
4

3

|D|
ζA(2)

(log(q))2
(
I(J3 − 2KJ − J +M)

)
+O

(
|D|3/4(logq |D|)3

)
.

(4.19)

Proof. We write the sum over d as

(4.20)
∑

d monic
deg(d)≤[g/2]

=
∑

d monic

−
∑

d monic
deg(d)>[g/2]

.

For the sum over all monic d we use part (iii) from Lemma 3.6 and for the
sum over deg(d) > [g/2] we use Lemma 3.4. This completes the proof of the
lemma. �

Proof of Proposition 4.3. By using equation (4.12) and Lemma 4.4, Lemma
4.5, Lemma 4.6 and Lemma 4.7 we establish the desired proposition. �
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Finally we can prove the main result in this section.

Proof of Proposition 4.1. Using Lemma 4.2 and Proposition 4.3 in equation
(4.5) finishes the proof of this proposition. �

4.2. Averaging S2. The main result in this section is given below.

Proposition 4.8. Using the same notation as Proposition 4.1, we can de-
duce that

∑
D∈H2g+1,q

4g2(log(q))2
g−1∑
m=0

A(m,χD)q−m/2

= 4(log(q))2I
|D|
ζA(2)

g2
([

g − 1

2

]
+ 1

)
+ 4(log(q))2(IJ)

|D|
ζA(2)

g2(4.21)

+O
(
|D|7/8(logq |D|)2

)
.

Proof. It has been shown in [3, Equation (7.2)] that

∑
D∈H2g+1,q

g−1∑
m=0

A(m,χD)q−m/2

= I
|D|
ζA(2)

([
g − 1

2

]
+ 1

)
+ (IJ)

|D|
ζA(2)

+O(2gq
3
2g+

3
4 ).(4.22)

By making use of Proposition 3.7 we can change the error term of the
above equation (4.22) to be O

(
|D|7/8

)
. Combinining this new error term

with the main term in the equation (4.22) we establish the desired result. �

4.3. Averaging S3. The main result is given by

Proposition 4.9. Using the same notation as Proposition 4.1, we have that

∑
D∈H2g+1,q

(log(q))2
g−1∑
m=0

m2q−m/2A(m,χD)

=
2

3

|D|
ζA(2)

(log(q))2(IJ) + 2
|D|
ζA(2)

(log(q))2
(
I(J2 −K)

)
+

4

3

|D|
ζA(2)

(log(q))2
(
I(J3 − 2KJ − J +M)

)
(4.23)

+
2

3

|D|
ζA(2)

(log(q))2I

([
g − 1

2

]
+ 3

[
g − 1

2

]2
+ 2

[
g − 1

2

]3)
+O

(
|D|7/8(logq |D|)2

)
.
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Proof. The quantity S3, that is being averaged over D ∈ H2g+1,q in this
proposition, is exactly equal to the quantity S1 with the only exception that
the summation index goes up to g−1 instead of up to g. In this way, similarly
to the proof of Proposition 4.1, we can establish the result above. �

4.4. Averaging S4. The main result in this section is the following propo-
sition.

Proposition 4.10. We have that,

∑
D∈H2g+1,q

−4g(log(q))2
g−1∑
m=0

mq−m/2A(m,χD)

= 4g(log(q))2

([
g − 1

2

]2
−
[
g − 1

2

])
|D|
ζA(2)

I

+

(
−1 + 2

[
g − 1

2

])
4g(log(q))2

|D|
ζA(2)

(−IJ)(4.24)

+ 4g(log(q))2
|D|
ζA(2)

I(J2 −K) +O
(
|D|7/8(logq |D|)2

)
.

Proof. We prove this result in two parts. First we write

∑
D∈H2g+1,q

−4g(log(q))2
g−1∑
m=0

mq−m/2A(m,χD)

=
∑

D∈H2g+1,q

−4g(log(q))2
g−1∑
m=0

mq−m/2
∑

f monic
deg(f)=m
f=�

χD(f)(4.25)

+
∑

D∈H2g+1,q

−4g(log(q))2
g−1∑
m=0

mq−m/2
∑

f monic
deg(f)=m
f 6=�

χD(f).

