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Abstract

We establish asymptotic formulae for the first and second moments of quadratic
Dirichlet L-functions, at the center of the critical strip, associated to the real quadratic
function field k(+/P) and inert imaginary quadratic function field k(\/ﬁ) with P being a
monic irreducible polynomial over a fixed finite field IF of odd cardinality gand y a
generator of F'. We also study mean values for the class number and for the cardinality
of the second K-group of maximal order of the associated fields for ramified imaginary,
real, and inert imaginary quadratic function fields over ;. One of the main novelties of
this paper is that we compute the second moment of quadratic Dirichlet L-functions
associated to monic irreducible polynomials. It is worth noting that the similar second
moment over number fields is unknown. The second innovation of this paper comes
from the fact that, if the cardinality of the ground field is even then the task of average
L-functions in function fields is much harder and, in this paper, we are able to handle
this strenuous case and establish several mean values results of L-functions over
function fields.

Keywords: Finite fields, Function fields, Hyperelliptic curves, K-groups,

Moments of quadratic Dirichlet L-functions, Class number

Mathematics Subject Classification: Primary 11G20; Secondary 11M38, 11M50,
11R58, 14G10

Contents

1 Introduction and some basicfacts . . .. ... ... ... ... ...
1.1 Introduction . . . . . . . . . i i it e e e
1.2 Zetafunctionofcurves . . . . . . . . . . . e
1.3 Somebackgroundon A =F,[T] . . ... ... ......... .. ...........

2 Statementofresults . . . . . . . ... e e
2.1 Odd characteristiccase . . . . . . . . v it i e e e
2.2 Even characteristiccase . . . . . . . . . . . i i i e e

3 “Approximate” functional equations of L-functions . . ... .. ... ... ... .....

4 First moment of prime L-functions . . . . .. ... ... .. .. .. L o oL
4.1 Odd characteristic €ase . . . . . . . v v v vt it e e e
4.2 Even characteristiC Case . . . . . . . . . v v v v i ittt e e e

5 Second moment of prime L-functions at s = % ........................
5.1 Somelemmasondivisor function . ... .. ... ... ... ... . ... .. ...,
5.2 Odd characteristiccase . . . . . . . . . . i i i i e e e
5.3 EvencharacteristiCCase . . . . . . . v v v v v v i i e et e e e e e e e

References . . . . . . v v i i e e e e e

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,

provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.



http://crossmark.crossref.org/dialog/?doi=10.1186/s40687-016-0087-4&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Andrade et al. Res Math Sci(2016)3:38 Page 2 of 47

1 Introduction and some basic facts
1.1 Introduction
Itis a profound problem in analytic number theory to understand the distribution of values
of L(s, xp), the Dirichlet L-functions associated to the quadratic character ,, for fixed s
and variable p, where for a prime number p = v (mod 4) with v = 1 or 3, the quadratic
character x,(n) is defined by the Legendre symbol x,(n) = (f). The problem about the
distribution of values of Dirichlet L-functions with real characters x modulo a prime p
was first studied by Elliot [9] and later some of his results were generalized by Stankus [18].
For Re(s) > %, Stankus proved that L(s, x,) is in a given Borel set B in the complex
plane with a certain probability which depends on s and B. However, the same question is
non-trivial if we consider s in the center of the critical strip, i.e., Re(s) = % In particular,
it is a challenging (and open) problem to decide whether L(%, Xp) # O for all quadratic
characters x,. Appears that this fact was first conjectured by Chowla [8].
It is also a difficult problem to determine whether or not L(%, Xp) # O for infinitely
many primes p. A natural strategy to attack this problem is to prove that L(%, Xp) has a
positive average value when 0 < p < X and X is large. That is,

Z L (%, Xp) > 0, (1.1)

p=<X
p=v(mod 4)

when X is large. In this context, Goldfeld and Viola [10] have conjectured an asymptotic

formula for

Z L (%, Xp)» (1.2)

p=<X
p=v(mod 4)

and Jutila [13] was able to establish the following asymptotic formula:

Theorem 1.1 (Jutila) For v = 1 or 3, we have

/

1 r
Z (logp)L (%, Xp) = ZX log(X/7) + F(v/4) +4y —1
p=<X
p=v (mod 4)

+0(X(log X)™), (1.3)
where the implied constant is not effectively calculable. The following estimate is effective:
1
2. (logp)L (5 xp) = ;X logX + O(X(log X)°). (1.4)
p=<X

p=v (mod 4)

In arecent paper [4], the authors raise the question about higher moments for the family
of quadratic Dirichlet L-functions associated to x,. In other words, the problem is

Problem 1.2 Establish asymptotic formulas for

Z L (%’ Xp)kf (1.5)
p=X
p=v (mod 4)

when X — ooandk > 1.
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The only known asymptotic formulae for (1.5) are those given in Theorem 1.1, i.e., we
have asymptotic formulas merely when k = 1 and it is an important open problem for
k> 1.

The first aim of this paper is to study the function field analogue of the problem above
in the same spirit as those recent results obtained by Andrade [1] and Andrade and
Keating [2—4] and extend their results. The second aim of the paper is to derive asymptotic
formulas for the mean values of quadratic Dirichlet L-functions over the rational function
field at the special point s = 1 and as an immediate corollary to obtain the mean values of
the associated class numbers over function fields.

One of the main novelties of this paper is that we compute the second moment of
quadratic Dirichlet L-functions associated to monic irreducible polynomials of even
degree (the odd degree case was computed by Andrade and Keating [4]), and in this
way we are able to go beyond of what is known in the number field case. The second
innovation of this paper comes from the fact that, if the cardinality of the ground field is
even then the task of average L-functions in function fields is much harder and, in this
paper, we are able to handle this strenuous case and establish several mean values results
of L-functions over function fields. (See next section for more details.)

1.2 Zeta function of curves

Let IF; be a finite field of odd cardinality, A = [F;[T] the polynomial ring over [F; and we
denote by k = IF,;(T') the rational function field over IF;. We consider C to be any smooth,
projective, geometrically connected curve of genus g > 1 defined over the finite field IF,;.
In this setting Artin [5] has defined the zeta function of the curve C as

Ze(w) = exp(ZNn(C)%), Jul < 611 (16)
n=1

where N,(C) := Card(C(IF;)) is the number of points on C with coordinates in a field
extension Fy» of F;, of degree n > 1 and u = ¢*. It is well known that the zeta function
attached to C is a rational function as proved by Weil [19] and in this case is presented in
the following form

Lc(u)

= 00 - g

(1.7)

where Lc(u) € Z[u] is a polynomial of degree 2g, called the L-polynomial of the curve C.
The Riemann—Roch theorem for function fields (see [16, Theorem 5.4 and Theorem 5.9])
show us that L¢ () satisfies the following functional equation:

Le(w) = (¥ Le (i) (L.8)
qu

And the Riemann hypothesis for curves over finite fields is a theorem in this setting, which
was established by Weil [19] in 1948, and it says that the zeros of Lc(u) all lie on the circle

1 .
lul =¢q 2, ie.,

2¢
Le() =] —eu),  with |aj| = /7 forall . (1.9)
j=1
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1.3 Some background on A = [Fg[T]

Let AT denote the set of monic polynomials in A and IP denote the set of monic irre-
ducible polynomials in A. For a positive integer #n we denote by A} to be the set of monic
polynomials in A of degree n and by IP,, to be the set of monic irreducible polynomials in
A of degree n. Throughout this paper, a monic irreducible polynomial P € P will be also
called a “prime” polynomial. The norm of a polynomial f € A is defined to be |f| := g48(/)
for f # 0, and |f| = 0 for f = 0. The sign sgn(f) of f is the leading coefficient of f. The
zeta function of A is defined for Re(s) > 1 to be the following infinite series

)= > I =] -1P*)7", Res)> 1L (1.10)

feAt PeP

It is easy to show (see [16, Chapter 2]) that the zeta function ¢4 (s) is a very simple function
and can be rewritten as

00 = (L.1)

ql—s :
The monic irreducible polynomials in A = IF,[T'] also satisfies the analogue of the prime
number theorem. In other words we have the following Theorem [16, Theorem 2.2].

Theorem 1.3 (Prime polynomial theorem) Let 7wy (1) denote the number of monic irre-
ducible polynomials in A of degree n. Then, we have

n
wp(n) = #P, = q_n + O(ﬁ) (1.12)
n n

Hoffstein and Rosen [11] were one of the first to study mean values of L-functions over
function fields. In their beautiful paper, they established several mean values of L-series
over the rational function field they considered averages over all monic polynomials, as
well as the sum over square-free polynomials in F,[T]. But in their paper, they never
consider mean values of L-functions associated to monic irreducible polynomials over
F,[T]. In this paper, we investigate the problem of averaging L-functions over prime
polynomials and we compute the first and the second moment of several families of L-
functions, thus extending the pioneering work of Hoffstein and Rosen. It is also important
to note that our methods are totally different from those used by Hoffstein and Rosen and
are based on the use of the approximate functional equation for function fields.

2 Statement of results

2.1 Odd characteristic case

In this subsection we assume that g is odd. First we present some preliminary facts on
quadratic Dirichlet L-functions for the rational function field k = [F4(T') and for this we
use Rosen’s book [16] as a guide to the notations and definitions. We also present the
results of Andrade and Keating [4], which is the main inspiration for this article.

2.1.1 Quadratic Dirichlet L-function attached to xp
Fix a generator y of F. Let H be the set of non-constant square-free polynomials D in
A with sgn(D) € {1, y}. Then any quadratic extension K of k can be written uniquely as
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K = Kp := k(~/D) for D € H. The infinite prime co = (1/T) of k is ramified, split, or inert
in Kp accordingly as deg(D) is odd, deg(D) is even and sgn(D) = 1, or deg(D) is even and
sgn(D) = y. Then Kp, is called ramified imaginary, real, or inert imaginary, respectively.
The genus gp of Kp is given by

= [deg(D) + 1] _ | _ |2(degtD) = 1) if deg(D) is odd, o

2 % deg(D) — 1 if deg(D) is even.

