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1. Introduction

In [5], Gauss presented two conjectures concerning the average values of the class
number associated with binary quadratic forms az? + 2bxy + cy? where a, b, c € Z.
For completeness, clarity and to put our problem in the right context we will restate
the Gauss’s conjectures.

Let D = 4(b* — ac) be the discriminant of the quadratic form az? + 2bxy + cy
with D = 0,1 (mod 4). Recall that two quadratic forms are equivalent if it is pos-
sible to transform the first form into the second through an invertible integral
linear change of variables. So we have defined an equivalence relation on the set of
quadratic forms and the equivalence classes will be called classes of quadratic forms.
Gauss showed that the number of equivalence classes of quadratic forms with dis-
criminant D is finite. Let hp denote this number, we also call hp the class number.
We now present Gauss’s conjectures quoted from [6].
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Conjecture 1.1 (Gauss). Let hp be the class number defined as above. So,

(1) Let D = —4k run over all negative discriminants with k < N. Then

47 3
> hp~s——=N2. (1.1)
Wy 21¢(3)

(2) Let D = 4k run over all positive discriminants such that k < N. Then
4?3
T ¢(3)

where the number Rp is associated to the regulator of the real quadratic number

field Q(v/D).

The first conjecture (1.1) was proved by Lipschitz [8] and the second (1.2) by
Siegel [11]. We now will move to the function field analog of these results and for
this let us now define some notation that will be used in the rest of this paper. For
more details see [6, 9].

1.1. Facts about F,[T]

The norm of the polynomial f € F,[T7] is defined to be |f| = ¢8| and we define
the zeta function associated to A = F,[T] by

Gl = 3 () > 1) (1.3)

2 IfF
f monic
and is easy to show that
1
Ca(s) = m (1.4)

We also define the analog of the Mobius function for A = F,[T] as follows:

(—1)t, f:O(P1P2"'Pt,

i) {0, otherwise, (1-5)
where each P; is a distinct monic irreducible polynomial. And the Euler totient
function for A, denoted by ®(f), is defined to be the number of non-zero polynomials
of degree less than deg(f) and relatively prime to f.

We will assume from now that ¢ = 1 (mod 4) and let F, be a finite field with ¢
elements. We denote by A = F,[T] the polynomial ring over F, and by k = F,(T)
the rational function field over F,. Let K /k be a quadratic extension and call Ok
the integral closure of A in K.

Consider that D € A is a square-free polynomial and put O as Op = A[vV/D)].
So in this case, Op is a Dedekind domain and the associated class number hp
is equal to |Pic(Op)|, where Pic(Op) is the Picard group of Op. For a detailed
explanation about the Picard group in this context see [9, p. 315].
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Let D € A be a monic and square-free polynomial. We can define the quadratic
character xp using the quadratic residue symbol for F,[T] by

xp(f) = (?> (1.6)

and the associated L-function by

L(s,xp) = Xﬁ(f). (1.7)

feA
f monic
Now, using [9, Proposition 4.3] we have L(s,xp) is a polynomial in u = ¢~*% of
degree at most deg(D) — 1.
Hoffstein and Rosen [5] succeeded in calculating the average value of the class
number hAp when the average is taken over all monic polynomials D of a fixed
degree, they showed the following.

Theorem 1.2 (Hoffstein and Rosen). Let M be odd and positive. Then

1 CA(2) M—1 1
- E h = q 2 — q . 1.8
q D monic ? CA(3) ( )
deg(D)=M

The theorem above can be seen as the function field analog of the Gauss’s
conjectures. A problem which is more difficult and we consider in this paper is to
average the class number over fundamental discriminants, i.e. D monic and square-
free. We should note that the calculation presented in this paper follows the same
philosophy of the calculations firstly presented by Faifman, Kurlberg and Rudnick
in [4, 7, 10], where we fix the number of elements of the finite field and compute
the limit as deg(D) — oo to obtain our asymptotic formulas.

2. Statement of Results
The main objective of this paper is to establish an asymptotic formula for

1

N ho, (2.1)
#H29+1,q DeHag11,q

as deg(D) — oo, where hp is the associated class number and Hag1 1,4 denotes the
following set:
Hog+1, = {D monic, deg(D) =2¢+ 1, D square-free, D € A}. (2.2)
The number of elements in Hog11,4 is given by
#Hagr1,4 = (¢ — 1)q2g7 (2.3)

as can be seen using [9, Proposition 2.3].
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2.1. The geometric viewpoint

As we said earlier, the class number hp is equal to the |Pic(Op)|, where Pic(Op)
is the Picard group of Op. But we should also note that if D € Hag11,4, then the
equation y? = D(T') defines a hyperelliptic curve Cp over F, of genus g and the
number hp is closely related to the set of the F,-rational points on its Jacobian,
Jac(Cp), and so our result also has a geometric appeal. We will now develop this
geometric side and then state our results.

