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Abstract. We investigate the moment and the distribution of L(1, χP ),
where χP varies over quadratic characters associated to irreducible poly-
nomials P of degree 2g + 1 over Fq[T ] as g → ∞. In the first part of
the paper, we compute the integral moments of the class number hP
associated to quadratic function fields with prime discriminants P , and
this is done by adapting to the function field setting some of the previ-
ous results carried out by Nagoshi in the number field setting. In the
second part of the paper, we compute the complex moments of L(1, χP )
in large uniform range and investigate the statistical distribution of the
class numbers by introducing a certain random Euler product. The sec-
ond part of the paper is based on recent results carried out by Lumley
when dealing with square-free polynomials.

1. Introduction

Gauss in his Disquistiones Arthmeticae [7], presented two conjectures
concerning the average values of the class numbers hD associated with
binary quadratic forms ax2 + 2bxy + cy2, where a, b and c are integers,
and D = 4(b2 − ac) is the discriminant of the binary quadratic forms
ax2 + 2bxy + cy2. Gauss conjectured that

(1.1)
∑

0<−D6X
D≡0 mod 4

hD ∼
π

42ζ(3)
X3/2,

and

(1.2)
∑

0<D6X
D≡0 mod 4

hD log εD ∼
π2

42ζ(3)
X3/2
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as X →∞, where ζ(3) =
∑∞

n=1 n
−3 and εD is the regulator of the real qua-

dratic number field Q(
√
D). Later on, these two conjectures where proved

by Lipschitz [14] and Siegel [13].

Let d denote a fundamental discriminant and let Q(
√
d) be the quadratic

field with discriminant d and hd represent the class number of this field. It
is a fundamental problem in number theory to understand the distribution
value of the size of the class group for a given field. It is not a surprise then
that describing the extreme values of hd and their distribution values have
been vastly investigated. For example, Granville and Soundararajan [8], and
Dahl and Lamzouri [6] make use of a random model to study the moments
of the class number through the use of Dirichlet’s formula that connects
hd with the value of the Dirichlet quadratic L-function at s = 1, i.e., with
L(1, χd). Following the work of Granville and Soundararajan, Nagoshi in
[16] established asymptotic formulas for all the moments of L(1, χp) with χp

denoting the real character modulo p given by the Legendre symbol
(
·
p

)
,

where p is an odd prime.

Let dk(n), k ∈ N be the generalized k-th divisor function, define

(1.3) ãk :=
∞∑
m=1

dk(m
2)

m2
∈ R,

which is convergent by the bound dk(n) �k,ε n
ε, for any ε > 0. Nagoshi

proved the following.

Theorem 1.1. (Nagoshi’s Theorem) Let v be the integer 1 or 3. Let k ∈ N
and X > 5. Then

∑
p6X

p≡v mod 4

(log p)L (1, χp)
k =

ãk
2
X +Ok,δ

(
X

(logX)2−δ

)
for any δ > 0,

where the implied constant is effectively computable.

As a consequence of the above theorem, Nagoshi established the following
asymptotic formulas for all the moment of the class number hp,∑

p6X
p≡3 mod 4

h(−p)k ∼ ãk
πk(k + 2)

X1+k/2

logX

(
1 +

2

(k + 2)

1

logX

)
,

and ∑
p6X

p≡1 mod 4

(h(p) log ε(p))k ∼ ãk
2k(k + 2)

X1+k/2

logX

(
1 +

2

(k + 2)

1

logX

)
.
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Moreover, Nagoshi investigated the distribution of the class numbers of
quadratic fields with prime discriminant. He compared the distribution of
values of L(1, χp) with the distribution of random Euler products L(1,Wp) =∏
p (1−Wp(ω)/p)−1 where the Wp(ω)’s are independent random variables

±1 with suitable probabilities (see [12] and [8]). Leting {Wp | p is prime} be
a sequence of independent random variables on a probability space (Ω,F ,P),
{E[Wp]} be their expected value, he defined the two distribution functions,
for x ∈ R,

G(x) := P ({ω ∈ Ω | L(1, ω) 6 x}) and G̃(x) := P ({ω ∈ Ω | lnL(1, ω) 6 x}) .

With this notation, Nagoshi proved the following.

Theorem 1.2. (Nagoshi’s Distribution Theorem) For each x ∈ R, we have

lim
N→∞

#
{
p 6 N | p ≡ 3 mod 4, h(−p) 6 π−1√pex

}
# {p 6 N | p ≡ 3 mod 4}

= G(ex) = G̃(x),

and

lim
N→∞

#
{
p 6 N | p ≡ 1 mod 4, h(p) log ε(p) 6 2−1

√
pex
}

# {p 6 N | p ≡ 1 mod 4}
= G(ex) = G̃(x).

The distribution function G is strictly increasing on (0,∞), and G̃ is strictly
increasing on R. The characteristic function of G has the form

1 +

∞∑
k=1

ãk
k!

