MEAN VALUES OF DERIVATIVES OF L-FUNCTIONS IN
FUNCTION FIELDS: 1

JULIO ANDRADE AND SURAJIT RAJAGOPAL

ABSTRACT. We investigate the first moment of the second derivative
of quadratic Dirichlet L-functions over the rational function field. We
establish an asymptotic formula when the cardinality of the finite field
is fixed and the genus of the hyperelliptic curves associated to a family
of Dirichlet L-functions over F,(T") tends to infinity. As a more general
result, we compute the full degree three polynomial in the asymptotic
expansion of the first moment of the second derivative of this particular
family of L-functions.

1. INTRODUCTION

In 1918 Hardy and Littlewood [9] proved that as T — oo

T
(1.1) / (% +it)|*dt ~ Tlog T.
1

In 1928 Ingham [II] proved a more general result by showing that as
T — o0

(1.2) / ¢ 3+ it)¢! )(% —it) ~ m(logT)“WH,

where ¢(")(s) denotes the ™ derivative of ((s) and ¢(©)(s) = ¢(s). By using
the simple fact that ¢ (“)(% —it) = (W (1 +it), it follows that

(log T)*+1,

T
W (L L) 2dt ~
(1.3) |60 v~ o

which can be used to give (1.1)) when pu = 0.
The next step in the study of moments of derivatives of the Riemann
zeta function was given by Gonek. In 1984 Gonek [§], in a beautiful paper,
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established discrete analogues of (1.1) — (1.3). If L = % log %, one of the
main results of his paper can be stated as

S M (p+ial )M (1 - p—ial™h)

1<<T
! T
= (=) (u+1/+1 — H(p,v,2ma) — H(v, p, —2m)> o (log T)!++2

+ O(T (log T)**¥+1),
(1.4)

where p =  + iy denotes the non-trivial zeros of {(s) and

(2maui)!
Nl+p+v+2)

In 1988 Conrey [4] studied derivatives of the fourth moment of the Rie-
mann zeta function. Extending and generalizing Ingham’s result he proved

(1.5) H(p,v,2ra) = M!Z
pre (I+p+1

T 8
/ 61 T
1. Lyt ~ ——T(log —
(16 [ G i~ gt (o5 )
and that
2
1
(1.7) T

as m — oo, where

T —k2—2km T
(1.8) Cim = lim T7! <10g ) / <™ (3 +it)[*at.
’ T—00 2 1
Recently, by studying the moments of the derivative of characteristic poly-
nomials in U(N), Conrey, Rubinstein and Snaith [5] have formulated the
general conjecture that

T
(1.9) = / €' (& + i) dt ~ aybi(log T)F+2,
0

where the constant aj is the same arithmetic factor that appears in the
conjecture for the moments of the Riemann zeta function and is given in
terms of a complicated Euler product, and the b is the constant coming
from Random Matrix Theory, that, in this case, is given in terms of the
modified Bessel function of the first kind.

The main object of this paper is to study moments of derivatives of L-
functions in the function field setting. In this note, we establish the first
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moment of the second derivative of quadratic Dirichlet L-functions associ-
ated to hyperelliptic curves over a finite field. The main theorem of this
paper can be seen as a function field analogue of Ingham’s result when
u = 2 for L-functions over the rational function field.

2. MAIN THEOREM

Before we enunciate the main theorem of this paper, we need to present
some basic facts on function fields. The main reference being used for this
purpose is the book by Rosen [13].

Let F; be a finite field of odd cardinality ¢ = p®, with p a prime. We
will denote by A = F,[T"] the polynomial ring over F, and by k = F,(T") the
rational function field over [Fy.

The zeta function attached to A is defined by the following Dirichlet series,

(2.1) Ca(s) = Z ! for Re(s) > 1,

where |f| = ¢8() for f # 0 and |f| = 0 for f = 0. We can easily prove
that

1
= 1_q1—5'

The quadratic Dirichlet L-function of the rational function field k is de-
fined to be

(2.2) Cals)

xp(f)
| f]®

(2.3) L(s,xp) =
feA

f monic

for Re(s) > 1,

where xp is the quadratic character defined by the quadratic residue symbol
in Fy[T], ie.,

(2.4 wn=(7):

and D is a square-free monic polynomial. In other words, if P € A is monic
irreducible we have

0, if P|D,
(2.5) xp(P) = { 1, if P /D and D is a square modulo P,
—1, if P /D and D is a non square modulo P.