The zeta function of the curve Cp over F, is a rational function as shown by
Weil [12],

PCD (u)
(1 —u)(l—qu)’
where Po,, (u) is a polynomial of degree 2¢g with coefficients in Z. Making use of
[9, Proposition 14.6 and Proposition 17.7], we can show that the zeta function of

Zop(u) = (2.4)

the curve Cp is given by

L(u,Xxp)
(1= u)(l —qu)’
where L£(u, xp) = L(s, xp) is the L-function associated with the quadratic character
as given in (1.7). We have L(u, xp) satisfies the following functional equation

Zop(u) = (2.5)

£luxo) = @ (oo ). (26)

as can be seen from [9, Theorem 5.9]. This allows us to state and prove a lemma
which will be the starting point of the main calculations of this paper.

Lemma 2.1. If D € Hogi1,4 we have that L(s,xp) can be expressed as follows:

xo(f1) a5 xo(/f2)
L(S7 XD) = ‘f1|s + (ql 2 )g Z ‘f2|1_5 . (27)
f1 monic f2 monic
dete,‘(fl)ég degffz)ég—l

Proof. Using the ideas presented by Conrey et al. [3] we substitute L(u,xp) =
S°29 a,u” into the functional equation (2.6)

n=0
29 29 m
§ ’ n 90,29 § ’ 1
anp " = q°u A | —
u
n=0 m=0 q

2g 29
_ E amqgfmu2g7m _ E an_qufguk'
m=0 k=0

Therefore,

29 29

n k— k
E apu’ = g a2g—1q"Iu”.
n=0 k=0
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Equating coefficients we have that
ap = anfnqnig or agg—n = anq’"

and so we can write the polynomial £(u, xp) as

29 g g—1
E apu = E apu"™ + E agg,muzgfm
n=0 n=0 m=0

g g—1
= Z anu™ + q¢u*? Z g Mu ™. (2.8)
n=0 m=0
Writing @, = 3 fmonic Xp(f) and u = ¢~/? in (2.8) proves the lemma. O

deg(f)=n

With this in mind we are ready to state our main results.

Theorem 2.2. Let F, be a fized finite field with ¢ = 1 (mod 4). Then

1 1
> L(xp)=ID| {P(2) - P() <q[g/2]+1 + gA(2)2qg[<g—1>/2J)}

DeHagt1,q

+0((29)%), (2.9)

where |D| = ¢®9*! and

1
Pis)= ][ (1_W)' (2.10)

. Pmonic
irreducible

As a corollary of the Theorem 2.2 we have the following corollary.

Corollary 2.3.

I
#HHagi1

4 D€EH2g41,4

L(1,xp) ~ Ca(2)P(2) (2.11)

as deg(D) — oo, i.e. g — 0.

Proof. Using the Theorem 2.2 together with (2.3) and computing the limit as
g — oo we can conclude the asymptotic formula above. O

To obtain a formula for the average of the class number hp we will make use of
the following theorem due to Artin [2].
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Theorem 2.4 (Artin). Let D € A be a square-free polynomial of degree M. Then
if M is odd, we have

q

L1, xp) = L b, (2.12)
VID|

We now have all the ingredients to obtain an asymptotic formula for the average

of the class number hp.

Theorem 2.5. Under the same hypothesis as in Theorem 2.2, we have

1 VID|
_ § hp ~ Y—(A(2)P(2 2.13
H29+1’q DeHag+1,q ’ \/a CA( ) ( ), ( 1 )

as deg(D) — oo.

Proof. Straightforward by making use of Corollary 2.3 and Theorem 2.4. O

3. Preliminary Lemmas

We will require some auxiliary lemmas. Firstly, we will begin by stating a result
due to Faifman and Rudnick [4].

Lemma 3.1 (Faifman—Rudnick). Let x be a non-trivial Dirichlet character mod-
ulo D. Then, for n < deg(D),

deg(D) — 1Y\ ,,
S s( ") )q 2 (3.1)
B monic

deg(B)=n
We now prove a bound for non-trivial character sums using Lemma 3.1, which

is a consequence of the Riemann Hypothesis for function fields.

