
RUDNICK AND SOUNDARARAJAN’S THEOREM FOR

FUNCTION FIELDS

JULIO ANDRADE

Abstract. In this paper we prove a function field version of a theo-
rem by Rudnick and Soundararajan about lower bounds for moments
of quadratic Dirichlet L–functions. We establish lower bounds for the
moments of quadratic Dirichlet L–functions associated to hyperelliptic
curves of genus g over a fixed finite field Fq in the large genus g limit.

1. Introduction

It is a fundamental problem in analytic number theory to estimate mo-
ments of central values of L–functions in families. For example, in the case of
the Riemann zeta function the question is to establish asymptotic formulae
for

(1.1) Mk(T ) :=

∫ T

1
|ζ(12 + it)|2kdt,

where k is a positive integer and T →∞.
A believed folklore conjecture asserts that, as T →∞, there is a positive

constant Ck such that

(1.2) Mk(T ) ∼ CkT (log T )k
2
.

Due to the work of Conrey and Ghosh [3] the conjecture above assumes a
more explicit form, namely

(1.3) Ck =
akgk

Γ(k2 + 1)
,

where
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(1.4) ak =
∏

p prime

(1− 1

p

)k2 ∑
m≥0

dk(m)2

pm

 ,
gk is an integer when k is an integer and dk(n) is the number of ways to
represent n as a product of k factors.

Asymptotics for Mk(T ) are only known for k = 1, due to Hardy and
Littlewood [7]

(1.5) M1(T ) ∼ T log T,

and for k = 2, due to Ingham [10]

(1.6) M2(T ) ∼ 1

2π2
T log4 T.

Unfortunately the recent technology does not allow us to obtain asymptotics
for higher moments of the Riemann zeta function. The same statement ap-
plies for the higher moments of other L–functions. However, due to the
precursor work of Keating and Snaith [14, 15] and, subsequently, due to
the work of Conrey, Farmer, Keating, Rubinstein and Snaith [4], and Dia-
conu, Goldfeld and Hoffstein [5], there are now very elegant conjectures for
moments of L–functions.

The work of Katz and Sarnak [12, 13] associates a symmetry group for
each family of L–function and the moments are sensitive and take different
forms for each one of these groups. In other words the conjectured asymp-
totic formulas for the moments of families of L–function depends whether
the symmetry group attached to the family is unitary, orthogonal or sym-
plectic. For a recent and detailed discussion about a working definition of a
family of L–functions see [21].

We will typify the conjectures above by considering different families of
L–functions. For example, the family of all Dirichlet L–functions L(s, χ),
as χ varies over primitive characters (mod q), is an example of a unitary
family, and it is conjectured that

(1.7)
∑∗

χ( mod q)

|L(12 , χ)|2k ∼ CU(N)(k)q(log q)k
2
,

where k ∈ N and CU(N)(k) is a positive constant. For a symplectic fam-
ily of L–functions we consider the quadratic Dirichlet L–functions L(s, χd)
associated to the quadratic character χd, as d varies over fundamental dis-
criminants. In this case it is conjectured that

(1.8)
∑[

|d|≤X

L(12 , χd)
k ∼ CUSp(2N)(k)X(logX)k(k+1)/2,
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where k ∈ N and CUSp(2N)(k) is a positive constant. And finally we consider
the family of L–functions associated to Hecke eigencuspforms f of weight k
for the full modular group SL(2,Z) as f varies in the set Hk of Hecke eigen-
cuspforms. This is an example of an orthogonal family and it is conjectured
that

(1.9)
∑h

f∈Hk

L(12 , f)r ∼ CO(N)(r)(log k)r(r−1)/2,

where CO(N)(r) is a positive constant, k ≡ 0(mod 4) and

(1.10)
∑h

f∈Hk

L(12 , f)r :=
∑
f∈Hk

1

ωf
L(12 , f)r,

with

(1.11) ωf :=
(4π)k−1

Γ(k − 1)
〈f, f〉 =

k − 1

2π2
L(1,Sym2f),

where 〈f, f〉 denotes the Petersson inner product. For more details on Hecke
eigencuspforms L–functions see Iwaniec [11].