For a more detailed discussion about Dirichlet characters for function fields
see [13, Chapter 3] and [3, [6].
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In this paper, we work with the family of quadratic Dirichlet L-functions
that are associated to polynomials D € Hagy1,4, Where

(2.6) Hog+1,4 = {D € A, square-free, monic and deg(D) = 2g + 1}.

In this case, the L—function associated to x p is the numerator of the zeta
function associated to the hyperelliptic curve defined by the affine equation
Cp : y* = D(T) and, consequently, L(s,xp) is a polynomial of degree 2¢ in
the variable u = ¢~* given by

2g
L(s,xp) = > A(n,xp)g ™"
n=0

2g
(2.7) => > xolf)g ™.

n=0 f monic
deg(f)=n

(see [13, Propositions 14.6 and 17.7] and [3, Section 3]).
This L—function, as it is expected, satisfies a functional equation. Namely

(28) L(87 XD) = (q1—2s)gL(1 -5 XD)'

The Riemann hypothesis for curves, proved by Weil [14], tell us that all the
zeros of L(s, xp) have real part equals 1/2.
The main theorem established in this note is:

Theorem 2.1. Let Iy be a fized finite field with g odd and D € Hogi1,4.
Then
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Z LH(%?XD)

DeHagt1,q
— 2 logl@) (1) + 2 ogta)? (10 - K)
4CD(2|)(log(q))2 (I(J? =2KJ — J + M))
D] g 912 5 [97°
+§T“ o(4)) I<H +35] +2[3] )
+atog(@) 1 g (|57 +1) + 40oe(a) (1) s
29) 45 (o)1) + 2 (s (102 - K)
+§C‘l()| (log(q))* (I(J* —2KJ — J + M))
2 |D| g —17? g—17°
+§C log ( 5 } +2[2})

1 g—1 |D|
+ 4g(log(q ( 5 ])CA(Q)I

2 1Dl
w (12|25 ])4g<1og<q>> A1)
D|
+4g(log(a))* 5107 — K) + O (|00, | D])?).

Where 1,J, K and M are defined as in Lemma [x] indicates the integer
part of x and |D| = ¢*9*1.

Using that 2g + 1 = log, | D| the next result follows as a simple corollary.

Corollary 2.1. Let Fy be a fized finite field of odd cardinality q. Using the
same notation as in the theorem we have,

1" 1 D
210) S L) ~ g ooy o(0) T log, DI
DeHtagii,q

as g — oo.

Remark 2.2. The natural question to ask is why not to compute the mean
value for L' (27XD) The answer is that the mean value of L' (3,xp) is, in
some sense, trivial to obtain by using the results of [3]. The main reason is
that one has a simple formulae for Ll(%,XD) in terms of L(%,XD)- Thus
the mean value LN(%,XD) gives the nowvel information about moments of
derivatives of this family of L-functions.



6 JULIO ANDRADE AND SURAJIT RAJAGOPAL

Remark 2.3. Mean values of L(O)(%,XD), i.e. first moment of quadratic
L-functions over function fields, were firstly studied by Hoffstein and Rosen
[10] and recently by Andrade and Keating [3], Florea [7] and Jung [12].

Remark 2.4. We will denote by [[p products over monic and irreducible
polynomials in Fq[T]. The sums over polynomials are assumed to be sums
over monic polynomials unless the contrary is stated.

3. PREPARATORY RESULTS

This section is devoted to present all the necessary preliminary results
that will be used in the proof of the main theorem in the next sections. Our
first preliminary result is:

Lemma 3.1 (“Approximate” Functional Equation). Let D € Hagi1,4. Then
L(s,xp) can be represented as

xp(f1 - xp(f2
(3.1) L(s,xp) = ( s) +@ ) ) (173.
Pt Uil /e
1 monic f2 monic
deg(f1)<g deg(f2)<g—1
Proof. The proof of this Lemma is to be found in [3, Lemma 3.3]. O

The next lemma is taken from Andrade-Keating [3, Proposition 5.2] and
it is about counting the number of square—free polynomials coprime to a
fixed monic polynomial.