When f is not a perfect square we use Proposition 3.7, so we have
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∑
D∈H2g+1,q

−4g(log(q))2
g−1∑
m=0

mq−m/2
∑

f monic
deg(f)=m
f 6=�

χD(f)

� g

g−1∑
m=0

mq−m/2
∑

f monic
deg(f)=m

|D|1/2qm/4(4.26)

� g2|D|1/2q3g/4

� |D|7/8(logq |D|)2.

Now we treat the sum when f is a perfect square in Fq[T ]. For this we
write

∑
D∈H2g+1,q

−4g(log(q))2
g−1∑
m=0

mq−m/2
∑

f monic
deg(f)=m
f=�

χD(f)

= −4g(log(q))2
g−1∑
m=0
2|m

mq−m/2
∑

f monic
deg(f)=m
f=�=l2

∑
D∈H2g+1,q

χD(l2).(4.27)

By using Lemma 3.2 and Lemma 3.3 we have that (4.27) becomes

− 4g(log(q))2
|D|
ζA(2)

g−1∑
m=0
2|m

m
∑

d monic
deg(d)≤m/2

µ(d)

|d|
∏
P |d

1

|P |+ 1

+O
(
|D|1/2+ε(logq |D|)2

)
(4.28)

= −8g(log(q))2
|D|
ζA(2)

∑
d monic

deg(d)≤[g−12 ]

µ(d)

|d|
∏
P |d

1

|P |+ 1

∑
deg(d)≤n≤[g−12 ]

n

+O
(
|D|1/2+ε(logq |D|)2

)
.

Summing over n and grouping the powers of deg(d) we have that (4.28)
is
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4g(log(q))2
|D|
ζA(2)

∑
deg(d)≤[ g−1

2
]

µ(d)

|d|
∏
P |d

1

|P |+ 1

(
deg(d)

(
−1 + 2

[
g − 1

2

]))

+ 4g(log(q))2
|D|
ζA(2)

∑
deg(d)≤[ g−1

2
]

µ(d)

|d|
∏
P |d

1

|P |+ 1

([
g − 1

2

]2
−
[
g − 1

2

])

+ 4g(log(q))2
|D|
ζA(2)

∑
deg(d)≤[ g−1

2
]

µ(d)

|d|
∏
P |d

1

|P |+ 1
(deg(d))2

+O
(
|D|1/2+ε(logq |D|)2

)
.

(4.29)

We can rewrite the previous equation (4.29) as

4g(log(q))2
|D|
ζA(2)

( ∑
d monic

−
∑

deg(d)>[ g−1
2

]

)µ(d)

|d|
∏
P |d

1

|P |+ 1

(
deg(d)

(
−1 + 2

[
g − 1

2

]))

+ 4g(log(q))2
|D|
ζA(2)

( ∑
d monic

−
∑

deg(d)>[ g−1
2

]

)µ(d)

|d|
∏
P |d

1

|P |+ 1

([
g − 1

2

]2
−
[
g − 1

2

])

+ 4g(log(q))2
|D|
ζA(2)

( ∑
d monic

−
∑

deg(d)>[ g−1
2

]

)µ(d)

|d|
∏
P |d

1

|P |+ 1
(deg(d))2

+O
(
|D|1/2+ε(logq |D|)2

)
.

(4.30)

We can bound the sums with deg(d) > [g−12 ] by using a simple variant of
Lemma 3.4. For the sums over all monic d we use respectively Lemma 3.5
and part (i) and part (ii) of Lemma 3.6. After some arithmetic manipulations
we have that (4.30) is(

−1 + 2

[
g − 1

2

])
4g(log(q))2

|D|
ζA(2)

(−IJ)

+ 4g(log(q))2

([
g − 1

2

]2
−
[
g − 1

2

])
|D|
ζA(2)

I

+ 4g(log(q))2
|D|
ζA(2)

I(J2 −K) +O(g3|D|q−g/2)(4.31)

+O
(
|D|1/2+ε(logq |D|)2

)
.
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By combining equations (4.31) and (4.26) the proof of the proposition is
complete. �

We have now all the machinery needed to prove the main result of this
paper.

Proof of Theorem 2.1. The proof follows by combining the Propositions 4.1,
4.8, 4.9 and 4.10. �
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