The conjectures (1.2), (1.7) and (1.8) can be verified for small values of k
and the same holds for (1.9), where it can be verified only for small values
of r. Ramachandra [17] showed that

(1.12)

∫ T

1
|ζ(12 + it)|2kdt� T (log T )k

2
,

for positive integers k. Titchmarsh [24, Theorem 7.19] had proved a smooth
version of these lower bound for positive integer k. The work of Heath–
Brown [8] extends (1.12) for all positive rational numbers k. Recently
Radziwi l l and Soundararajan [16] proved that

(1.13) Mk(T ) ≥ e−30k4T (log T )k
2
,

for any real number k > 1 and all large T . For other families of L–functions,
as those given above, the lower bounds for moments were proved by Rudnick
and Soundarajan in [19, 20] where they have established that

(1.14)
∑∗

χ( mod q)
χ 6=χ0

|L(12 , χ)|2k �k q(log q)k
2
,

for a fixed natural number k and all large primes q. They also proved in
[20] that
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(1.15)
∑h

f∈Hk

L(12 , f)r �r (log k)r(r−1)/2,

for any given natural number r, and weight k ≥ 12 with k ≡ 0( mod 4). And
for the symplectic family they showed that for every even natural number k

(1.16)
∑[

|d|≤X

L(12 , χd)
k �k X(logX)k(k+1)/2,

where the sum is taken over fundamental discriminants d. Radziwi l l and
Soundararajan [16] pointed out that their method may easily be modified
to provide lower bounds for moments to the case of L–functions in families,
for any real number k > 1.

Recently, in a beautiful paper, Tamam [23] proved the function field ana-
logue of (1.14). In this paper we consider the function field analogue of
equation (1.16) for quadratic Dirichlet L–functions associated to a family of
hyperelliptic curves over Fq. See next section.

2. Main Theorem

Before we enunciate the main theorem of this paper we need a few basic
facts about rational function fields. We start by fixing a finite field Fq of
odd cardinality q = pa with p a prime. And we denote by A = Fq[T ] the
polynomial ring over Fq and by k = Fq(T ) the rational function field over
Fq.

The zeta function associated to A is defined by the following Dirichlet
series

(2.1) ζA(s) :=
∑
f∈A
monic

1

|f |s
for Re(s) > 1,

where |f | = qdeg(f) for f 6= 0 and |f | = 0 for f = 0. Surprisingly the zeta
function associated to A is a much simpler object than the usual Riemann
zeta function and can be showed that

(2.2) ζA(s) =
1

1− q1−s
.

Let D be a square–free monic polynomial in A of degree odd. Then
we define the quadratic character χD attached to D by making use of the
quadratic residue symbol for Fq[T ] by

(2.3) χD(f) =

(
D

f

)
.

In other words, if P ∈ A is monic irreducible we have
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(2.4) χD(P ) =

{
0, if P | D,
1, if P 6 |D and D is a square modulo P,
−1, if P 6 |D and D is a non square modulo P.

For more details about Dirichlet characters for function fields see [18, Chap-
ter 3] and [6].

We attach to the character χD the quadratic Dirichlet L–function defined
by

(2.5) L(s, χD) =
∑
f∈A

f monic

χD(f)

|f |s
for Re(s) > 1.

If D ∈ H2g+1,q, where

(2.6) H2g+1,q = {D ∈ A, square–free, monic and deg(D) = 2g + 1},
then the L–function associated to χD is indeed the numerator of the zeta
function associated to the hyperelliptic curve CD : y2 = D(T ) and therefore
L(s, χD) is a polynomial in u = q−s of degree 2g given by

(2.7) L(s, χD) =

2g∑
n=0

∑
f monic
deg(f)=n

χD(f)q−ns.

(see [18, Propositions 14.6 and 17.7] and [1, Section 3]).
This L–function satisfies a functional equation, namely

(2.8) L(s, χD) = (q1−2s)gL(1− s, χD),

and the Riemann hypothesis for curves proved by Weil [25] tell us that all
the zeros of L(s, χD) have real part equals 1/2.