(it)k , t ∈ R,

where the numbers ãk are as in (1.3). The characteristic function E
[
L(1, ·)it

]
of G̃ has the form

∏
p

(
1

2

(
1− 1

p

)−it
+

1

2

(
1 +

1

p

)−it)
, t ∈ R,

and satisfies

(1.4) E
[
L(1, ·)it

]
� exp

(
−c |t|

ln(2 + |t|)

)
for all t ∈ R

with absolute constant c > 0. The distribution function G̃ has a density g.

Further, G̃ and g are infinitely differentiable.
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In the first part of this paper we prove the function field analogue of
Nagoshi’s results and study the class number, denoted as hP , over function
field, Fq(T ) with q odd and P is a monic irreducible polynomial in Fq[T ].

In 1992, Hoffstein and Rosen [10] investigated the average value of the
class number hD when the average is taken over all monic polynomial of a
fixed degree, they showed, for M odd and positive, that

1

qM

∑
D monic

deg(D)=M

hD =
ζA(2)

ζA(3)
q(M−1)/2 − q−1,

where ζA(s) is the Riemann zeta function over Fq[T ]. We can think of
Hoffstein and Rosen result as the function field analogue of the Gauss’s
conjecture in equation (1.1), proven by Siegel [20]. They also showed that
for even positive M and non-square monic polynomial D of degree M that

q−M
∑

hDRD = (q − 1)−1
(
ζA(2)

ζA(3)
qM/2 −

(
2 +

(
1− q−1

)
(M − 1)

))
,

where RD is the regulator of the associated quadratic function field.

In a recent paper, Andrade [1] established an asymptotic formula for the
mean value of the class number hD over function fields when the average
is taken over H2g+1, the set of all monic, square-free polynomials of degree
2g + 1 in Fq[T ]. Andrade proved that, as g →∞ we have

1

#H2g+1

∑
D∈H2g+1

hD ∼ ζA(2)qg
∏

P irreducible

(
1− 1

(|P |+ 1) |P |2

)
.

In a more recent paper, Lumley [15] investigated the distribution of
L(1, χD) for D ∈ Hn as n → ∞. She computed large complex moments
of the associated L(1, χD) using the technique of random models that has
been used successfully in the study of quadratic number fields. Lumley
proved that we can express the complex moments of L(1, χD) as follows.
Notice that in the results below, the implied constants may depend on q.

Theorem 1.3. Let n a positive integer, and z ∈ C be such that |z| 6
n

260 logq(n) log logq(n)
. Then

1

#Hn

∑
D∈Hn

L (1, χD)z =
∑

f monic

dz(f
2)

|f |2
∏
P |f

(
1 +

1

|P |

)−1(
1 +O

(
1

n11

))
,

where dz(f) is the generalized divisor function defined by

(1.5) dz(Q
a) =

Γ(z + a)

Γ(z)a!
,
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where a ∈ N and Q is monic irreducible polynomial.

As consequence of the above theorem, Lumley stated that if we specialize
n to be n = 2g + 1 and 2g + 2 and letting the genus g → ∞ we have the
following results.

Corollary 1.1. Let z ∈ C be such that |z| 6 g
130 logq(g) log logq(g)

. Then

1

#H2g+1

∑
D∈H2g+1

hzD

= qgz
∑

f monic

dz(f
2)

|f |2
∏
P |f

(
1 +

1

|P |

)−1(
1 +O

(
1

g11

))
.

Corollary 1.2. Let z ∈ C be such that |z| 6 g
130 logq(g) log logq(g)

. Then

1

#H2g+1

∑
D∈H2g+1

(hDRD)z

=

(
qg+1

q − 1

)z ∑
f monic

dz(f
2)

|f |2
∏
P |f

(
1 +

1

|P |

)−1(
1 +O

(
1

g11

))
,

where RD is the regulator of the associated quadratic function field.

In the second part of this paper we will adapt Lumley’s result and inves-
tigate the complex moment of L(1, χP ) in a large uniform range, where χP
varies over quadratic characters associated to irreducible polynomials P of
degree n over Fq as n→∞.

2. Preparations

Before we state the main results of this paper we first introduce some
notation and auxiliary results. Let Fq be a finite field with q elements where
q is a prime power. We denote by A = Fq[T ] the polynomial ring over Fq
and the norm of a polynomial f ∈ A is defined to be |f | = qdeg(f).