Lemma 3.2. We have that
(1) ,
oD Y xolf) < (29)° (3:2)

DeHzg41,4 n=0 f monic
deg(f)=n
0

Y Y Y )< @0 (33)

DeHzg41, m=0 fmonic
deg(f)=m
20



Int. J. Number Theory 2012.08:1725-1740. Downloaded from www.worldscientific.com
by BROWN UNIVERSITY ROCKEFELLER LIBRARY on 10/22/12. For personal use only.

Mean Value of L-Functions in Function Fields 1731

Proof. We will establish the part (1) of this lemma. For part (2) we have that the
proof is analogous. We start with

Y Y Y )

DeHog41,4 n=0 f monic
deg(f)=m
F#0
n=0 f monic D monic  Amonic < )
deg(f)=ndeg(D)=2g+1 A?|D
f#0

o X T o(y) o (f) e

f monic A monic B monic
deg(f)=ndeg(A)<g deg(B)=2g+1—2deg(A)
0

Now we note that (B/f) is a non-trivial character since f # [J. So we can invoke
Lemma 3.1 to get the following bound

Z <?) < (29 —(:elg(—f;(;a;(A)>qg+%deg(A) (3.5)

onic
deg(B)=2g+1—2deg(A)

if 29 + 1 — 2deg(A) < deg(f), and the sum is zero otherwise. So we have

S Yo Y wl)

DeH2g41,4 n=0 f monic
deg(f)=n
0
Y Y > (%)
n=0 fmonic A monic B monic
deg(f)=n deg(4)<g deg(B)=2g+1—2deg(A)
0
g g
- deg(f) — 1 14
- n g+1 —deg(A)
S alD DD DD D (F S
n=0 f monic j=g+1— dezg(f) A monic
deg(f)=n N 2 deg(A)=j
F20
S0 SUalD SHNED SR F
2.1 , 29 +1—2j
n=0 f monic j:ng;deg(f)
deg(f)=n 2

g g
< ¢’ Z " Z gdeg(f)—1 _ ¢ Z 2" <« ¢929.
n=0

f monic n=0
deg(f)=n =
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We now state and prove our next two lemmas.

Lemma 3.3. For |D| = ¢*™ we have

p(d) 1
D E — 9. .
| | d moni |d|2 Pnll_o[nic ‘P‘ +1 o (3 6)
deg(d)>[g/2] irre(};Tgible

Proof.

11(d) 1 1 1
o2 el s 2 gelln

d monic d monic
deg(d)>[g/2] deg(d)>[g/2]
=D > ¢™<IDlg?
h>[g/2]
< q¢7. O

Lemma 3.4. We have

D) g~ des(®
Ca(2) 2 \d\ H|P|+1<1—q )

d monic P|d
deg(d)<[g/2]

1 g
=p ] (1 - W) +0(¢%). (3.7)

. P monic
irreducible

Proof.

D (qdeg(d) )
Lo, dguﬂm =TS

d monic
deg(d)<[g/2]

_ pd) 11 pld) 7y 1
=012 Tl -l 2 GElleng 69

dmonic d monic P|d

deg(d)>[g/2]
Writing the sum over all monic polynomials d as an Euler product and using
Lemma 3.3 in the sum over d such that deg(d) > [g/2] we obtain the desired
lemma. O

Using the same ideas used in the proof of Lemmas 3.3 and 3.4 we can also prove
the following lemmas.

Lemma 3.5. We have
(1)

<< q7. (3.9)

Y ’“‘7r|[

d monic
deg(d)>[g/2]
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€a(2)(1 —4q)

<< q°. (3.10)

d monic
deg(d)>[(g—1)/2]

Z“Tfll

Lemma 3.6. We have

(1)
|D| <q lg/2]— )
o ] \d\ H|P|+1 =
monic Pld
deg(d)<[g/2]
1
= |D|g /2 (1—7) +0(¢?).  (3.11)
AL A e
irreducible
(2)
|D|q~9 H <q[(91)/2]+1)
CA(Q) d monic ‘d‘ Pld |P|+1 1_q

deg(d)<I(9-1)/2]
|D|q9qlla—1)/2+1
Ca(2)(1—q)

1

. P monic
irreducible

We present now our last lemma.