For D € Hi, let xp be the quadratic Dirichlet character modulo D defined by the Kro-
necker symbol xp(f) = (117)) with f € A. For more details about Dirichlet characters for
polynomials over finite fields see [16, Chapters 3, 4]. The L-function associated to the
character xp is defined by the following Dirichlet series

Lis xp) == > xo0If1 =[] (1= xpP)IPI™*) ™, Re(s) > 1. (22)

feAt PeP

S

From [16, Propositions 4.3, 14.6 and 17.7], we have that L(s, xp) is a polynomialinz = ¢~
of degree deg(D) — 1. Also we have that the quadratic Dirichlet L-function associated to
xD» L(z xp) = L(s, xp), has a “trivial” zero at z = 1 (resp. z = —1) if and only if deg(D)
is even and sgn(D) = 1 (resp. deg(D) is even and sgn(D) = y) and so we can define the
“completed” L-function as

L(z xp) if deg(D) is odd,
Lz xp) = {(1 —2)"'L(z xp) if deg(D) is even and sgn(D) = 1, (2.3)
(1+2)"'L(z xp) if deg(D) is even and sgn(D) = y,

which is a polynomial of even degree 2gp and satisfies the functional equation
* 2\gp /* 1
L%z xp) = (qz" P L 7= ) (2.4)
In all cases, we have that

L*(z, xp) = Lcy(2), (2.5)

where Lc,(z) is the numerator of the zeta function associated to the hyperelliptic curve
given in the affine form by

Cp :y* = D(T). (2.6)

The following proposition is quoted from Rudnick [17], and it is proved by using the
explicit formula for L(s, xp) and the Riemann hypothesis for curves.

Proposition 2.1 For any non-constant monic polynomial f € A, which is not a perfect
square, we have

> ()]« e @

PelP,
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2.1.2 The prime hyperelliptic ensemble
We consider P, as a probability space (ensemble) with the uniform probability measure
attached to it. So the expected value of any function F on [P, is defined as

(F), = F(P). (2.8)
" pep,

Using Theorem 1.3 we have that

1 log, |P|
#B, P

, asn— 0o, (2.9)

and thus we may write the expected value as

P
(FP)), ~ Log |PI > F(P), asn— oo (2.10)
1P| PeP,

2.1.3 Main results
In this section we present the main theorems of this paper and we also state the previous
results of Andrade and Keating [4], which is the main motivation for this paper.

From Andrade and Keating we have the following mean value theorem:

Theorem 2.2 (Andrade and Keating [4]) Let T be a fixed finite field of odd cardinality
with q =1 (mod 4). Then for every ¢ > 0 we have,

P 3

> (log, IPNL (3, xp) = %(logq IP|+1)+0 (|P|4+8) (2.11)

PePyyy
and
2 1
> L) = ——|P|(logq IP)* + O(|P|(log, |P])). (2.12)
246,(2)

PePygy

The results of Andrade and Keating correspond to the average of quadratic Dirichlet L-
function associated to the imaginary quadratic function field k(+v/P), i.e., it is the function
field analogue of the Problem 1.2 with v = 3. In this paper we extend the results of
Andrade and Keating by establishing the corresponding asymptotic formulas for the case
of quadratic Dirichlet L-functions associated to the real quadratic function field k(~/P),
which is the function field analogue of the Problem 1.2 with v = 1. It is again worth noting
that in the classical case (number fields) only asymptotics formulas for the first moment
of this family are known. But in function fields, we can do better by establishing the
second moment. We also establish the corresponding asymptotic formulas for the case
of quadratic Dirichlet L-functions associated to the inert imaginary quadratic function
field k(4/y P). In addition, we derive asymptotic formulas for the mean values of quadratic
Dirichlet prime L-functions at s = 1 and s = 2, which are connected to the mean values
of the ideal class numbers and to the cardinalities of second K-groups. Our main results
are presented below.

A prime L-function is the L-function associated to the quadratic character xp where P
is a prime polynomial. For the first moment of prime L-functions, we have the following
theorem.
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Theorem 2.3 Let I, be a fixed finite field with q being a power of an odd prime.

1. Fors € C with Re(s) > %, we have

P o(P|'—2 f R 1
> Lisxp) = L(s); | |p ( |; ) lf ) < (2.13)
PeFn g, 1Pl O(P|2(log, IP)) if Re(s)>1,
as g — oo with
g+1 if s= %,
Ig(s) == 1 £a(2s)(1 — q1HOA=2)) if § < Re(s) < 1(s # 3). (2.14)
sa(2s) if Re(s) > 1.
2. Forany e > 0and fors € C with Re(s) > % and |s — 1| > €, we have
P o(p'~2) if Re(s) < 1,
> s w) =J)i e ’
Péba og, Pl " |0 (1PIblog, IPD) if Re(s) = 1, and (s # 1),
(2.15)
as g — oo with
g+1+2(3) ifs=3
1) = ¢ (28)(s) — a5 (s) if 5 < Re(s) < ; (s#3), 216
CAQ))(s) — CaQF(S) if 1< Rels) < 3 (s # 1),
¢4 (25) if Re(s) > 3,
where

Jis) =1 q([§+1])(1—2s) n ea(2 —s) ( (g—[g%l])(l—%) _ q(g+1)(1—2s)),

ca(l+s)
(2.17)
neey 1 52, el —9) (e-[5*])a-29
]g(s) 1—g\l2 +§A(1+S)q s (2.18)
) = gt e, BC=9) [t
Jg(s) = g2 +§A(1+S)q 2 , (2.19)
and, for s = 1, we have
> L) = s 10 (1P1} log, 1PD) (2:20)
2 log |P| q . .
PE]P’ngrz q
3. Fors € C with Re(s) > %, we have
P o(P|'~3) if Re(s) < 1,
D Lis xyp) = Kgls) 1P| 4 (2.21)

——
log, IPI " | 0 (1PIE(log, IP)) if Re(s) = 1,

P€P2g+2
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asg — oo with

g+ 1+2a(0)a(3) 7! if s=3,

Ea(25)Ky(s) + La (DK (s)  if 5 <Re(s) < 1(s # 3),
£a(25)K (s) + ca(2)KG(s) if 1 < Re(s) < 3,

sa(2s) if % < Re(s),

Ky(s) == (2.22)

where

Ky =1 - gl s (q(g[Z])(l » q(‘“l)(lzs)), (2.23)

1+¢5~1
Kg//(s) _ 1_q([‘%+1])(1723) n lliqqs > ( [g 1]) 1- 25 (2.24)
K3(6) = (~1fqlil-ets e [%]‘gs (225)

Remark 2.4 Note that in many of our estimates (e.g., when we use the O and « notations)
the implied constant may depend on 4.

From Theorem 2.3 (2) and (3), we have the following corollary.

Corollary 2.5 Let q be a fixed power of an odd prime. For every ¢ > 0, we have

1.
1
>~ (log, IPDL(3, xe) = 5 (log, IPI + 224 (3))IPI + O(IPI+ ™), (2.26)
PePygin
2.
1 _
>~ (log IPIL(3, xyr) = 5 (log Pl + 26405 (3) ) 1P| + O(1PIF™*),
PePygin
(2.27)
asg — oo.

For the second moment of prime L-functions at s = %, we have the following theorem.

Theorem 2.6 Let g be a fixed power of an odd prime. As g — oo, we have that

L.
1 2 1 )
PE%HL(Q, ) =3 4§A(2)|P|(Iogq P)* + O(|P|(log, |P])), (2.28)
2.
1
D LG xye) = TG )|P|(logq IP))* + O(|P|(log,, |P1). (2.29)
PePyys

From Theorem 2.3 (2), (3), Theorem 2.6, and (2.10), we obtain the following corollaries.
Observe that Corollary 2.8 below is about non-vanishing results of quadratic Dirichlet
L-functions over function fields.
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Corollary 2.7 With q kept fixed power of an odd prime and g — oo, we have

1
(L (3 XP))2g+2 ~ E(Iqu Pl +2¢4(3)), (2.30)
(L3 xyP))gya ™ %(logq 1P| +2¢4(0)¢4 (3) ) (2.31)

and

1 2 - 1 3
(LG xe) >2g 2~ 330, o8 1P’ (2:32)
1
(L xr2Y hgsa ™ 37, ) 1084 1P (2.33)

Corollary 2.8 With q kept fixed power of an odd prime and g — oo, we have

|P|
> 1> ——— (2.34)
PP (log, IP)
1(3.p)#0
and
> 1> % (2.35)
P€P2g+2 ( qu | |)

L(%rXVP) #0

Proof We only give the proof of (2.34). A similar argument will give the proof of (2.35).
From Theorem 2.3 (2) and Theorem 2.6 (1), we have

> L(zx) ~alPl (2.36)
PePagyr
and
2
> L(3xp)" ~ calPl(log, IPI)?, (2.37)
PePygyo

where ¢ and ¢y are the constants given in the above theorems. By applying Cauchy-
Schwarz inequality we have that the number of monic irreducible polynomials P € P42
such that L (%, xp) # 0 exceeds the ratio of the square of the quantity in (2.36) to the
quantity in (2.37). O

A simple computation shows that Ky(1) = ¢a(2). For the mean value of prime L-
functions at s = 1, from Theorem 2.3, we have the following:

Theorem 2.9 Let q be a fixed power of an odd prime. For every ¢ > 0, we have
1.

P

1
— 4+ 0O(IP|27), (2.38)
log, |P| ( )

> L, xp) = ¢a(2)

P€P2g+1
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2.
1P| L,
2 UL xe) =)y +0(1p|2 "), (2.39)
PeP, og, |P|
g+2
3.
|P| 1,
2 L0 xyp) = Ea@)i——— + O(1PI2), (2.40)
péF, 0g, 1P|
g+2
asg — oQ.

For any non-constant square-free polynomial D € A with sgn(D) € {1, y}, let Op be
the integral closure of A in the quadratic function field k(v/D). Let hp be the ideal class
number of Op, and Rp be the regulator of Op if deg(D) is even and sgn(D) = 1. We have
a formula which connects L(1, xp) with /p [16, Theorem 17.8A]:

JZIDI"2hp if deg(D) is odd,
L(L xp) = {(g — V)ID|"2hpRp  if deg(D) is even and sgn(D) = 1, (2.41)
%(q + 1)|D|’%hD if deg(D) is even and sgn(D) = y.
By combining Theorem 2.9 and (2.41), we obtain the following corollary.

Corollary 2.10 Let q be a fixed power of an odd prime. For every ¢ > 0, we have

1.
3
2) |P|2
PePygi1 Vi 84
P|2
> hpRe =q a2 +0(PI'*), (2.43)
log, |P|
P€P2g+2 q
P|2
> hp=2q""¢(3) +0(PI'*), (2.44)
log, |P|
P€P2g+2 q
asg — Q.