The main result of this paper is now presented:

Theorem 2.1. For every even natural number k we have,

(2.9)
1

#H2g+1,q

∑
D∈H2g+1,q

L(12 , χD)k �k (logq |D|)k(k+1)/2.

Remark 2.1. To avoid any misunderstanding concerning the notation and
conventions presented in this paper it is necessary a note about the notation
used in the theorem above and in the rest of this note. On the formula above
the right-hand side of the main lower bound appears |D| = q2g+1 while D
is the summation variable on the left-hand side of that same formula. This
is done because the function D 7→ |D| is constant within H2g+1,q and so we
can always write
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∑
D∈H2g+1,q

|D| = |D|
∑

D∈H2g+1,q

1.

In the case the reader feel uncomfortable with the above notation he/she can
always remember that |D| = q2g+1.

Remark 2.2. For simplicity, we will restrict ourselves to the fundamental
discriminants D ∈ A, D monic and deg(D) = 2g + 1. But the calculations
are analogous for the even case, i.e., deg(D) = 2g + 2.

Using the same techniques developed by Rudnick and Soundararajan in
[19, 20] and extended for function fields in this paper we can also prove the
following theorem.

Theorem 2.2. For every even natural number k and n = 2g+1 or n = 2g+2
we have,

(2.10)
1

πA(n)

∑
P monic
irreducible
deg(P )=n

L(12 , χP )k �k (logq |P |)
k(k+1)

2 ,

where πA(n) = # {P ∈ Fq[T ] monic and irreducible, deg(P ) = n} and the
prime number theorem for polynomials [18, Theorem 2.2] says that πA(n) =
qn

n +O
(
qn/2

n

)
.

3. Necessary Tools

In this section we present some auxiliary lemmas that will be used in the
proof of the main theorem. We start with:

Lemma 3.1 (“Approximate” Functional Equation). Let D ∈ H2g+1,q. Then
L(s, χD) can be represented as

(3.1) L(s, χD) =
∑

f1 monic
deg(f1)≤g

χD(f1)

|f1|s
+ (q1−2s)g

∑
f2 monic

deg(f2)≤g−1

χD(f2)

|f2|1−s
.

Proof. The proof of this Lemma can be found in [1, Lemma 3.3]. �

The following lemma is the function field analogue of Pólya–Vinogradov
inequality for character sums.

Lemma 3.2 (Pólya–Vinogradov inequality for Fq(T )). Let χ be a non–
principal Dirichlet character modulo Q ∈ Fq[T ] such that deg(Q) is odd.
Then we have,

(3.2)
∑

deg(f)=x

χ(f)� |Q|1/2.
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Proof. The proof of this Lemma can be found in [9, Proposition 2.1]. �

The next lemma is taken from Andrade-Keating [1, Proposition 5.2] and
it is about counting the number of square–free polynomials coprime to a
fixed monic polynomial.

Lemma 3.3. Let f ∈ A be a fixed monic polynomial. Then for all ε > 0 we
have that

(3.3)
∑

D∈H2g+1,q

(D,f)=1

1 =
|D|
ζA(2)

∏
P monic
irreducible

P |f

(
|P |
|P |+ 1

)
+O

(
|D|

1
2 |f |ε

)
.

4. Proof of Theorem 2.1

In this section we prove Theorem 2.1.

Let k be a given even number, and set x = 2(2g)
15k . We define

(4.1) A(D) =
∑

deg(n)≤x

χD(n)√
|n|

,

and let

(4.2) S1 :=
∑

D∈H2g+1,q

L(12 , χD)A(D)k−1,

and

(4.3) S2 :=
∑

D∈H2g+1,q

A(D)k.