Lemma 3.2. Let f € A be a fixzed monic polynomial. Then for all € > 0 we

have that
D ( 1P| > < 1 )
3.2 1= + O |(|D|2|f|F].
Qgilyq irr crillll%rill;(]?e

Our next lemma is that

Lemma 3.3.

“1y-1_ n p(d) 1
(3.3) >, T[a+PH =g a meT

[ monic Pl d monic P|d
deg(l)=n deg(d)<n
Proof. This is Lemma 5.7 in [3]. O

We now can prove our next auxiliary result.

Lemma 3.4. Let | > 0 be an integer. Then we have

(3.4 > [ 3 e =0 (5702).

d monic |
deg(d)>[g/2]
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Proof.

d 1
> I g dee()
P

d monic

deg(d)>[g/2]
2
w*(d 1
< ¥ |C§|)H,P|<deg<d>>l
d monic P|d
deg(d)>[g/2]

(3.5) = ) > g

h>[g/2] d monic

deg(d)=h
Z hquh
h>[g/2]
< glq_g/ 2,

O

Lemma 3.5. With the same notation as before, we have

(36) dmZ d QM|P|+1_H< AP

Proof. This is Lemma 5.9 in [3]. O

The next lemma can be seen as a generalization of the previous lemma.

Lemma 3.6. Let

1
3.7 =11 <1 R 1>> !

P
_ deg(P)
(38) 7= 2 ER 1T
irreducible
_ (deg(P))*(|P|(|P| +1))
(39) K= 2 “(ppen i
irreducible

and

_ (deg(P))*(|P|(|P| +1)(|P|(|P| +1) + 1))
(10 M=) (PI(P[+1) - 1) '

irreducible
Then we have that,
(i)

(3.11) Z ‘ | H |P‘ —deg(d) = ~1J.

d monic P|d
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(if)

(3.12) ¥ “|(dc|l) 11 ’P|1+ (deg(d)? = (7% ~ K).
d monic P|d
(iii)
(3.13) 3 “|(d‘|l) 11 |P|1+ -(deg(d))® = ~I(J* = 2K — J + M).
d monic P|d

Proof. To prove (i), let,

o VI 1
(3.14) f(s) dg(;licd g(d) EE gl |P|+1
and
B p1(d) 1
(3.15) g(s) = ; go:nic \d|® Il:Ild |P| 41

A simple calculation shows that

(3.16) g'(s) = —f(s)logq

and by a variant of Lemma [3.5

1
(817 o) =11 (1~ e

P
Computing ¢'(s) using (3.17) and the product rule gives us

deg(P)
(3.18) g'(s) = g(s)logq :
2 TPROPI 1)1
irreducible

Combining (3.16) and (3.18) we have that

deg(P
(3.19) f(s) =—g(s) Z |P|s(|pT;(_|_ i) —1

. P monic
irreducible

Putting s = 1 proves (i).
Mimicking the proof of (i), by considering f'(s) and f" (s) respectively,
one can prove (ii) and (iii) and so obtain the full lemma. O

The last result of this section is about non-trivial sums involving quadratic
characters. It can be proved by using the Riemann Hypothesis for curves
and the Pdlya-Vinogradov inequality for function fields.
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Proposition 3.7. If f € F,[x] is not a square then
(3.20) Y | <D

DeHagt1,9
(For a proof see [1, 2] ).
4. PROOF OF THE MAIN THEOREM

By taking the second derivative of the approximate functional equation
(3.1)) for L(s,xp) we obtain that

1"

L (s,xp) = (log(q) Zn q " A(n,xp)

n=0
g—1
+4g%(log(q))*(¢">*)? > A(m, xp)g™* ™
m=0
g—1
(4.1) + (log(q))*(¢" )¢ Y~ m?q™1=) A(m, xp)
m=0
g—1
— 4g(log(q))*(¢" ) > mg™ =¥ A(m, xp)
m=0
where
(4.2) A(n,xp) =Y. xn(f).
f monic
deg(f)=n

For s = %, the equation above simplifies to

L"(L,xp) = (log(q) Zn g "*A(n, xp)
n=0

g—1
+ 44°(log(q QZAmXD m/2
m=0

g—1
(4.3) + (log(q))? Y~ m*q ™2 A(m, xp)
m:;)il
—4g(log(q))* Y mg~™*A(m, xp)
m=0

=51+ 5+ 53+ 54.