For any non-constant square-free polynomial D € A with sgn(D) € {1, ¥}, let K2(Op)
be the second K-group of Op. We have a formula which connects L(2, xp) with the
cardinality #K2(Op) of K3(Op) [15, Proposition 2]:

43D 2 #K(Op) if deg(D) is odd,
L(2, xp) = gi—@qlel_%#Kz(OD) if deg(D) is even and sgn(D) =1, (2.45)

CA%%)(Z);G) q2|D|’%#I(2(OD) if deg(D) is even and sgn(D) = y.

For the mean value of prime L-functions at s = 2, as an application of Theorem 2.3, we
have the following.

Page 10 of 47
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Theorem 2.11 Let g be a fixed power of an odd prime. For every ¢ > 0, we have

1.
IP| 1,
> LR xp) = ta(4) +0(1p|2 "), (2.46)
log, |P]
P€P2g+1 q
2.
IP| 1,
> L@ xp) = @——— + O(IP|z7F), (2.47)
log, |P|
P€P2g+2 q
3.
_ 1Pl 1ie
> L@ xyp) = Ca(4) +0(P|2*), (2.48)
log, |P|
P€P2g+2 q
asg — oo.

Putting together Theorem 2.11 and (2.45), we obtain the following corollary.

Corollary 2.12 Let q be a fixed power of an odd prime. For every ¢ > 0, we have

1.
5
S #6000 = g Fea@—T 4+ o(P[>), (2.49)
log, |P|
P€P2g+1 q
2.
5
3 4) |P|2
> #a(0p) = g2 EOBE I o ppeey (250)
PePpss ta(2)  log, |P|
3.
5
2 4 5) |P|2
Z #K2(0, 9) :qufA( VA ( )fA( ) |P|2 ) (2.51)
b (32 log, 1P|
asg — oo,

2.2 Even characteristic case

We now will handle the more difficult case. In this section we assume that g is a power
of 2.

2.2.1 Quadratic function fields of even characteristic

The theory of quadratic function fields of even characteristic was first developed in [7],
and we sketch below the basics on function fields of characteristic even. Every separable
quadratic extension K of k is of the form K = K, := k(x,), where x, is a zero of
X?4+X+4u=0foruc k Let p : k — k be the additive homomorphism defined
by p(x) = x2 4 x. Two extensions K, and K, are equal if and only if x, = ax, + w,v =
au+ p(w) for some o € F7 and w € k. Hence, we can normalize u to satisfy the following
conditions (see [12]):

Page 11 of 47
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m

=y 1% +£(T), (2.52)
i=1 "1

(P,Q)=1and2te;forl <i<m, (2.53)

2} deg(f(T)) if £(T) € F,[TI\F,, (2.54)

where P; € P are distinct and Q; € A with deg(Q;) < deg(Pl.ei) forl <i < m.In
this case, the infinite prime oo = (1/7) is split, inert, or ramified in K, accordingly
as f(T) = 0, f(T) € Fy\p(F,), or f(T) ¢ F,. Then the field K, is called real, inert
imaginary, or ramified imaginary, respectively. Let O, be the integral closure of A in
Ky. Then O, = A + Gux, A, where G, := [[12, Pl«(ei+1)/2, and the discriminant of O, is
G2 = [T, P The local discriminant of Ky, at the infinite prime oo is codeg/(T)+1 jf

K, is ramified imaginary and trivial otherwise. Hence, the discriminant D, of K, is given

b G2 - oodesf(D+1 if K, is ramified imaginary, (2.55)
! G2 otherwise, '

and, by the Hurwitz genus formula, the genus g, of K, is given by
1
g = 3 deg(D,) — 1. (2.56)

In general, the normalization (2.52) is not unique. Fix an element £ € F,\p(F,). Then
every u can be normalized uniquely to satisfy the following conditions:

m n
~ Qj 2i—1
U= E E oy} + E o;T + a, (2.57)
i=1

i=1 j=o P;

where P; € P are distinct, Q; € A with deg(Q;) < deg(P;), Qie;, # 0, & € {0,&}, and
ay Z0forn > 0. Let F be the set of such u’s above with # = 0 and « = 0, and F’ be the
set of such u#’s above with n = 0 and @ = &. Then, we see that 4 > K, defines an one-
to-one correspondence between F (resp. F ) and the set of real (resp. inert imaginary)
separable quadratic extensions of k. Similarly, if we denote by H the set of such u’s above
with # # 0, then u > K, defines an one-to-one correspondence between H and the set
of ramified imaginary separable quadratic extensions of k.

2.2.2 Hasse symbol and L-functions
Let P € P. For u € k which is P-integral, the Hasse symbol [«, P) with values in [y is
defined by

0 ifX2%+ X = u mod P is solvable in A,
[w, P) := (2.58)
1 otherwise.

For N € A prime to the denominator of u, write N = sgn(N) [[;_; Pfi, where P; € P are
distinct and ¢; > 1, and define i, N) to be >_;_; e;[u, P;).
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Foru € kand 0 # N € A, we also define the quadratic symbol:

(—D)BN)if N s prime to the denominator ofy,
} = (2.59)
otherwise.

o

This symbol is clearly additive in its first variable and multiplicative in the second variable.

For the quadratic extension K, of k, we associate a character y, on AT which is defined
by xu(f) = {%}. Let L(s, x,) be the L-function associated to the character y,: fors € C
with Re(s) > 1,

Lis x) = > )17 =[] @ = xulP)PI )7 (2.60)

feat PeP

It is well known that L(s, x,) is a polynomial in g—*. Letting z = g%, write L(z, x,) =

M, where g(u) = 1 if

L(s, xu)- Then, L(z, x,) is a polynomial in z of degree 2g, +
K, is ramified imaginary and () = 0 otherwise. Also we have that L(z, x,) has a “trivial”
zero at z = 1 (resp. z = —1) if and only if K, is real (resp. inert imaginary), so we can

define the “completed” L-function as

L(z xu) if K, is ramified imaginary,
Lz xu) = {(1 —2)7 Lz xu)  if K, is real, (2.61)
(1+2) 'Lz xu) ifK, isinert imaginary,
ginary.

which is a polynomial of even degree 2g, satisfying the functional equation

L*(z xu) = (g2 L* (i, Xu) , (2.62)
qz

2.2.3 Main results

We are interested in the family of real, inert imaginary, or ramified imaginary quadratic
extensions K, of k whose finite discriminant is a square of prime polynomial, i.e., G, € P.
For any two subsets U, V of k and w € k, we write

U+V ={u+v:iuelandveV} and U+w:={u+w:ucl} (2.63)

Let F be the set of rational functions # € F whose denominator is a monic irreducible
polynomial, i.e., u = % € FwithP € Pand0 # A € A deg(A) < deg(P),and F' = F+&.
Then, under the above correspondence u > K, F (resp. F’) corresponds to the set of real
(resp. inert imaginary) separable quadratic extensions of k whose discriminant is a square
of prime polynomial. For each positive integer #, let F, be the set of rational functions
u= % € Fsuchthat P € P, and F, = F,,+&. Then, under the correspondence u — Ky,
Fgy1 (resp. F, é +1) corresponds to the set of real (resp. inert imaginary) separable quadratic
extensions of kK whose discriminant is a square of prime polynomial and genus is g.
For each positive integer s, let G be the set of polynomials F(T') € Ags_; of the form

F(T)=a+ > aT*, aef{0&), oi#0. (2.64)
i=1

Let G be the union of Gy’s for s > 1 and H = F + G. Then, under the correspondence
u — Ky, H corresponds to the set of ramified imaginary separable quadratic extensions
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of k whose finite discriminant is a square of prime polynomial. For integers r,s > 1,
let M.y = F» + Gs. Then, for each u € Hy,y), the corresponding field K}, is a ramified
imaginary of genus r + s — 1. For integer n > 1, let H,, be the union of H,,_,)’s for
1 < r < n— 1. Then, under the correspondence u + K, Hg11 corresponds to the set
of ramified imaginary separable quadratic extensions of k whose finite discriminant is a
square of prime polynomial and genus is g.

In this paper, we are interested in asymptotics for the sums (as g is fixed and g — o0):

1
Z L(s, xu), Z L(s, Xu), Z L(s, xu), Re(s) > 3 (2.65)
U€Hgt1 UEFg+1 ueFy
and
P ACT A S AL L S A P (2.66)
u€Hg+1 u€Fgt1 ucF,

g+1

For each P € P, let Fp be the set of rational functions # € F whose denominator is P, and
}"I/, := Fp +&. Then Fgy 4 is disjoint union of the Fp’s and .7-;/,“ is disjoint union of the
F}'s, where P runs over prime polynomials in Pg1. Hence, we can write

Z (8 xu) = Z Z (8 Xuh Z (8 xu) = Z Z (S xu)» (2.67)

!
ueFgt1 PePgiy ueFp ueFy iy PePqt1 ueF,

and

IR WD WAL

UEFg+1 PeIP’gH ueFp

S LGx)= > D L) (2.68)

ue]—‘gH PePgi1 ueFy,

For the first moment of such L-functions, we have the following theorem.
Theorem 2.13 Let F; be a fixed finite field with q being a power of 2.

1. Fors € C with Re(s) > , we have

o |ogTIg®) ifs=3

Z L(s, xu) = 27g(s)q o ’ | (2.69)
e ¢ loeq®)  iFs#l
as g — oo with
. +1  ifs=13,
L =1¢ ¥ ’ (2.70)
Za(2s) if s # 5.
2. Foranye > 0and fors € C with Re(s) > 5 Land|s — 1| > &, we have
S L6 0 =)0 L+ o(pi) 2.71)
o £ logq |P|

PePygy; ueFp
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asg — oo with

g+1+2u(3) if s =73
Je(s) = 164 (28)]5(5) — ca @5 () if § < Re(s) <1(s # 3), (2.72)
¢a(2) if Re(s) > 1,

where ]é(s) and]g (s) are given in Theorem 2.3 (2) and, for s = 1, we have

|P|?

> 2 L) = @)~ + O(1PI2). (2.73)
PePyy; ueFp | |
3. Fors € C with Re(s) > , we have
2 2 s ) = Kelo)i P ||P| +0(1P|?), (2.74)

PePgy1 ueF,

as g — oo with

g+ 1+2002a(zx)™ ifs=3
Kes) == 1 £a@9Ky(5) — LaKF(s) if 3 <Re(s) <1 (s # 1), (2.75)
sa(2s) if Re(s) > 1,

where Ké (s) and Kg* (s) are given in Theorem 2.3 (3).