An application of Triangle inequality followed by Hölder’s inequality gives
us that,

∣∣∣∣∣ ∑
D∈H2g+1,q

L(12 , χD)A(D)k−1

∣∣∣∣∣ ≤ ∑
D∈H2g+1,q

|L(12 , χD)||A(D)|k−1

≤

 ∑
D∈H2g+1,q

L(12 , χD)k

1/k ∑
D∈H2g+1,q

A(D)k


k−1
k

.(4.4)

From (4.4) we have
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∑
D∈H2g+1,q

L(12 , χD)k ≥

(∑
D∈H2g+1,q

L(12 , χD)A(D)k−1
)k

(∑
D∈H2g+1,q

A(D)k
)k−1

=
Sk1
Sk−12

.(4.5)

Hence from (4.5) we can see that to prove Theorem 2.1 we only need to
give satisfactory estimates for S1 and S2. We start with S2.

4.1. Estimating S2. We have that

(4.6) A(D)k =
∑

n1,...,nk
deg(nj)≤x
j=1,...,k

χD(n1 . . . nk)√
|n1| . . . |nk|

.

So,

S2 =
∑

D∈H2g+1,q

A(D)k

=
∑

n1,...,nk
deg(nj)≤x
j=1,...,k

1√
|n1| . . . |nk|

∑
D∈H2g+1,q

(
D

n1 . . . nk

)
.(4.7)

At this stage we need an auxiliary Lemma. It is called orthogonal relations
for quadratic characters and it has appeared in a different form in [1, 2, 6].

Lemma 4.1. If n ∈ A is not a perfect square then

(4.8)
∑

D∈H2g+1,q

n6=�

(
D

n

)
� |D|1/2|n|1/4.

And if n ∈ A is a perfect square then

(4.9)
∑

D∈H2g+1,q

n=�

(
D

n

)
=
|D|
ζA(2)

∏
P monic
irreducible

P |n

(
|P |
|P |+ 1

)
+O

(
|D|

1
2 |n|ε

)
,

for any ε > 0.

Remark 4.2. Equation (4.8) can be seen as an improvement on the estimate
given in [6, Lemma 3.1]. And the same equation (4.8) can be used to improve
the error term in the first moment of quadratic Dirichlet L–functions over
function fields as given in [1, Theorem 2.1].
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Proof. If n = �, then

(4.10)
∑

D∈H2g+1,q

n=�

(
D

n

)
=

∑
D∈H2g+1,q

(D,n)=1

1.

By invoking Lemma 3.3 we establish equation (4.9).
For (4.8) we write

∑
D∈H2g+1,q

(
D

n

)
=

∑
2α+β=2g+1

∑
deg(B)=β

∑
deg(A)=α

µ(A)

(
A2B

n

)

=
∑

0≤α≤g

∑
deg(A)=α

µ(A)

(
A2

n

) ∑
deg(B)=2g+1−2α

(
B

n

)

≤
∑

0≤α≤g

∑
deg(A)=α

∑
deg(B)=2g+1−2α

(
B

n

)
.(4.11)

If n 6= � then
∑

deg(B)=2g+1−2α
(
B
n

)
is a character sum to a non–principal

character modulo n. So using Lemma 3.2 we have that

(4.12)
∑

deg(B)=2g+1−2α

(
B

n

)
� |n|1/2.

Further we can estimate trivially the non–principal character sum by

(4.13)
∑

deg(B)=2g+1−2α

(
B

n

)
� |D|
|A|2

= q2g+1−2α.

Thus, if n 6= �, we obtain that

∑
D∈H2g+1,q

(
D

n

)
�

∑
0≤α≤g

∑
deg(A)=α

min

(
|n|1/2, |D|

|A|2

)
� |D|

1
2 |n|

1
4 ,(4.14)

upon using the first bound (4.12) for α ≤ g − deg(n)
4 and the second bound

(4.13) for larger α. And this concludes the proof of the lemma. �

Using Lemma 4.1 in (4.7) we obtain that
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S2 =
∑

n1,...,nk
deg(nj)≤x
j=1,...,k
n1...nk=�

1√
|n1| . . . |nk|

(
|D|
ζA(2)

∏
P monic
irreducible
P |n1...nk

(
|P |
|P |+ 1

))