The task now is to average (4.3) over Hagt1,4. We will accomplish this
task for each of the sums S;, i =1,...,4 in (4.3).
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4.1. Averaging Si. The main result in this section is encapsulated in the
following proposition.

Proposition 4.1. Using the same notation from Lemma[3.6, we have that

Z (log(q) Zn ¢ ?A(n, xp)

DeMHagii,q n=0
2 Dl
e )(1 8(q)) (UH_QCA(Q)(I g(a)” (I(J° - K))
4 |D| o 2 3 _
+ 3a2 )(1 2(q)) (I(J 2K J J+M))
2 |D|

_|_,

3o BT ([g] +3 [gr +2 [g]3> +0 (D5 (10g, [DI)?)

(4.4)

We start by splitting the summation according f being a perfect square
of a polynomial in [F,[T] and for those f that are not a perfect square. In
other words, we can write the average over S as

Z (log(q) Zn q "/ZA(n XD)

DEKHngqu n=0
(4.5) = > (log(q Zn2 2N xo(f)
DeHagii,q f monic
deg(f)=n
F=0
+ > (og(e) 2"2 Y o).
DeHagii,q f monic
deg(f)=n
20

For the non-square contribution (i.e. f # ) we can prove the following
lemma.

Lemma 4.2. If f € F,[T] is a non-square polynomial then we have
(4.6)

> (logly znqw S° xolf) =0 (ID[V3(0g, ID])?)

DeHog41,4 df r(n;))mc
eg(f)=n
0
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Proof. We have that

(4.7)
g
S (losla znq C Y o< Y Y wi)
DeHag+1,q f monic n=0 f monic DeHog11,4
deg(f)=n deg(f)=n
J#0 f#0

We now use Proposition [3.7] to obtain that

g
12%2 D DEND DI IES IR DU DI 2 e P

f monic DEHzg+41,q n=0 f monic
deg(f)=n deg(f)=n
f#0
Tg 2
< q¥g,
(4.8)
and this concludes the proof of the lemma. O

For the f a perfect square of a polynomial in F,[T], the calculations are
more involving and laborius. Our main result is given in the next proposi-
tion.

Proposition 4.3. Using the same notation as before, we conclude that

> (log(g 2"2 2y xo(f)

DeHagt1,q f monic

de%c(i)D:n
_ 2 |D] D
= 30.0) (log())*(17) + 2 (log(0))? (1(J? - K)
+ ig‘ﬂ) (log(q))? (I(J? — 2K J — J + M))
2B et ([9) 3[4 2 [2]°) 0 (190, 1)
(4.9)

We can write
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> (log(g ann? > xolf)

DeHogi1,q f monic

deg(f)=n
=0

g
(4.10) = (log(¢))*> n?¢ ™ Y > xo(®)
n=0

f monic D€Ha2g+1,q
deg(f)=n
f=2

By an application of Lemma, and Lemma and after some arith-
metic manipulations we obtain that

> (log(g an 2 ol

DeHagi1,q df Izlfo)nic
eg(f)=n
=0

g
— L
C nz d %ﬁc ‘ y <
2ln deg(d ) /
4|D| 2 < > i
- 1
CA(2) ( Og(Q)) . %}:ﬂic H |P| + deg(d)<z7’2<[9/2} "
deg(d)<[g/2] o
O (‘D|1/2+€(logq |DD2) :
(4.11)

Yeoforg i)

n=0

By performing the sum over m in the previous equation, we obtain
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g
> (log(@)? D n*c ™ > xo(f)
n=0

DeHagt1,q df r(n;))nic
eg(f)=n

_ 4|D| 2 w(d) 1 1 . B . e )
=20 (log(a))® > d }131 <‘P‘ n 1> (6 (deg(d)(—1 + 3deg(d) — 2(deg(d)) ))>

d monic
deg(d)<[g/2]

St S MO () (3 (o 2 2 12)))
deg(d)<[g/2]
+0 (|D]"/*+(10g,|D])?) .