Remark 2.14 1f q is odd, the quadratic extension k(/y D) of k is also ramified imaginary
for any monic square-free polynomial D of odd degree. Under the changing of variable
T + yT, k(-/yD) becomes to k(v/D). Hence, we only consider the family {(k(v/P) :
P € Pygy1} in Theorem 2.3 (1). However, if g is even, we consider all separable ramified
imaginary one. This is the reason why the constant “2” appears in Theorem 2.13 (1) and
does not appear in Theorem 2.3 (1).

For the second moment of L-functions at s = %, we have the following theorem.

Theorem 2.15 Let g be a fixed power of 2. As g — 00, we have

1.

> L) = % (2)g2ng“+O((logg)gq2g), (2.76)
) uSTgrs

S > 1)’ = (2)|P| (log, IP))? + O(1P|*(log, PI)), (2.77)
) PeFpyr ueTp

> D L(3 ) —3; (2)|P| (log,, |P)* + O(|P|*(log, |P))). (2.78)

PePgy1 ueFy,
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Remark 2.16 There is a unique quadratic extension k(+/P) of k whose (finite) discriminant

is P in case of g being odd, but if g is even, there are ®(P) = |P| — 1 separable quadratic

extensions K;, of k whose (finite) discriminant is P2. For this reason, |P|?> appears in

Theorem 2.15 whereas |P| appears in Theorem 2.6. Considering this difference, we may

regard Theorem 2.15 as an even characteristic analogue of Theorem 2.6.

Asinodd characteristic case, we can consider Hg 1, Fg11,and F, g/ 41 asprobability spaces

(ensembles) with the uniform probability measure attached to them. So the expected value

of any function F on Hg 1, Fgi1, Or féﬂ is defined as
1
i = e > Fw),

L{EHg+1

Since (see Lemma 4.3)

2¢+1 2g
#Hgi1 = 24 p +0 (q_))

g2
3¢
#Fgi1 = #Fgiq = % + O(q;),
we have
ﬁ ~ % and #flg+1 = #éH ~ f;z—gté asg — oo.

From Theorems 2.13 and 2.15, we get the following corollary.
Corollary 2.17 With q kept fixed power of 2 and g — oo, we have
(L (%’ XM))HgH ~g+L
(L (3 xu))p,, ~g+1+0(3)

L(Lx))y ~g+1+2a02s (3

g+1

<L (> X”)2>Hg+1 - 3;;(2)’

1 2 N (g + ].)3
<L (5 1u) >fgﬂ 3a(2)

1 2 - (g + 1)3
<L (7’ ) >5”§+1 304(2)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)
(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

We follow the same reasoning as it is done in Corollary 2.8 with Theorems 2.13 and

2.15 to get the following corollary.

Page 16 of 47
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Corollary 2.18 With q kept fixed power of 2 and g — oo, we have

q2g+1
P (2.91)
u€Hgt1 g
L(3,x)#0

2
|P|
> > 1> (W) , (2.92)

PePgi1  ueFp
L(%rXu)#o

2
|P|
> D> 1> (logq |P|) . (2.93)

PePgr1  ueF,
L(%,Xu)?&()

From Theorem 2.13, we have the following result concerning the first moment of L-
functions at s = 1.

Theorem 2.19 Let g be a fixed power of 2. As g — 00, we have

1.
q2g+1 q2g
Z L(L xu) = 2¢a(2) +0 (—2) (2.94)
MGHg+1 g g
2.
|P|? 3
> D Lx) =) +0(IP|?), (2.95)
og, |P|
PePyy1 ueFp q
3.
DD L ) = 2a2) PP +o(|p|%) (2.96)
o log, |P| ' '

PePgi1 ueF,

Foranyu € Hgi1 UFpi1 U .7-"g’+1, we have a formula which connects L(1, x,) and the
class number /4, of O, [7, Theorem 5.2]:

q_ghu lfM € Hg+1,
L(L xu) = 12a(2) g% huR, ifu e Fyr, (2.97)
268 @eaB) g8y ifue Fy,,

where R, is the regulator of O, if u € Fyy1.
By combining Theorem 2.19 and Eq. (2.97), we have the following corollary.

Corollary 2.20 Let q be a fixed power of 2. As g — 0o, we have

1.
q3g+1 q?)g
D hu=202)"——+0 (—2) (2.98)
MEHg+1 g g
2.
2 -1 P? 5
> > iRy =a(2)q 1 +0(1P12), (2.99)
og, P|

PePgiq ueFp
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2 2 =200 1P +0(1P3). (2.100)

PeP |P|
g+1 ME}_P

3 “Approximate” functional equations of L-functions

For any separable quadratic extension K of k, let xx denote the character xp if g is
odd and K = k(~/D), where D is a non-constant square-free polynomials D € A with
sgn(D) € {1, y}, or the character x, if g is even and K = K,,, where u € k is normalized as
in (2.57). Let L(s, xx) be the L-function associated to xx. Then L(s, xx) is a polynomial in
z = g~ of degree §x = 2gx + %(1 + (=1)*%)), where gk is the genus of K, ¢(K) = 1if K
is ramified imaginary and ¢(K) = 0 otherwise. Write

L(s, xx) ZAK S with Ag(n) == D" x(f). (3.1)

feAl

Lemma 3.1 1. IfK is ramified imaginary, then we have

gr—1
L(s xx) = ZAK(mq 4 g2 A (m)g o, (3.2)
n=0 n=0
2. IfK isreal, then we have
8K 8K
L(s, xx) = ZAK — q " Ak (n) + Hi (s), (3.3)
n=0

where Hy (1) := ¢4 (2) " 1q % ZgK ! (gx — n) Ax(n) and, fors # 1,

(1-2s) ga(2 S)gK_l ( 1) a2 g1< !
Hg (s) := K ST AR (n) — q 8K Ak (n
k(s) = q' (HS)Z k() C(H)ZK()
(3.4)
3. IfK is inert imaginary, then we have
8K &K
L(s, xx) = D Ax(m)g™™" +q~ 0P > (—1)" & A (n)
n=0 n=0
-1
1+q™° (1-2s)g B (s—1)n
+ (qu_l) q > Ak(ng
n=0
— 8K —
1+q°\ _
+ (qu—l) 8K Z n+gK+1A1<(}’l). (3.5)
n=0
Proof Write
2k

L(z, xx) ZAK 2" and L*(z xx) ZAK mz". (3.6)
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By (2.3) and (2.61), we have

Ax(n) if Kis ramified imaginary,
Ax(n) = 1 S Ak (i) if Kis real, (3.7)
S o(=1)"Ak(i) ifK isinert imaginary.

By substituting £*(z, xx) = Zg:KO Ak (n)z" into the functional equation (2.4) [or (2.61)]
28K 2gK 28K
ZA (n)z" = ZA (m)g®< "2 =" Aj(2gk — n)g" ", (3.8)
n=0

and equating coefficients, we have
A (n) = A} (g —n)g" 8 or Ax(2gx —n) = Ax(n)g®<~". (3.9)

So we can write L*(z, xx) as

gk —1
*(z, xx) ZAK n)z" + %K 728K ZA* q "z " (3.10)

If K is ramified imaginary, since £(z, xx) = L*(z, xx), we have that (3.2) follows immedi-
ately from (3.10). Suppose that K is real. By (3.7) and (3.10), we have

8K n g—1 [ n
Lz xx) = Z(ZAK(i)) 2P Y DA | a7

n=0 n=0 j=0

Z§K+1
_ Z ( )AK(n) + H*(2), (3.11)

where H*(qg™!) := q~% ng— x — n)Ax(n) and, for z # q 1,

gk—1 grk—1

Z a7 "z Ak () - ———— ZAK(I’I). (3.12)

qu Zzgl(

H@ ===
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By multiplying (1 — z) on (3.11) and putting z = g~*, we get (3.3). Finally, consider the
case that K is inert imaginary. By (3.7) and (3.10), we have

8K n
L xx) = (Z(—l)"_iAK(i)) "
n=0 \i=0
g1 [ n
+ 2K "D (1) TAG) | a7
n=0 \j=0
8K gx+1 &K

Z
— > Ak > (-1t A
ey x(m)z" + 1Tz (=1 k(n)

n=0

quZZgK &l rn
T4g 121 Ax(n)g™"z
n=0
gr—1

1) H 4 g (). 3.13
1+q—1z—1 % x(n) (3.13)

By multiplying (1 + z) on (3.13) and putting z = g—*, we get (3.5).

O
Write
28K
L(s xx)* = D Bx(mg™™ with Bi(n) := D> d(f)xx(f), (3.14)
n=0 feAy
where d(f) denotes the divisor function on A™:
dif)== > 1. (3.15)
NeAt
NIf
Lemma 3.2 1. IfK is ramified imaginary, then we have
28K 2gx—1
L(3 xKx)? ZBK ng? + Z Br(n)q™2. (3.16)
2. IfK is real, then we have
2¢K 2gx—1
(4 x0)? ZBK T2+ > Bi(nq 2
n=0
( L 2g1< 2¢k—1
& ZBK(n) g% > Bx(n)
n=0 n=0
O fae)
- (3) a 2> (2gk + 1 — n)B ()
n=0
L 2gk—1
—ea(3)" a7 D (2ek — mBk(n). (3.17)

n=0
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3. IfK is inert imaginary, then we have

) 28K ., 2k —1 .
L(5x0)" =D Bxmg i+ > q Bk
n=0 n=0

_( +l) ZgK 2g1<_1
+q T (—1)"Br(n) + 44 D (=1)"Bk(n)
n=0 n=0
28K
¢a (%) *(gKJrl)
4 2AN2) 2 —1)"(2gx + 1 — n)Bx(n
"o g( )" (2gx )Bic (1)
tn(3) o &
4+ =L g8k —1)"(2gx — n)Bx (n). 3.18
NOK §< )"(2gx — m)B(n) (3.18)
Proof Write
28K gk
Lz xp)* =D Bx(mz" and L*(z xp)* = D Bx(m)z". (3.19)
n=0 n=0
By (2.3) and (2.61), we have
By (n) if K is ramified imaginary,
By (n) = " o(n+1—0)Bk(i) if K is real, (3.20)

S o(=1)"i(n+1—i)Bk(i) if K isinertimaginary.