Lemma 3.7. We have

|Dlq™*
Ca2)1—q) > D] 5 7] +1 < g¢°. (3.13)

dmonlc P|d
deg(d)<[(g—1)/2]

Proof. We have that

[D|g—* - 1
_ w(d < |D|qg79 —
aon-g 2 tOlpmpsiper 2oy
deg(d)<[(9 1)/2} deg(d)<[(g—1)/2]

< |Dlg~ (g —1)/2] +1)

< gq?.

4. The Main Term

The main result of this section is the following proposition, which will be used to
establish the main term of Theorem 2.2.
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Proposition 4.1.

D ®(1)
1= O VID|— |- 4.1
Denzzg:m CA(Q)H(1+\P\_1)+ ( | 'z) (4.1)
(D,1)=1 Pl

We will need the following lemmas.

Lemma 4.2. Let Vg ={D € F,[z] : D monic, deg(D) =d}. Then
o)

#{DeV,:(D])=1} = qu’ (4.2)

Proof.

#DeVy:(D)=1}= > 1= > > puh)

D monic D monic h|(D,l)
deg(D)=d deg(D)=d
(D,l)=1
h|l D monic hl|l m monic
deg(D)=d deg(m)=d—degh
h|D

4 20
H( |P|) S (43)
P|l

where we used [9, Proposition 2.4] in (4.3). |

Lemma 4.3. We have

3 ‘rg? <q V2. (4.4)

@ monic
deg(Q)> 2%
(Qh=1

Proof.
1(Q) 1
> ors X op
@ monic @ monic
deg(Q)> 2% deg(Q)>2%=
(Q,h)=1 (Q,h)=1
1 —1/2 —
= Y —<q g (4.5)
S 2041 a
n 2

Lemma 4.4. We have that

Q) 1 1 i

- O 9). 4.6

ng:nic ‘Q|2 CA(Q) H(l _ 1/|P|2) + (q q ) ( )
deg(Q) <25 Pl

(@.h=1
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Proof.
Z H(Q) o Z M(Q) Z H(Q)
2 2 2
@ monic ‘Q| @ monic ‘Q| @ monic ‘Q|
deg(Q) <24 (@D=1 deg(Q)> 244
(@n=1 (@n=1
1 Q)
= 1——5 ) — —, 4.7
Ll (1~ p) P w7
deg(Q)> 2%
(@h=1
and
1 1 1\!
1——— | = 1—-— — 1 - —
(7)) T - )
PHl P Pl
1 1
= . (4.8)
@) T[a-1/1PP)
Pl
Thus,
1 1
@ monic |Q‘ CA(2) H(l - 1/‘P‘2) @ monic |Q‘
deg(Q)< 27+ Pll deg(Q)> 2%
(Q.h=1 (Q,h)=1
and using the estimate of Lemma 4.3 proves the result. O

Proof of Proposition 4.1. We have that

Yo=Y Y w@= > w D> 1

DeHag+1,q DeVagy1 Q2|D Q monic DEVagt1_2deg(Q)
(Dh=1 (D=1 deg(Q)< 222 (D=1
Q=1
= Z WQ)HAD € Vagi1-2deg(q) : (D,1) =1} (4.10)
@ monic
deg(Q)< 2
(@nh=1

By Lemma 4.2, we have

Z 1= Z M(Q)q2g+1—2deg(Q)%

DeHog41,q @ monic
(D,1)=1 deg(Q)< 244
(Q,1)=1
(1) (@)
— |p|2¥Y) . (4.11)
1] Q;:mc QI
deg(Q)< 24

(@.H=1
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Invoking Lemma 4.4 we obtain

0] 1 1 e,
Deggjﬂf = 1Dl GO0 1PP) +0(gY2q79)
(D=1 Pli
— o) 1 1 % Y
12 11| Ca(2) H(l _ 1/|P|2) +0 (D ] q q ) ,  (4.12)
Pl

and using % = [1p(1 = [P[7"), we end up with

D ®(1)
1= O (VIDl—7 ). 413
N (e (Vi) (4.13)
(D,1)=1 Pl

which proves Proposition 4.1. O

5. Proof of Theorem 2.2

Our argument in this section follows closely [1]. From (2.7), our main goal is to
obtain an asymptotic formula for

S LLxo)= >, > > xohHg

DeHag+1,q DeHzg41,4 n=0 df r?;)nic
eg(f)=n

g—1
+a 0 Y Y > xolh). (5.1)

DeHag41,q m=0 f monic
deg(f)=m

We begin by establishing an asymptotic formula for the first term in the right-
hand side of (5.1):

g

YOV Y wie =Y Y Y )

DeEH2441,q n=0 fmonic n=0 DeHog41,q fmonic
deg(f)=n deg(f)=n
=12
g
+>a Y Y xolh) (52
n=0 DeHzg41,4 fmonic
deg(f)=n

F#0



Int. J. Number Theory 2012.08:1725-1740. Downloaded from www.worldscientific.com
by BROWN UNIVERSITY ROCKEFELLER LIBRARY on 10/22/12. For personal use only.