+
∑

n1,...,nk
deg(nj)≤x
j=1,...,k
n1...nk=�

1√
|n1| . . . |nk|

O

(
|D|

1
2 |n1 . . . nk|ε

)

+
∑

n1,...,nk
deg(nj)≤x
j=1,...,k
n1...nk 6=�

1√
|n1| . . . |nk|

O

(
|D|

1
2 |n1 . . . nk|

1
4

)
.(4.15)

After some arithmetic manipulations with the O–terms we get that

S2 =
|D|
ζA(2)

∑
n1,...,nk

deg(nj)≤x
j=1,...,k
n1...nk=�

1√
|n1| . . . |nk|

∏
P monic
irreducible
P |n1...nk

(
|P |
|P |+ 1

)

+O

(
|D|

1
2 q

(
3
4+ε

)
x
)
.(4.16)

Since x = 2(2g)
15k , the error term above is � |D|

3
5 . So,

(4.17) S2 =
|D|
ζA(2)

∑
n1,...,nk

deg(nj)≤x
j=1,...,k
n1...nk=�

1√
|n1| . . . |nk|

∏
P monic
irreducible
P |n1...nk

(
|P |
|P |+ 1

)
+O

(
|D|

3
5

)
.

Writing n1 . . . nk = m2 we see that
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∑
m2 monic
deg(m2)≤x

dk(m
2)

|m|
∏

P monic
irreducible

P |m

(
|P |
|P |+ 1

)

≤
∑

n1,...,nk
deg(nj)≤x
j=1,...,k

n1...nk=�=m2

1√
|n1| . . . |nk|

∏
P monic
irreducible
P |n1...nk

(
|P |
|P |+ 1

)

≤
∑

m2 monic
deg(m2)≤kx

dk(m
2)

|m|
∏

P monic
irreducible

P |m

(
|P |
|P |+ 1

)
,(4.18)

where dk(m) represents the number of ways to write the monic polynomial
m as a product of k factors.

We need to obtain an estimate for

(4.19)
∑

m monic
deg(m)=x

dk(m
2)am,

where am =
∏

P monic
irreducible

P |m

(
|P |
|P |+1

)
.

To obtain the desired estimate we consider the corresponding Dirichlet
series

(4.20) ζf (s) =
∑

m monic

dk(m
2)am

|m|s
=
∞∑
n=0

∑
deg(m)=x

dk(m
2)amu

x = Zf (u),

with u = q−s. Writing the above as an Euler product

(4.21) ζf (s) =
∏

P monic
irreducible

(
1 +

dk(P
2)aP
|P |s

+
dk(P

4)aP 2

|P |2s
+ · · ·

)
,

we can identify the poles of ζf (s). Similar calculations carried out in the
classical case by Soundararajan and Rudnick [20, page 9] and Selberg [22,
Theorem 2], and for function fields by Andrade and Keating [2, Section 4.3]

shows us that ζf (s) has a pole at s = 1 of order k(k+1)
2 . Therefore we can

write
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ζf (s) =
∏

P monic
irreducible

(
1− 1

|P |s

)−k(k+1)
2

×
∏

P monic
irreducible

1 +

 |P |
|P |+ 1

∞∑
j=1

dk(P
2j)

|P |js

(1− 1

|P |s

)k(k+1)
2

,(4.22)

where the first product has a pole at s = 1 of order k(k+1)
2 and the second

product above (4.22) is convergent for Re(s) > 1 and holomorphic in {s ∈
B | Re(s) = 1} with

(4.23) B =

{
s ∈ C | − πi

log(q)
≤ I(s) <

πi

log(q)

}
.