From the functional equation

1 2
Lz xx)* = (g2*) ¥ L* (%, XK) , (3.21)
we get
By (n) = By (4gx — n)g" %€ or By (4gx — n) = ngkan}‘((n). (3.22)

Then we have

Zg]( ZgKfl
Lz xx)* = D Bie(mz" + %% " Bi(ng "z ™" (3.23)
n=0 n=0

If K is ramified imaginary, since £(z xx)?> = L*(z xx)?, we have that (3.16) follows
immediately from (3.23). Suppose that K is real. By (3.20) and (3.23), we have

28k _n —(g1<+%) —(gl('i‘%)
_1 2 — (2gx +1 —n)
Lg% k) =D 1 1 5~ g _ql B (n)
n=0 1— q_f) 1—g2

Bk (n). (3.24)
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2
Multiplying (1 — q’%) on (3.24), we get (3.17). Suppose that K is inert imaginary. By
(3.20) and (3.23), we have

1
L£*q72, xx)?

_3 4 g B Cayroge e mg )

By (n)
2 _1
(1+47%) ttas
29K —1 _n _ _
2+ (=1)"q78  (=1)"(2gx —n)q ¥
+ > e L+ S PT 1 B, (3.25)
=0 (1+q‘f) 1+q
Multiplying (1 + q_%)2 on (3.25), we get (3.18). O

4 First moment of prime L-functions

4.1 Odd characteristic case

In this subsection, we give a proof of Theorem 2.3. In Sect. 4.1.1, we obtain several results
of the contribution of squares and of non-squares, which will be used to calculate the first
moment of prime L-functions in Sects. 4.1.2, 4.1.3, and 4.1.4.

In Sect. 4.1.1, H,, will denote Py 1 or Py, for any positive integer g.

4.1.1 Preparations for the proof
We first consider the contribution of squares. We will use the prime polynomial theorem
(Theorem 1.3) in the following form

1

P |P|2
21_1 >t e ) (4.1)

o loggIPI og, IP|

Proposition4.1 1. Fors € C with Re(s) > , we have

> Z(il)” D xe(f) = Ag(s) |P +0(IP|?), (4.2)
PeH, n=0 feAd 8q 1P
f=0]
where
g 1
Agls) = [3]+1 . fs=2 (4.3)
ea@s)(1 — qUElHvu-29) e g1

2. Fors € C with Re(s) > , we have

g-1
7029 Zz(ﬂ)nq(s—l)n Z xp(f) = g(s) P ||P| O(IPI%*%), (4.4)

PeHg n=0 ng;'
f=0
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where

[‘E]+1 if s=

B = —
X EA(ZS){q( e[ ])a-29 02} g2

(4.5)

NI»—‘ MI»—'

3. Leth e {g—1,g}. Fors € C withRe(s) > , we have

s 3 Z > xelf) = % + O(|P|%‘%), (4.6)

Pelly n= OfeA+
f=0

where Cy(s) = gA(2)q_(h+1)3_1(q[g]+1 —1).
4. Fors € C with Re(s) > %, we have

gt Y Z(g—n > xelf) = |P| +O(IP|%), (4.7)

PePygi9 n=0 feAf
f=0

where B(g) = q([%]H) {ZCA(2) — —(1 + ( 1)g+1)} —g—2¢4(2).

Proof (1) Forany P € H; and L € A;r with [ < g, we have xp(L?) = 1. By (4.1), we have

¢ (5]
DUDEY T e =D a7 D> D xe(l?)

[ SIS}

Pely n=0 feAf 1=0 LeAl* PeHy
/=0
]

2 1

_ P| |P|2
=SS = 4,0—2 4 ofa . 4.8
"7 D 1= A0+ O\ A (48)

=0 PeHy, q q

Since A4(s) < g, the error term in (4.8) is < |P| 2, Hence, we get the result. The proofs of
(2), (3), and (4) are similar as that of (1). O

Now, we consider the contribution of non-squares. For any non-constant monic poly-
nomial f, which is not perfect square, we can reformulate Proposition 2.1 as follows:

2 xlf)] < deg(f) - | B (4.9)
PeHy
Proposition 4.2 1. Fors € C with Re(s) > %, we have
g 1—5 .
- o(|P|"™2) if Re(s) < 1,
DIDUEYTTE D xelf) = L . (4.10)
PeHg n=0 feA;*’ O(|P|2(10gq |P|)) lf Re(s) = 1.

F#0
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2. Fors € C with Re(s) > %, we have

g-1
g1 37 31y > () = 0(1P13).

PEHg n=0 ng:lr
F£0

3. Leth € {g —1,g}. Fors € C with Re(s) > %, we have

h
g YT D> ) =O(IPI'E).

PeHy n:OfeAnJr
f#0

4. Fors € C with Re(s) > %, we have

g-1
0@ > De-m D wl)=O0(Pl}).

PePygyn n=0 feAf
f#0

Proof (1) By (4.9), we have

g g
DD ED T k) <D a D | D] xelf)

Pelg n=0 feAj; n=0 feAn* PeH,
£#0 f#0
1 g
|P|2 (1—s)n
L — Z nq .
log q |P| e
Since

g (A= if Re(s) < 1,
Ziaq(lfs)n < &

) g’ if Re(s) > 1,
we have
1 g 1-% if R
|P|> > g9 |P|72 if Re(s) <1,
1 .
log, |P| & IP|2(log, |P|) if Re(s)> 1.

The proofs of (2), (3), and (4) are similar as that of (1).

4.1.2 Proofof Theorem 2.3 (1)
By Lemma 3.1 (1), we have

g
> Lisxe)= > D.a" > xelf)

PEPngrl P€P2g+1 n=0 fEA;;

g7 " giq“’”” > xelf).

PePygi1 n=0 feAr

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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We can write > cc,+ xp(f) as

> )= D o)+ D xelf).
fehAf feak feat
f=0 f#0
Then, by Propositions 4.1 (1), (2) and 4.2 (1), (2), we have
P| o(|p|'~?) if Re(s) < 1,

Z L(s, xp) = (Ag(S) + Bg(s))

P€P2g+1

A simple computation shows that

. 1
g+1 if s=3,

Ag(s) + By (s) =
I T o - g0y i s ]

For Re(s) > 1, we have

L _ a9
log, IP| log, 7|

é'A(ZS)(l _ q(1+g)(172s))

Then, by (4.20), (4.21), and (4.22), we have

P N o(1p|*—?) if Re(s) <1,
log, IPl | o(1PI2(log, IP]) if Re(s) > 1.

> Lis xp) =Ils)

PePyyy

This completes the proof of Theorem 2.3 (1).

4.1.3 Proof of Theorem 2.3 (2)
By Lemma 3.1 (2), we can write

g
D Lsxp)= > D.a "D xelf)

PEPZngz PE]P’Zngz n=0 fEA;
g
—(g+1
—q ¢ 0 > D N+ D Hpls)
PePogio n=0fepf PePagin
where

g-1
Hp(1) = 4@ 7'q 4 D> (g —nm) D xp(f)

n=0 feAf

and, fors # 1,

g-1 g-1
Hp(s) = n()g" 2 D g " > 3o () —n9)g 72 D D xe(f)

n=0 feAy n=0fept

log, IP| " | O(1P|% (log, IP])) if Re(s) > 1.

+0(1P|2 (log, IPY)).

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
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with n(s) = gﬁg;g We first consider the case s = 1. By Propositions 4.1 (1), (2), (4) and

4.2 (1), (2), (4), we have

|P
log, |P]

> L ) = Hig) +0(1P|2 (log, IP)), (4.27)

PePyyyn

where H(g) = Ag(1) — Cy(1) + B(g)|P| 2. Since

|P| _ [g]7@+1) |P| 1
ColDog g = 4@ g O (1P (tog, 1PD) (4.28)
and
1 1
e ([ ]) C L4 ety PP
B(g)logq Tk {200 — 31+ (1H} iog, 17|
+0 (1Pl (log, D). (29)
we have
Pl 1P| !
M@ iog, 171 =/ Wiog, 171 +© (1pi#0g, 1P), (4.30)
where

g-1

Jo(1) = A (1) — £a@)qlil-ern 4 q([T]*g) {2¢4@) — 2@ + (-1}, (a.31)

A simple computation shows that /(1) = ¢ (2). Hence, by (4.27) and (4.30), we have

P )
> UL =a®p g +0 (1Pl (log, IPD). (432)

PePygin

Now, consider the case s # 1. For |s — 1| > ¢, n(s) is bounded. Then, by Propositions
4.1 and 4.2, we have

|P| o(|p|'—?) if Re(s) < 1,

— + (4.33)
log, IPI " | 0 (1PI:(log, IPI))  ifRe(s) = 1,

D Lis xp) = Hgls)

PePyg o

where Hy(s) = Ag(s) + n(s)Bg(s) — Cg(s) — n(s)Cy—1(s). We have that, for s € C with
%fRe(s) <land|s—1| > ¢,

p p
1 |P| =CA(2)q[%]—(g+l)s P
og, |P| log, |P|
|P| el |P|

ey = e n(s)gl T e T

Ce(s) +O(IPI173), (4.34)

+0(1P|*73), (4.35)
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and, for s € C with 1 < Re(s) < % and |s — 1] > &,

|P] (12551 P 1
B - 2 T o(ip12og, 1P),
WOBy 9,y = NEs 20 g + O (1P og 120)
(4.36)
1P| §1-@g+vs Pl 4
L IS L o(ip3og, 1P), 4.37
Col6) iy py = a1 =+ 0 (1P1E g, 1PD) (@37)
q q
OCe1 9 = @0 T 0 (1P dog, 1PD), (439)
T log, 1P T T log, 1P B0 '
and, for s € C with % < Re(s),
|P |P] 1
Ag(s)——— = £4(25)——— + o (1P|2 (log, 1P])), 4.39
O = 429y O (171 log, 17D) (4.39)
q q
|P 1
B,(s)——— < |P|2(log, |P|), 4.40
1080 gy < IPIH g P1) (@.40)
G (s)ﬁ < |P|? (log, |P)) (4.41)
*log, IP| Bq 171 '
(5)Ce 1)1\ < P} (log, 1P) (4.42)
TR log, 1P Bg 171 '
Then, by (4.34), (4.36), and (4.39), we have
P P O(|P|*~3) if Re(s) < 1,
Hg(s)lL - ]g(s)% n L ‘ (4.43)
og, |P| og, Pl " |o (|P|2(logq |P|)) if Re(s) > 1.
Hence, by (4.33) and (4.43), we have
P O(|P|*~3), if Re(s) <1
Z L(s, XP):]g(S)lL 1 ] (4.44)
b, og, 1Pl " |o (|P|2(logq |p|)) if Re(s) > 1

for s € C with % < Re(s) and |s — 1| > &. This completes the proof of Theorem 2.3 (2). O

4.1.4 Proof of Theorem 2.3 (3)
Forany f € A, we have xyp(f) = (—1)des(f) xp(f). Hence, by Lemma 3.1 (3), we have

14
> Lisxyp)= . D(=1"q" > xp(f)

PePyg i PePygin n=0 eAy
n

g
+(_1)gq—(g+l)s Z Z Z xp(f)

PePygyn n:OfeA:lr

g—1
—|—v(s)q(1725)g Z Z(_l)nq(sfl)n z XP(f)

PEP2g+2 n=0 fEA;:

g-1
HEDE g DT DT> xelf), (4.45)

PePygia n=0 fepf
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+
14g5~1°

where v(s) = Followmg the same process as in the proof of Theorem 2.3 (2), we

can show that

S L ) = Kot |P| o(P|'"2) if Re(s) <1, @46)
S XyP g(s + 1 ) R

b log, 1P|~ |o <|P|2(logq |P|)) if Re(s) > 1

This completes the proof of Theorem 2.3 (3). ]

4.2 Even characteristic case

In this subsection, we give a proof of Theorem 2.13. In Sect. 4.2.2, we obtain several results
of the contribution of squares and of non-squares, which will be used to calculate the first
moment of L-functions in Sects. 4.2.3, 4.2.4, and 4.2.5.