Let Pn to denote the set of all monic irreducible polynomials in Fq[T ] of
degree n and let χP (f) to denote the quadratic character associated to a
monic irreducible polynomial P , the value of the character is defined in terms
of the Legendre symbol for polynomials over finite fields. The associated
Dirichlet L-function is defined in the usual way as

L(s, χP ) =
∑

f monic

χP (f)

|f |s
.

For the remainder of this paper the following notations will be fixed. Let
log denotes the logarithm in the base q, ln is the natural logarithm and
logj (respectively lnj) represents the j-fold iterated logarithm. Let P be an
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irreducible (prime) polynomial in A, the k-divisor function, dk(f), is defined
by

dk(f) =
∑

f monic
f=f1f2···fk

1.

Our first auxiliary result is the following.

Proposition 2.1. (“Approximate” functional equation) Let P ∈ P2g+1,
then we have that

L(1, χP )k =
∑

f1 monic
deg(f1)6kg

χP (f1)dk(f1)

|f1|
+ q−kg

∑
f2 monic

deg(f2)6kg−1

χP (f2)dk(f2).
(2.1)

Proof. Recall that,

L(s, χP ) =
∑

f monic

χP (f)

|f |s

=

∞∑
n=0

q−sn
∑

f monic
deg(f)=n

χP (f).

Therefore, we have

L(s, χP )k =
∞∑
n=0

q−sn
∑

f monic
deg(f)=n

χP (f)dk(f),
(2.2)

where dk(f) is the number of ways that f can be expressed as a product
of k monic (taking order into account). Since L(s, χP ) is a polynomial of
degree 2g in u = q−s, we have

(2.3) L(s, χP ) = LCP (u),

where LCP (u) is the numerator of the zeta function associated to the hyper-
elliptic curve CP : y2 = P (T ) with P (T ) = T 2g+1 + a2gT

2g + · · ·+ a1T + a0,
a monic irreducible polynomial in A of degree 2g + 1. Moreover, LCP (u)
satisfies the functional equation

LCP (u) =
(
qu2
)g
LCP

(
1

qu

)
,

and so
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LCP (u)k =
(
qu2
)kg

LCP

(
1

qu

)k
.

Let LCP (u)k =
∑2kg

n=0 anu
n, then we have

2kg∑
n=0

anu
n =

2kg∑
r=0

a2kg−rq
r−kgur.

Comparing the coefficients we find that ar = a2kg−rq
r−kg and a2kg−r =

arq
kg−r. Therefore, we can write

L(s, χP )k =

kg∑
n=0

anu
n + (qu2)kg

kg−1∑
m=0

amq
−mu−m.(2.4)

From (2.2) and (2.3) we can write the coefficients an as

an =
∑

f monic
deg(f)=n

χP (f)dk(f)

and this proves the result. �

The next result is the well-known prime polynomial theorem.

Theorem 2.1. (Prime Polynomial Theorem)
The number of monic irreducible polynomials in A = Fq[T ] of degree n is

πA(n) =
qn

n
+O

(qn/2
n

)
.

Lemma 2.2. Let f be a monic polynomial in Fq[T ], k > 2, and dk(f) be
the k-fold divisor function. Then

∑
f monic
deg(f)=n

dk(f) =
1

(k − 1)!
qnnk−1 +O(qnnk−2),

where the implied constant depends on k.

For Lemma 2.2 see Lemma 2.2 in [2]. Our next result is quoted from
Rosen [17, Chapter 17].

Lemma 2.3. Let A+ be the set of monic polynomials in Fq[T ] and

B =

{
s ∈ C : − πi

ln q
6 I(s) 6

πi

ln q

}
.

Let f : A+ → C, and ζf (s) be the corresponding Dirichlet series. Suppose
this series converges absolutely in the region R(s) > 1 and is holomorphic
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in the region {s ∈ B : R(s) = 1} except for a single pole of order r at s = 1.
Let α = lims→1(s − 1)rζf (s). Then there is a δ < 1 and constant c−i with
1 6 i 6 r such that

∑
deg(D)=n

f(D) = qn

(
r∑
i=1

c−i

(
n+ i− 1

i− 1

)
(−q)i

)
+O

(
qδn
)
.

The sum in parenthesis is a polynomial in n of degree r − 1 with leading
term

(ln q)r

(r − 1)!
αnr−1.

Lemma 2.4. Let f be a monic polynomial in Fq[T ], and d(f) be the number
of monic divisors of f . Let ζdk(s) be the corresponding Dirichlet series. Then
ζdk(s) converges absolutely in the region R(s) > 1 and holomorphic in the
region {s ∈ B,R(s) = 1} except for a pole of order k(k+ 1)/2 at s = 1. Let

ρk = lims→∞(s − 1)
k(k+1)

2 ζdk(s), then for a fixed ε > 0 and constants c−i

with 1 6 i 6 k(k+1)
2 we have

(2.5)
∑

f monic
deg(f)=n

dk(f
2) = qn


k(k+1)

2∑
i=1

c−i

(
n+ i− 1

i− 1

)
(−q)i

+O (qεn) .