Mean Value of L-Functions in Function Fields 1737

Making use of part (1) of Lemma 3.2 we can write (5.2) as

Y Y Y whet

DeHzg41,q n=0 fmonic

deg(f)=n
g
=> " Y. D> xo()+0((29)). (5.3)
n=0 DeEH2441,4 fmonic
deg(f)=n
F=1

For the square terms f = [ we make use of Proposition 4.1 and we end with

g9

doam > DY xoe)
n=0 DeH2g41,4 fmonic
deg(f)=n
=2
l9/2]
|D| —m 'u 9/2
CEP A I |
deg(d)<m

71 deg(d (qfl)[g/2]+1

S s 9/2
a2 2 |d| H|P|+ < 1—q ! >+0(q )

d monic
deg(d)<[g/2]

B |D| g des(d)
e 2 Idl 1_[|P|+1<1—q )

d monic
deg(d)<[g/2]

|D| q [9/2]+1 ’
a2 2 |d| H |P|+1 ( = ) +0(¢?). (5.4)

d monic
deg(d)<[g/2]

Now for the first term of (5.4) we can use Lemma 3.4 and for the second term
we can use Lemma 3.6 and so we end up with the following formula for the square
terms:

g > > xo(f)
n=0

DeHag41,4 fmonic

deg(f)=n
F=1
1

_ D (1_ 7>

L IL ' e

irreducible
ool 1
—|Dlg7 A ] <1—m)+0(q9). (5.5)

. P monic
irreducible
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Substituting (5.5) in (5.3) we have that

> i > xofHa "

DeHag41,q n=0 fmonic

deg(f)=n
1
L )
Pnl;[nic [PI*(1P] +1)
irreducible
/2 1
A T (1 ) 00D 69

. P monic
irreducible

For the second term in the right-hand side of (5.1) we mimic the calculations
above to end with

Y Y Y w0

DeHag41,¢ m=0 fmonic

deg(f)=m
_ |Dlg™? p(d n
Ca2) Z |d| H !
d monic P|d deg(d)gng[(gfl)/ﬂ

deg(d)<[(9—1)/2]
+0(glo/2) + 0<<2q>9>

_ |D|g7? gdes(d)
© Cal2) 2 Idl HP+1<1—q)

dmonic
deg(d)<[(g—1)/2]

glla=1/21+1

|Dlg~7 ,
NE) 2 |d| HP+1< 1—¢ >+0((2q) ), (5.7)

d monic P|d
deg(d)<[(g—1)/2]

where the error O((2¢)9) arises when we consider f # [0 and using part (2) of
Lemma 3.2.
For the first term in (5.7) we use the bound given in Lemma 3.7 and for the

second term we have

[(9— 1)/2]+1)

[Dlq™¢
€a(2) 2 \d\ H|P|+1< 1—g¢

d monic

deg(d)<[(9—1)/2]

_Dlg ¢ s v H <q[<g—1>/z]+1)
Ca(2) \d\ |P|+1 l—gq

d monic P|d

D] gllo=D/2+1
BEE) > 5 H|P|+1< —¢ ) - 58

d monic Pld
deg(d)>[(g—1)/2]
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And we can use part (2) of Lemma 3.6, and so we have that

|Dlg~* > p(d) 1 <q[(91>/2]+1)
CA(2) onic |d| Pld |P| +1 1= q
deg(d)<[(g—1)/2]

|D|quq[(gil)/2]+1
@0 -9

1 g
T (' perey) oo 69)

irreducible

So we can conclude that

g—1
D 2 > xolf)
DeHag41,¢ m=0 f monic
deg(f)=m

€a(2)(1 —q)

1
1——————— ) +0((29). (5.10)
P aonic ( |P|(|P|+1))
irreducible

Putting together Eqgs. (5.6) and (5.10) and factoring |D| we have that the proof
of Theorem 2.2 is complete. O
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