4.2.1 Auxiliary Lemmas

Lemma 4.3 1. For any positive integer n, we have

P|2
Z Z +O(logq |P|)- (4.47)

PeP, ucFp

2. For any positive integer n, we have

q2n+l q2n
FHpy1 = 2 +0 ( . ) (4.48)
n n

Proof 1. By Theorem 1.3, we have

1P| |3
> 1=>" > 1=(P - ) &, 1P o(logq|P|) (4.49)

PePy, ucFp PePy, 0#£AcA™
Lk P|2
= +0 . (4.50)
log, |P| log, |P|

deg(A)<n
2. Since #G,11—r = 224 (2) " 1q" 177, by (4.47), we have

#Hnr1-r) = #Fr - #Gui1—r = 200(2) "7 (g7 — DFP, (4.51)
and
#Hpg1 = Z#HMH ) =207 "“Z (1 =g ")#Pr. (452)
r=1

From [14, Theorem 2], we can deduce that

> #P = q—— + (— (4.53)
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r
Also, since #P, < L, we have

n n
1
TTHP, < - . .
>q P,_Zr«logn (4.54)
r=1 r=1
Hence, we get the result. ]

ForP e Pandf € AT, let I%p and Typ be defined by (see [6, §3])

A/P A/P
p= > ’L] and Tpp= [—/ ] (4.55)
AeA f 0£A€A f
deg(A)<deg(P) deg(A)<deg(P)

Lemma 4.4 Forf € A" with deg(f) < 2g + 1, which is not a perfect square, we have

1P|
> x| < Iog, 171 (4.56)

PePgy ueFp

Proof By [6, Lemma 3.1], we have I;p = 0,50 Typ = Iyp — {18} = —1. Then, we have

DD =D > |’%] (4.57)

PePyy1 ueFp PePgi1  0#A€A
deg(A)<g+1
= > Tp=— > 1<#P. (4.58)
PEPg_H PGIP’g+1
Pf
Hence, by Theorem 1.3, we get the result. O

For P € P,f € AT and positive integer s, let Iyps and Typ be defined by

Tips= 2. Z[#] and

AeA Fegg
deg(A)<deg(P)

Typs = Z Z[#] (4.59)

0#£AeA  FegGq
deg(A)<deg(P)

Lemma 4.5 LetP € P,f € A" and s be a positive integer with deg(f) < 2 deg(P) +2s —2.
Suppose that P { f and f is not a perfect square. Then I;ps = 0 and Tgps < q°.

Proof Let Ep; be the set of rational functions u = % + F € k such that deg(A) < deg(P)
and F = Z;_:ll ayT?"~1 with a,, € F,. Then, we have

o= G ) (2257 2 1)

acly u€€pg
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where y is a generator of F . Since Ep is abelian group and { f} is a homomorphism, we
have

> I;] —0. (4.61)

MESP,S

From (4.60) and (4.61), we have Iyps = O and Typs = — ZFegs{jl;:} L #G; L ¢°. O

Lemma 4.6 Forf € A" with deg(f) < 2g + 1, which is not a perfect square, we have

> x| < (logg)g®. (4.62)

MEHng]

Proof By Lemma 4.5, we have

g
> wlh) =X Tpgrir <@ #E < L (4.63)
u€M (rg+1-r) PeP,
Hence, we have
g g 1
D=2 D x| <D ~ < (logg)g’. (4.64)
u€Hgt1 r=1ucHg11-r) r=1
O

4.2.2 Preparations for the proof
We first consider the contributions of squares.

Proposition4.7 1. Fors = %, we have

g
> Yot S an=2(5n T ro(%) a5

MEHg+1 n=0 feAjl’ g g
=0
and, for s € C with Re(s) > % (s # %),
g 2g+1 2g
> > Y ) =209 +0 (q_z) (4.66)
MG'Hg+1 n=0 feA;t’ g g
=0

2. Fors = %, we have

g-1 2g+1 2
> > Y N =2([54+1) %Jro(ﬁ) (67

ME'Hg+1 n=0 feA; g
f=0



Andrade et al. Res Math Sci(2016)3:38 Page 31 of 47

and, for s € C with Re(s) > % (s # %),

g1 ng
> T S an=o() (.69
u€Hgy1 n=0 feA: g

=0

Proof (1) We have

g £
PN EIFNIEDD Doa > xulf) (4.69)
u€Hg41 n=0 fGAj[ r=1ueH yg+1-r) 1=0 fEA;t
f=a f=0

|
=2 g D rll) (4.70)

r=1u€H yg41-r) I=0 LeAf

NI
[S—

Foranyu =v+F € H,g41-p) Withv = % € Frand F € Ggy 1, we have

1 .
q ifl <,
Do) = D 1= (4.71)
g -4 ifl>r
LeAf Leaf >r.
(LP)=1
Then we have
g g g
DD D a D xulf) = Ag(9) D #H g1 — tgls), (4.72)
r=1u€Hg11-r) n=0 feAf r=1

=0

where Ag(s) is given in Proposition 4.1 (1) and

[£] [£]
otg(s) = Zqir#H(r,g+1—r) Z q(1723)l. (4.73)
r=1 I=r

By (4.48), we have

2g+1
qg

4
Ag($) D #Hpgr1-r) = 244(5)

r=1

q*
P 0 (Ag(s)g—z) . (4.74)

2 28 2¢ 28
1 1 1
Fors = 3, we haveAg(i)—’z2 < —qg .Fors # 5, we haveAg(s)—iIg2 < —i’gz and

2g+1
Ag(s)]

q2g+1 qu
= ¢u(2s) +0 (—2) : (4.75)
g g g

Since #H(,g41-r) < ¢4 L,

[5] . [5] 2
ag(s) < ¢ > - > 4" <« (logg)ga® < 7 (4.76)
r=1 l=r

Therefore, we get the result. Similarly, we can prove (2). ]
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Proposition 4.8 1. Fors € C with Re(s) > , we have

PJ? 3
> > Z(il)” Y xulf) = g(s | lPI o(|p|z), (4.77)
PePgy1 ueFp n=0 feat
=0
where
5] +1 yo=}
Agls) = { £a(29) (1 - q(l‘“([g]“>) if Re(s) < 1(s # 1), (4.78)
Za(2s) if Re(s) > 1

2. Fors € C with Re(s) > %, we have

g-1 2
A S Y ) = B+ O (PP,

PGPg_H ueFp n=0 feAI Iqu |P|
=0
(4.79)
where
g—1 . 1
. S=]1+1 if s=3
By(s) = - e 2 (4.80)
£a(29)g e D2 i g L
3. Leth e {g —1,g}. Fors € C with Re(s) > %, we have
g0t s )gl4] - 0s |P|? 2s
Z ZZZXu(f)_CA m+o(|1)| )
PePyy1 ueFp n=0fept 8q
=0
(4.81)

4., Fors € C with Re(s) > , we have

g—1
@7t D D D e —m D ) =BE)

PEPngl ueFp n=0 feA;’
f=0

+0(P), (4.82)
log, |P|

where

B = gl 7] ){2¢A(2)——1+( 1Eh}. (4.83)
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Proof (1) By (4.47), we have

> 2 i(ﬂ)”q’s” > xl) = Zq*’ > D )

PePgiy ueFp n=0 feat LEA+ PePgyy ueFp
f=0

[0

q(l 2s)] Z Z 1

PePyy ueFp

3
s |2
= Ag(s) + O Ag(s)——— ), (4.84)
¢ log, |P| (g log, |P|

where A,(s) is given in Proposition 4.1 (1). Since Ag(s) < g + 1, the error term in (4.84)

N

_ g
is < |P|3. Since g 2([514) pp « 113 for Re(s) > 1, we have

P> - P[> 3
Ag(s)——— = Ag(s)—— + O (IP|2). (4.85)

¢log, 1P| ¥ log, |P| ( )
Hence, we get the result. Similarly, we can prove (2), (3), and (4). O

Now we consider the contribution of non-squares.