Thus we can use Theorem 17.4 from [18] to obtain the desired estimate.
But we sketch below how this can be done. A standard contour integration
(Cauchy’s theorem)

(4.24)
1

2πi

∮
Cε+C

Zf (u)

ux+1
du =

∑
Res(Zf (u)u−x−1),

where C is the boundary of the disc {u ∈ C | |u| ≤ q−δ} for some δ < 1 and
Cε a small circle about s = 0 oriented clockwise. There is only one pole in
the integration region Cε + C and it is located at u = q−1 as can be seen
from (4.22). To find the residue there, we expand both Zf (u) and u−x−1 in
Laurent series about u = q−1, multiply the results together, and pick out
the coefficient of (u− q−1)−1. After this residue calculation we obtain that

(4.25)
∑

m monic
deg(m)=x

dk(m
2)am ∼ C(k)qxx

k(k+1)
2 −1,

for a positive constant C(k) explicitly given by

(4.26) C(k) =
log(q)

k(k+1)
2(

k(k+1)
2 − 1

)
!
α,

with

(4.27) α = lim
s→1

[
(s− 1)

k(k+1)
2 ζf (s)

]
.

In the end we obtain that
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(4.28)
∑

m monic
deg(m)≤z

dk(m
2)

|m|
∏

P monic
irreducible

P |m

(
|P |
|P |+ 1

)
∼ C(k)(z)k(k+1)/2.

Therefore we can conclude that

(4.29) S2 � |D|(logq |D|)k(k+1)/2.

4.2. Estimating S1. It remains to evaluate S1 and for that we need an
“approximate” functional equation for L(12 , χD). Using Lemma 3.1 with

s = 1
2 we have that

S1 =
∑

D∈H2g+1,q

 ∑
deg(f1)≤g

χD(f1)

|f1|1/2
+

∑
deg(f2)≤g−1

χD(f2)

|f2|1/2


×

( ∑
n1,...,nk−1

deg(nj)≤x
j=1,...,k−1

χD(n1 . . . nk−1)√
|n1| . . . |nk−1|

)

=
∑

deg(f1)≤g

1√
|f1|

∑
n1,...,nk−1

deg(nj)≤x
j=1,...,k−1

1√
|n1| . . . |nk−1|

∑
D∈H2g+1,q

(
D

f1n1 . . . nk−1

)

+
∑

deg(f2)≤g−1

1√
|f2|

∑
n1,...,nk−1

deg(nj)≤x
j=1,...,k−1

1√
|n1| . . . |nk−1|

∑
D∈H2g+1,q

(
D

f2n1 . . . nk−1

)
.

(4.30)

In the last equality in equation (4.30) the sums over f1 and f2 are exactly
the same, with the only difference being the size of the sums, i.e., deg(f1) ≤ g
and deg(f2) ≤ g − 1. We estimate only the f1 sum in the last equality and
the result being the same for the f2 sum just replacing g by g − 1.

If f1n1 . . . nk−1 is not a square then an application of Lemma 4.1 gives us
that
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∑
deg(f1)≤g

1√
|f1|

∑
n1,...,nk−1

deg(nj)≤x
j=1,...,k−1

1√
|n1| . . . |nk−1|

∑
D∈H2g+1,q

(
D

f1n1 . . . nk−1

)

�
∑

deg(f1)≤g

1√
|f1|

∑
n1,...,nk−1

deg(nj)≤x
j=1,...,k−1

1√
|n1| . . . |nk−1|

|D|
1
2 |f1n1 . . . nk−1|

1
4

= |D|
1
2

∑
deg(f1)≤g

|f1|−
1
4

∑
deg(n1)≤x

|n1|−
1
4 · · ·

∑
deg(nk−1)≤x

|nk−1|−
1
4

� |D|
1
2 q

3
4g(qx)(k−1)

3
4 .(4.31)

With our choice of x, we have that for f1n1 . . . nk−1 not a square

∑
deg(f1)≤g

1√
|f1|

∑
n1,...,nk−1

deg(nj)≤x
j=1,...,k−1

1√
|n1| . . . |nk−1|

∑
D∈H2g+1,q

(
D

f1n1 . . . nk−1

)

� |D|
39
40 .(4.32)

For f2n1 . . . nk−1 not equal to a perfect square, the same reasoning gives

∑
deg(f2)≤g−1

1√
|f2|

∑
n1,...,nk−1

deg(nj)≤x
j=1,...,k−1

1√
|n1| . . . |nk−1|

∑
D∈H2g+1,q

(
D

f2n1 . . . nk−1

)

� |D|
39
40 .