(4.12)

We will establish four lemmas that will be used to prove the Proposition
4.3

Lemma 4.4. We have that,

G o < (e [ (CIREIF 1)

d monic P|d
deg(d)<[g/2]

= 2 oo 2r ([3] 43 [5] +2[2]) + 0 (10008, ID)?).
(4.13)

Proof. We write the sum over d as

(4.14) o= - Y
i d moni

d monic d monic ic
deg(d)<[g/2] deg(d)>[g/2]

For the sum over all monic d we use Lemma(3.5]and for the sum over deg(d) >
[9/2] we use Lemma This completes the proof of the lemma. O

Our next result is given below.

Lemma 4.5. Using the same notation as in Lemma[3.0, we have that

4 |D| p(d) 1
gCA%(Q)(log;(q))2 > T I1 <|P| n 1) (—deg(d))

d monic P|d
deg(d)<[g/2]

(10g())*(1]) + O (|D*/*(10g, |D]))

w15y =2 1D

3¢a(2)
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Proof. We write the sum over d as

(4.16) > Z Z

d monic

deg(d)<19/?] " aea @l
For the sum over all monic d we use part (i) from Lemma and for the

sum over deg(d) > [g/2] we use Lemma[3.4 This completes the proof of the
lemma. g

Lemma 4.6. Using the same notation as in Lemma[3.6, we find that

Eﬂ o 2 p(d) 1 e 2
o ooy loE() deg(%m ol 11_}1<| )
(417) = 2€_|AD(2)(log(q))2 (107 = K)) + O (IDP/* (108, |D])?) .

Proof. We write the sum over d as

(4.18) > Z Z

d monic d monic
deg(d)<[g/2] deg(d)>[9/2]

For the sum over all monic d we use part (ii) from Lemma and for the

sum over deg(d) > [g/2] we use Lemma[3.4 This completes the proof of the
lemma. g

And our last lemma is

Lemma 4.7. We have that,

8Dl BT\ entans
saoe” |d|11_}l<|p|+1)<dg<d”
deg(d)<[g/2]

_ g%aog@)ﬂ (I(° ~ 2K — T + M) + O (ID'*(los, |D])*) .

(4.19)

Proof. We write the sum over d as

(4.20) > Z Z

d monic d monic
deg(d)<[g/2] deg(d)>[9/2]

For the sum over all monic d we use part (iii) from Lemma and for the

sum over deg(d) > [g/2] we use Lemma[3.4 This completes the proof of the
lemma. g

Proof of Proposition [{.3 By using equation (4.12)) and Lemma Lemma
Lemma [4.6] and Lemma [£.7] we establish the desired proposition. O
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Finally we can prove the main result in this section.

Proof of Proposition [{.1l Using Lemmal[4.2]and Proposition [£.3]in equation
(4.5) finishes the proof of this proposition. O

4.2. Averaging S>. The main result in this section is given below.

Proposition 4.8. Using the same notation as Proposition [{.1], we can de-
duce that

g—1
Z g*(log(q))? Z A(m, xp)q m/2
m=0

DeHtzg+1,q
(420) = 1llog()P1 o ([ } ) + 4(l0g(q) A1) AL g2
A(2)
+o(|D|7/8 log, |D| ?).
Proof. Tt has been shown in [3, Equation (7.2)] that
g—1
S Almxp)g ™
DeHagr1,q m=0
_ . 1D ([9—1] ) |D| Y
(4.22) = ICA(2) 5|t 1]+ (IJ)7CA(2) +0(29¢q2971).