Proposition4.9 1. Fors € C with Re(s) > %, we have

g
> D> xlf) = Ollog g ). (4.86)

u€Hg41 n=0 feA;
(s

2. Fors € C with Re(s) > , we have

g—l
_ _ 3¢
g" 7 T g ST ) = O((log g)gg ?). (4.87)
MGHg+1 n=0 feA:
f#0

Proof (1) By using the fact that Zle % < log g and Lemma 4.6, we have

> Z‘I_s" > ) < Zq LD xulf) (4.88)

u€Hgi1 n=0 feaf feA;f |[ueHg+1
f#0 f#0
£
3,
< (logg)g® > q"™" < (logg)gq * . (4.89)
n=0
Similarly, we can prove (2). o

Proposition 4.10 1. Fors € C with Re(s) > %, we have

O(IP1>~%) if Re(s) <1

g
PRI I AGE ‘ ’ (4.90)

PePy iy ueFp n=0 fen)t Oo(|P|) if Re(s) > 1
f#0
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2. Fors € C with Re(s) > , we have

g >y Z(il)n ST xulf) = 0 (1P1*). (4.91)

PePyy; ueFp n=0 feA*
F#0

3. Leth e {g —1,g}. Fors € C with Re(s) > %, we have

—(h+1)s Z Z Z Z xulf) = |p|2 S) (4.92)

PePyy ueFp n= OfeAJr
1#0

4. Fors € C with Re(s) > %, we have

g—-1
L@ E D DD e —m D xulf) = 0(P)). (4.93)

PePgyy ueFp n=0 ng:'
f#0

Proof (1) By Lemma 4.4, we have

g £
DUDDEY T DD D D xulf) (4.94)

PePyy ueFp n=0 feAj n=0 feA;r PePgiq ueFp
S#0 f#
|P| (1 —s) n
(4.95)
bamz:
Since
g 1—s :
P log |P if Re(s) < 1
Zq(l_s)n |P| ( Sq |P) (s) (4.96)
=0 logq |P| if Re(s) > 1,
we have
14 2—s
P _ |P| if Re(s) < 1,
P >« (4.97)
log, IP| = Pl ifRe(s) > L
Similarly, we can prove (2), (3), and (4). O

4.2.3 Proof of Theorem 2.13 (1)
By Lemma 3.1 (1), we have

> tox= X XY )

u€Hgi1 u€Hg41 n=0 feAJr

g
+q(1—2s)g Z Zq(sfl)n z xulf): (4.98)

u€Hgy1 n=0 feAy
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By Propositions 4.7 and 4.9, for s = %, we have

>t =2([8 (51 +2) T+ 0 (2), 499)

MGHg+1

and, for s € C with Re(s) > % (s # %),

2g+1 2
Z L(s, xu) = ZCA(2s)q Z +0 (q g) . (4.100)

2
MGHg_H g

A simple computation shows that [‘%] + [‘%] + 2 = g + 1. This completes the proof of
Theorem 2.13 (1). O

4.2.4 Proof of Theorem 2.13 (2)
By Lemma 3.1 (2), we have

S Y=Y Y S Y )

PelPgy1 ueFp PePgi1 ueFp n=0 feAf
g
—q D0 D2 2 )+ D D Hu),
PePgyy ueFp n=0fepf PePgyy ueFp
(4.101)
where
g—-1
H,(1) =@ 72D @ —n) D xulf) (4.102)
n=0 feay
and, fors # 1,
g-1 g—1
Hy(s) = n(s)g" 2% " g " xulf) = n(s)g™¢ D D xulf) (4.103)
n=0 fehd n=0fen;
with n(s) = gﬁg;g First, we consider the case s = 1. By Propositions 4.8 and 4.10, we
have
. |P|? 3
> 2 M) =A@ ~5 + 0 (1P13), (4.104)
PePgi1 ueFp gq
where
. - ] - _
Fi(g) = Ag(1) — £ (2)gl 8- 1 Bgyip1. (4.105)

It is easy to show that

P2 P

H(g)—— = (2
(g)logq|P| Za( )logq|P|

+0 (|P|%). (4.106)
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Hence, we have

2
|P|

P 3
DD L x) = 2a2) gq|P|+O(|P|2)' (4.107)

PePyy ueFp

Now, consider the case s # 1. For |s — 1| > ¢, n(s) is bounded. By Propositions 4.8 and
4.10, we have

L5, xu) = Hlg(5) 1 L +o(ip;2), (4.108)
g |P|

PeIP’gH uceFp

where

Flg(s) = Agls) — ca@)gl 1D 1) [Bg(s 2)ql7'] gS]. (4.109)

Fors € Cwith 1 < Re(s) and |s — 1| > &, we have

2
(2)11[%]’(‘“”3L < |PI3, (4.110)
log, |P|
7 [;]—gs | |2 3
n(s) 1 Bg(s) — ¢a(2)gl 2 —— L |P|2. (4.111)
log,, |P|
Then, by (4.110), we have
N PJ? . P2
Hg(S)l|—|P =Jy(s )1 1P + O(|P|2 ) (4.112)
og, |P| og, |P|
Hence, by (4.108) and (4.112), we have
2 D2 L) =) PR ogpl) (4.113)

g, |P

PePgy ueFp

for s € C with % < Re(s) and |s — 1| > e&. This completes the proof of
Theorem 2.13 (2). O

4.2.5 Proofof Theorem 2.13 (3)
Foranyu =v+£& € .7-;’,+1 with v € Fyy1, we have x,(f) = (—1)%8) (). Then, by
Lemma 3.1 (3), we have

g
SO L= D) DD D" D xulf)

PePyi1 uerF, PePgy1 ueFp n=0 Feaf

g
+(_1)gq—(g+1)s Z Z Z Z xu(f)

PePgyy ueFp n=0fepf

g-1
+U(S)6](172S)g Z Z Z(_l)nq(sfl)n Z Xu(f)

PePy 1 ueFp n=0 feAf

HEE g D> Z > xulh) (4.114)

PePgyy ueFp n= OfEA+
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where v(s) := 11:;:31. Following the process as in the proof of Theorem 2.13 (2), we can
show that
- |P|? 3
> > L x) =Ko+ 0 (IPI}) (4.115)
log, |P|
PePyi1 ueF), q
for s € C with % < Re(s). This completes the proof of Theorem 2.13 (3). O

5 Second moment of prime L-functions at s = %

5.1 Some lemmas on divisor function

We present now a few lemmas about the divisor function in F,[T7].

Lemma 5.1 For any positive integer n, we have

> d(f) = ng" + 0(g") (5.1)
feay
and
A L 2 n n
fZA; d(f?) = RO + O(ng™). (5.2)

Proof Equations (5.1) and (5.2) are quoted from [16, Proposition 2.5] and [4, Lemma 4.4],
respectively. ]

Remark 5.2 Let p(f) := d(f?), which is a multiplicative function on A*, and ¢,(s) be the
Dirichlet series associated to p. In the proof of [4, Lemma 4.4], it is shown that

tals)?  1—gq'>

P ) T (g
Putting z = ¢~° and considering the power series expansion of % at z = 0, we can
see that
DA ={1+3B+q n+30-q )" (5.4)
feay

Lemma 5.3 Let P € P,. Then, for any integer n > 0, the value

> dr?) (5.5)

feAr.PYf

is independent of P and depends only on r. Denote this value by p}i(r), and let p, =
Dreatd (f?). Then we have

Pn for 0<nm<r-—1,
on(r) = 1 pu — 3pp_r for r<m<2r-—1,
on = 3pn—r + 4D 7 (=) p,_yy for mr <n < (m+1)r — Lwithm > 2.
(5.6)
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Proof Let ¢, (s) be the Dirichlet series given in Remark 5.2. Write

6o(8) =D pug™™" with py= D d(f?) (5.7)
n=0

feAq

Let {; (s) be the power series defined by

o0
g = D pOIFI™ =D ppg™™", where pi= D" p(f). (5.8)
fent 70 fenr
Pif Pif

Then, we have

£p(s) = ¢5(s) (1 +> p(P”)|P|"S). (5.9)

n=1

Putting z = g%, since p(P") = d(P*") = 21 + 1, we have

o0 o0
142"
n —ns __ —ns __ m __
L D p(PIPIT =1 3@ DIPIT™ =14 3 @+ 02" = o
n=1 n=1 n=1
(5.10)
Hence, by (5.7), (5.9), and (5.10), we have
o0 o
(1+zr)Zp:; "= (l—zr)zz,onz". (5.11)
n=0 n=0
By comparing the coefficients, we have
Or = Pn for0O<mnm<r-—1,
or+ph_, = pn— 2Pn—r forr <m<2r—1, (5.12)

Pnt Pp_y = Pn = 2Pn—r + pu—2r for 2r <mn.

From (5.12), we can obtain that p) = p, for 0 < n < r —1, p} = py — 3pu—r for
r<mn<2r—1andp} = py — 3pu—r +4Z;12(—1)1p,,_1, formr <nm<(m+1)r—1
with m > 2. We can also see that the p}’s are independent of P and depends only
onr. ]

5.2 Odd characteristic case

In this section, we give a proof of Theorem 2.6. In Sect. 5.2.1, we obtain several results of
the contribution of squares and of non-squares, which will be used to calculate the second
moment of L-functions at s = % in Sects. 5.2.2 and 5.2.3.

5.2.1 Preparations for the proof
We first consider the contribution of squares.
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Proposition 5.4 Let h € {2g 2g — 1}. We have

1.
> Z(ﬂ a2 Y d)xe(f) = 3 /P1log, IP)* + O(|P|(log, |PY),
PePygyn n=0 Feny
f=0
(5.13)
2.
(%) >, Z > d(f)xe(f) = O(1P|(log, |P))), (5.14)
PePygio n=0 fept
f=0
3.
‘(%) Z Z h+1-n) Z d(f)xe(f) = O(|P|(log, |P])). (5.15)
P€P2g+2}’l 0 fEA+

=0

Proof 1. By Theorem 1.3, we have

h
DD Y d)xe(f) = Zq*l > dw?) D xe(l?)

PEPyg 2 n=0 feAf LeAf PePygi2
=0
4] 1
= ——= > a7 X d?) +0 (Il (log, IP)?). (5.16)
og, |P|
=0 LeAf

By(5.2), we have

|P| 4] ! 2 |P| [%]2
- d(l*) = —————— > [*+ 0(|P|(og,, |P]))
log, |P|l§q g} 24(2) log, |P|1§(; K
23IP|

= 6t log, 7] + OFI008, IPD)

1
= P|(log, |P|)* + O(|P|(log, |P))). (5.17
352,03 P08, 1PI)” +O(PI(og, 1PI). ~ (517)
Since |P|%(logq IP))? « |P|(logq |P]), by inserting (5.17) into (5.16), we obtain the
desired result.
2. By Theorem 1.3 and (5.2), we have

, [4]
) S S S dpen = ) T S S e
PePygia n=0feh PePag+2 1=0 Lea/
=0
g
<q ) LS 2t piglog, 1P
=0

log, |P|
(5.18)

Similarly, we can prove (3). O
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Now, We consider the contribution of non-squares.