(4.33)

It remains to estimate the main–term in S1. If f1n1 . . . nk−1 is a perfect
square then

(4.34)
∑

D∈H2g+1,q

∑
f1,n1,...,nk−1

deg(f1)≤g
deg(nj)≤x
j=1,...,k−1

1√
|f1||n1| . . . |nk−1|

χD(f1n1 . . . nk−1)

=
∑

f1,n1,...,nk−1

deg(f1)≤g
deg(nj)≤x
j=1,...,k−1

1√
|f1||n1| . . . |nk−1|

∑
D∈H2g+1,q

χD(f1n1 . . . nk−1).

By Lemma 3.3 we have that (4.34) becomes



RUDNICK AND SOUNDARARAJAN’S THEOREM FOR FUNCTION FIELDS 15

∑
D∈H2g+1,q

∑
f1,n1,...,nk−1

deg(f1)≤g
deg(nj)≤x
j=1,...,k−1

1√
|f1||n1| . . . |nk−1|

χD(f1n1 . . . nk−1)

=
∑

f1,n1,...,nk−1

deg(f1)≤g
deg(nj)≤x
j=1,...,k−1

1√
|f1||n1| . . . |nk−1|

|D|
ζA(2)

∏
P monic
irreducible

P |f1n1...nk−1

(
|P |
|P |+ 1

)

+O

( ∑
f1,n1,...,nk−1

deg(f1)≤g
deg(nj)≤x
j=1,...,k−1

1√
|f1||n1| . . . |nk−1|

|D|
1
2 |f1n1 . . . nk−1|ε

)
(4.35)

If we call af =
∏
P |f

(
|P |
|P |+1

)
, then we have

∑
D∈H2g+1,q

∑
f1,n1,...,nk−1

deg(f1)≤g
deg(nj)≤x
j=1,...,k−1

1√
|f1||n1| . . . |nk−1|

χD(f1n1 . . . nk−1)

=
|D|
ζA(2)

∑
deg(m)≤ g+(k−1)x

2

am2dk(m
2)

|m|
+O

(
|D|

1
2 qg(ε−

1
2 )+g(qx(ε−

1
2 )+x)k−1

)
.

(4.36)

With our choice of x we have that the O–term above is � |D|39/40.
The last step is to estimate the main term contribution

(4.37)
|D|
ζA(2)

∑
deg(m)≤ g+(k−1)x

2

am2dk(m
2)

|m|
.

By employing the same reasoning of Rudnick and Soundararajan [20, page
10] we write n1 · · ·nk−1 = rh2 where r and h are monic polynomials and r
is square–free. Then f1 is of the form rl2. With this notation the main term
contribution is

(4.38)
|D|
ζA(2)

∑
n1,...,nk−1

n1···nk−1=rh
2

deg(nj)≤x
j=1,...,k−1

1

|rh|
∑

l monic
deg(l)≤ g−deg(r)

2

1

|l|
arhl.
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Note that deg(r) ≤ (k− 1)x and an easy calculation as those used in [20,
page 10] and [1, Lemma 5.7 and pages 2812–2813] gives that the sum over
l above is

(4.39)
∑

l monic
deg(l)≤ g−deg(r)

2

1

|l|
arhl ∼ C(r, h)arhg,

for some positive constant C(r, h).
Therefore follows that the main term contribution to (4.36) is

� |D|(logq |D|)
∑

n1,...,nk−1

n1···nk−1=rh
2

deg(nj)≤x
j=1,...,k−1

1

|rh|
arh

� |D|(logq |D|)
∑
r,h

deg(rh2)≤x

dk−1(rh
2)

|rh|
arh

� |D|(logq |D|)k(k+1)/2,(4.40)

where the last bound follows by activating the same estimate as proved in
past section, replacing k by k−1. The same argument applies to the second
sum in (4.29) replacing g by g − 1. Therefore we can conclude that

(4.41) S1 � |D|(logq |D|)k(k+1)/2.

Combining (4.29) and (4.41) finishes the prove of Theorem 2.1.
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