By making use of Proposition we can change the error term of the

above equation (4.22) to be O (\D|7/ 8). Combinining this new error term
-D

with the main term in the equation (4.22]) we establish the desired result. [

4.3. Averaging S3. The main result is given by

Proposition 4.9. Using the same notation as Proposition[].1], we have that

Z (log(q) Z m2q "% A(m, xp)

DeHagri,q m=0

_2ﬂ o 2 D] o) 2 2
= 5,y (B0 1) + 25 s (log())? (1% = K)
4 |D| 3 _
42)  +3. )( 8(0)* (1(J° = 2KJ — J + M))

2\D| (o1 g—1 1
2 e ([15] e [52] 2[25])

+0 (\Dr7/8<logq D])?).
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Proof. The quantity S3, that is being averaged over D € Hagy1,4 in this
proposition, is exactly equal to the quantity S7 with the only exception that
the summation index goes up to g—1 instead of up to g. In this way, similarly
to the proof of Proposition we can establish the result above. O

4.4. Averaging S;. The main result in this section is the following propo-
sition.

Proposition 4.10. We have that,

Z —4g(log(q) 2 Z mq m/QA(m XD)

wtesan® ([ 25 - [gElD o
AN I
+agllog(a))? 0102~ 1) + (\D|7/8<log DI).

Proof. We prove this result in two parts. First we write

g—1
> —4g(log(q))® > mg ™ A(m, xp)
DeHagri1,q m=0
g—1
(4.25) = Y —4g(log()* Y _mg ™ > xp(f)
DeHag41,9 m=0 f monic
deg(f)=m
f=0
g—1
+ > —4g(log(q)® > mg ™ Y xo(f)
D€eHag+1,q m=0 f monic
deg(f)=m
7#0

When f is not a perfect square we use Proposition [3.7], so we have
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Z —4g(log(q qu_m/Q Z xp(f)

DeHagt1,q f monic
deg(f)=m
40
g—1
(4.26) <g> mg™? 3" |D[V2mt
m=0 f monic
deg(f)=m

< 92|D|1/2q3g/4
< |D["¥(log, |D|)2.

Now we treat the sum when f is a perfect square in Fy[T]. For this we
write

Z —4g(log(q qum2 Z

DeHag41,9 f monic
deg({):m
(4.27) = —4g(log(q Z mq~™/? Z xp(?).
f monic DEHag41,4
2"" deg(f)=m

=0=12

By using Lemma and Lemma we have that (4.27)) becomes

-1
o |D
sl E Z > il
m= d monic Pl|d
2| deg(d)<m/2

(4.28) + 0 (|DI"/***(10g, |D])?)

_ Dl

d monic P|d g—1
© deg(d)<n<[I53]
deg(d)<[ 5]

2
+0 (|D["/*+(10g, |D])?) .

Summing over n and grouping the powers of deg(d) we have that (4.28)
is
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4g(log(Q))2<LlZ2‘) > yd| 211 \P[ +1 (deg(d) <_1 2 [9;1]»

deg(d)<[451] Pld

. 2 D] ~11% [g-1

+aalos@) oy Z \Quﬁm({ -] 1% D
D

o) Z ‘ ‘ g[l‘pm(deg(d))

—FO(]D|1/2JrE (log, |DI) )

(4.29)

We can rewrite the previous equation (4.29)) as

4g(log(Q))2C|A?2|)( > - > ) d] HIP\+1 <deg(d)< HQ[g;lD)

d monic deg(d)>[45* 1) P|d

+4g(10g(q))2|/£2‘)( > - X ) \d| H|P|+1 ({921} - [921D

d monic  deg(d)>| 921

D
+4g(log(9))2m< >oo— > ) d E|P|+1(deg(d))2

d monic  deg(d)> [QT—I}

+0 (|D|"**(10g,|D])?) .
(4.30)

We can bound the sums with deg(d) > [%] by using a simple variant of
Lemma For the sums over all monic d we use respectively Lemma
and part (i) and part (ii) of Lemma[3.6] After some arithmetic manipulations

we have that (4.30)) is

(ool By
e (12 )

(4.31) 1 4g(log(g ))<|()(‘] CK)+ o<g3\D|q—g/2>

+0 (|D["/**(10g, |D])?) .
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By combining equations (4.31) and (4.26)) the proof of the proposition is
complete. O

We have now all the machinery needed to prove the main result of this
paper.

Proof of Theorem [2.1] The proof follows by combining the Propositions
FES) (0] and [T 0
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