Proposition 5.5 Let h € {2g 2g — 1}. We have

1.
h n
> D EYqE D dif)xe(f) = O(P|(log, |P))),
P€P2g+2 n=0 fEA;
9. f#0
) > Z S d(f)x(f) = O(IP|(og, IP)),
PePygyo n=0feAt
3 f#0

) S S 1w S deetr) = 00itog, 17

PE]P’zg+2 n=0 fEA+
f#0

Proof (1) By Prop0s1t10n 2.1 and (5.1), we have

> Zil q? Zd(fXP(f)<<zq 2 d(f)

PePogyg n=0 feAf n=0 feAy
Sf#0 f#D

IPI
bgquﬂ

> Xp(f)‘

P€P2g+2

Similarly, we can prove (2) and (3).

5.2.2 Proofof Theorem 2.6 (1)
By Lemma 3.2 (2), we can write

> )

PePyyyio
2g 2g—1
S 3 E S A+ > D a D dfxel)
PePyg o n=0 feAnJr PePyy iy n=0 fEAj[
. 2g 2g—1
g ) DD > AP —aE D D D di)xelf)
PePygia n=0fep;t PePygia n=0 fept
@) Y S 1-n S ded)
PEP2g+2n 0 fEAn
2g—1
()7 DY D ee-m D A
PePygyy n=0 feAy

In the right-hand side of (5.24), we can write ZfeA; d(f)xp(f) as

> df)xe) = > d)xe() + D, df)xe(f).
feAy fear feAf
f=0 f#0

Zn q? < |P|(log, |P]).

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)
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Then, by Propositions 5.4 and 5.5, we have

1
L) = P|(log, |P|)* + O(P|(log, |P|)). 5.26
2. L(pxe)” = 55 Pllog, IP)* + O(P|(log, IPD) (5.26)
PEPZngZ
This completes the proof of Theorem 2.6 (1). ]

5.2.3 Proof of Theorem 2.6 (2)
Forany f € A, we have xyp(f) = (—l)deg(f)xp(f). By Lemma 3.2 (3), we have

Z L (%’ XVP)2

PePygyo
2g 201
DDA D dPxe)+ > D (=D"q 2 Y d)xe(f)
PePygi n=0 feAf PePygia n=0 feAf
2g 2g—1
DT> de)+at D DD df)xef)
PePyg iy Vl=0feA+ PePygia n=0 fep;f
60 3) (e+3)
+§— > Zzg+1—n)2d(f)><p<f)
A PE]P’ngrzn 0 fEAJr
( 2g—1
g 2, 2 g—n Y df)xe(f). (5.27)
PePygyy n=0 feAf
Then, by Propositions (5.4) and (5.5), we have
2 1
> L(% xyp)’ = 57— IPlog, IP)* + O(IP|(log, |P]). (5.28)
2454(2)
PePygyo
This completes the proof of Theorem 2.6 (2). O

5.3 Even characteristic case

In this section, we give a proof of Theorem 2.15. In Sect. 5.3.1, we obtain several results of
the contribution of squares and of non-squares, which will be used to calculate the second
moment of L-functions at s = % in Sects. 5.3.2, 5.3.3, and 5.3.4.

5.3.1 Preparations for the proof
Proposition 5.6 Let h € {2g — 1, 2g}. We have

g h
D> Dar DA = )g2q2g+1+0(gq2g). (5.29)

r=1 MEH(y,g+1,r) n=0 f€A+
=0
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Proof We only prove the case i1 = 2g. By similar method, we can prove the case 1 = 2g —1.
By Lemma 5.3, we have

g g g
> D Zq 1A =D D D gt D Al
r=1 ue

r= lueH(,gH ) n=0 ngJr H(r,ngl—r) =0 LEAlJr
S=0
g

g
> D a o). (5.30)

r=1ueHygi+1-r) I=0

By Lemma 5.3 again, we have

g

£ 4 £ £
> 2 2alin=2] >atm-3 Sato,
r=1ueHgi11-r) I=0 r=1ueHg+1-r) [=0 r=1ueH g1y l=r

[g

+4Z > D= 1)’”Zq Promr (531)

r=1 ueHy,gi1-r) m=2 l=mr

From (5.4), we have ¢ "p, = 1 + %(3 +q Hn+ %(1 — g~ YYn?. Hence, we have

14

> a =11 -q"g+ 0@, (5.32)
g _

Salor=a"> a7 < a7, (5.33)
= k=0

(4] g 4] g—mr 4
Z(_l)m Z q_l:olfmr = Z m - Z q )Ok Lg Zq mr — —2r'
m=2 I=mr m=2

(5.34)

Then, using (4.48) and the fact that #H g 11 < Vaan qT, we have

g g
> > Zq‘lmz —q Mg + 0 (gg%), (5.35)

r=1 u€Hg+1-r) I=0

Z > Zq pi-r < 8¢ Z < (log 9)¢° < g4, (5.36)

r=1ueHgt1-r) I=r

g
> > Z l)qu pi- mr<<gquq <P < g (537)
r=

1ueHgr1-r) m=2 I=mr

By inserting (5.35), (5.36), and (5.37) into (5.31), we get the result. O
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Proposition 5.7 Let h € {2g — 1, 2g}. We have

1.
h n
>3 Y Al
PePgyy ueFp n=0 feA;'
f=01
2
) ~ 6 (2) o [PI*(log, IP)? + O(PI*(log, IP])), (5.38)
>y Z > d(f)xulf) = 0P (log, 1)), (5.39)
PePyiq u€Fp n=0feAt
3 /=0

) S S S -0 Y A = opog, P (540
PePyi) ueFp n=0 feAf
=0

Proof 1. By (4.47), we have

[

(SIS
[S—

h
ST D AN =D a7 D aw?) D D xld?
PePgy1 ueFp n=0 feA;r =0 LEAT PePgyy ueFp
=0
e U 2
= (L?) + O(|P|2 (log,, |P 5.41
Tog, 1P| > d(?) + 0(1P|3 (log, IP)). (5.41)
/=0 LeAf
By (5.2), we have
5 (4]
|P|2 L:] ! 1 |PP? 2 2
12 + 0 (1P)*(log, |P
log, |P|z L% ~ 204(2) log, |P|Z;4 + (' *(log, | D)

1

= —|P*(log, |P|)* + O(|P|*(log, |P])). (5.42

52, P loB, 1PD? + O(PP(og, IPI). (542
Since |P|%(logq P)? <« |P|2(logq |P|), by inserting (5.42) into (5.41), we get the
result.

2. By (4.47) and (5.2), we have

S S a

PePg 1 UEFp n= OfeA+
=0

Y [¢]
) T 5 S s
PePgyy ueFp =0 LeAf
[4]

Z 1’4" < |P|*(log, |P]). (5.43)

h# |p|2
<q |P|

Similarly, we can prove (3). O
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Now, we consider the contribution of non-squares.

Proposition 5.8 Let h € {2g — 1, 2g}. We have

> Zq 23" dif)xulf) = O ((logg)gq™). (5.44)
u€Hgy1 n=0 fey
f#0

Proof We only prove the case # = 2g. Similarly, we can prove the case # = 2¢g — 1. By
Lemma 4.6 and (5.1), we have

2g 2
S ES dh) <D a7 D dN | D xulf) (5.45)

MGHg+1 n=0 feA;’ n=0 fEA;,f MEHg+1
[ F20
2g 2g
< (logg)g® D> q7% > d(f) < (logg)a® > nq? < (logg)ga™. (5.46)
n=0 feAt n=0

Proposition 5.9 Let h € {2g — 1, 2g}. We have

1.
h
DD DY T > Al xf) = O(IPP), (5.47)
PePyy ueFp n=0 feAfy
f#0
2.
)y > Z S dif) = 0 (1PP), (5.48)
PePgiy ueFp n= OfeA"'
5 f#0

‘(%) > > Z (h+1=m) > df)xulf) =0 (PP). (5.49)
PePyi) ueFp n=0 feAf
f#0

Proof (1) By Lemma 4.4 and (5.1), we have

h h
ST EN D A <D aE D AN | D D wlf)

PePgiy ueFp n=0 feAnJr n=0 ng; PePgi1 ueFp
f#0 f#0
(5.50)
h
P2 5.51
logqu)Z 2 <P (5.51)

Similarly, we can prove (2) and (3). O
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5.3.2 Proofof Theorem 2.15 (1)
By Lemma 3.2 (1), we have

2g 2g—1
2 _n _n
DL = D, Doa D AP+ D, D a2 D dif)xulf).
u€Hgt1 u€HMgy1 n=0 feA,:r u€Hgy1 n=0 feAn*
(5.52)
Then, by Propositions 5.6 and 5.8, we have
2 2
D L(3a) = 7580 + 0 ((log9)gg™). (5.53)
ey 3¢a(2)
g+1
This completes the proof of Theorem 2.15 (1). O
5.3.3 Proof of Theorem 2.15 (2)
By Lemma 3.2 (2), we have
2¢
S 3G =D D D> dd
PePgyy ueFp PePgy1 ueFp n=0 feAf{
2g—1
+ D0 D > a7 D ANl
PePyi; ueFp n=0 fEA:,r

F) > ZZg > d(f)ulf)

PePyy1 ueFp n=0f€A2-
2g—1

= ED DI YA

n=0 PePyi) u€Fp fep}

Ca (@) ) > ZZ<2g+1—n > d(f)xulf)

PePyy 1 u€Fp n=0 feAy
2¢—1
—a ()7 DY D > e -m D Al
PePyy1 ueFp n=0 feAy

(5.54)

Then, by Propositions 5.7 and 5.9, we have
S S )= ( st P o, 1P + 0 (1P(og, 1PD). (5.55)

PePyy ueFp

This completes the proof of Theorem 2.15 (2). ]

5.3.4 Proofof Theorem 2.15(3)
Foranyu = v+ £ € ]-;’,H with v € Fyy1, we have x,(f) = (—l)deg(f)xv(f). Then, by
Lemma 3.2 (3), we have
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2
S 3G =D S S E S d )

PePgyiy ue]—‘P PelPgyy ueFp n=0 feA,T
2g—1
+ D0 DY D> A )
PPyt ueFp n=0 feAy

S TS dp)

PePgy1 ueFp n=0fep;f
2g—1

+q7¢ D D> AN

PePgyy ueFp n=0 fept

Ca (é) —( +l) S
+§A—(22)q S Z ZZ(2g+l—n)Zd(f)Xu(f)

PePgy1 ueFp n=0 feAy
3 21
20 3 Y S0 Y dno 650
PelPgyy ueFp n=0 feAn
By Propositions 5.7 and 5.9, we have
D IRACT AR Ww (1og, [P)? + O (1P[*(log, IP))) . (557)
PePg+1 L{E]‘-P
This completes the proof of Theorem 2.15 (3). O
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