The sum is parenthesis is a polynomial in n of degree k(k+1)
2 −1 with leading

term

(2.6)
Ak(1)(

k(k+1)
2 − 1

)
!
n
k(k+1)

2
−1,

where the definition of Ak(s) is presented in the proof of this lemma. When
k = 2, we can write

(2.7)
∑

f monic
deg(f)=n

d(f2) =

(
1 +

1

2
(3 + q−1)n+

1

2
(1− q−1)n2

)
qn.

Proof. Let

ζf (s) =
∑

f monic

dk(f
2)

|f |s

be the zeta function associated to dk(f
2). Recall that
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dk(P
r) =

(k + r − 1)!

(k − 1)!r!
,(2.8)

Then the zeta function can be written as

ζf (s) =
∏

P monic
irreducible

(
1 +

∞∑
n=1

1

|P |sn
(k + 2n− 1)!

(k − 1)!(2n)!

)

=
∏

P monic
irreducible

1

2

(
1− |P |−s

)−k ((
1− |P |−

s
2

)k
+
(
|P |−

s
2 + 1

)k)

= (ζA(s))
k(k+1)

2

∏
P monic
irreducible

(
1− |P |−s

) k(k−1)
2

[k/2]∑
i=0

(
k

2i

)
|P |−is

= (ζA(s))
k(k+1)

2 Ak(s).

From the definitions of ζA(s) and Ak(s) the sum converges absolutely for
R(s) > 1, is holomorphic on the disc

{
u = q−s ∈ C : |u| 6 q−δ

}
for some

δ < 1, and ζf (s) has a pole of order k(k + 1)/2 at s = 1. Applying Lemma
2.3 equation (2.5) follows. Since we have

ρk = lim
s→1

(s− 1)k(k+1)/2 (ζA(s))
k(k+1)

2 Ak(s)

=
1

(ln q)k(k+1)/2
Ak(1),

then by applying the formula for the leading term of the polynomial in
parenthesis given in the statement of Lemma 2.3, we get equation (2.6). For
(2.7) see Lemma 5.1 in [3]. �

The next result is a bound for non-trivial character sums.

Proposition 2.5. If f ∈ Fq[T ] is monic and not a perfect square, with
deg(f) > 0 then we have that∣∣∣∣∣ ∑

P irreducible
deg(P )=n

(
f

P

) ∣∣∣∣∣� q
n
2

n
deg(f).

For the proposition above see page 87 in [19]. The next result follows
from Proposition 2.5 and Lemma 2.2.

Lemma 2.6. Let f be a monic polynomial in Fq[T ] of degree n, then if f is
not a perfect square we have
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∑
P∈P2g+1

∑
deg(f)=n
f 6=�

χP (f)dk(f)� |P |
1
2

log |P |
qnnk,

where the implied constant depends on k.

With the previous results in hands we can establish the following result.

Lemma 2.7. Let f be a monic polynomial in Fq[T ]. If f is not a perfect
square we have

(1) log |P |
∑

P∈P2g+1

∑
f monic

deg(f)6kg
f 6=�

dk(f)

|f |
χP (f) = O

(
|P |

1
2 (log |P |)k+1

)
,

and

(2) q−kg log |P |
∑

P∈P2g+1

∑
f monic

deg(f)6kg−1
f 6=�

χP (f)dk(f) = O
(
|P |

1
2 (log |P |)k

)
,

where the implied constants depends on k.

Lemma 2.8 (Mertens’ Theorem [18]). Let P ∈ Fq[T ] be monic irreducible
polynomial. Then, we have∏

P irreducible
deg(P )6X

(
1− 1

|P |

)−1
= eγX +O(1),

where γ is the Euler constant.

2.1. The Random Euler Product. bnkjnd

We present in this section the probabilistic model that we will use when
studying L(s, χP ). Let {X(P ) | P monic and irreducible} be a sequence
of independent random variables on a probability space such that each
X(P ) = ±1 has probability 1/2, note that by Theorem 5.3 in [5] such prob-
ability exists. For any monic polynomial f ∈ A, we write the prime power
factorization of f , i.e: write f = P e11 P e22 · · ·P err . Then the extend definition
of X multiplicative defined as follows

X(f) = X(P1)
e1X(P2)

e2 · · ·X(Pr)
er .

Let LP (1,X(P )) = (1− X(P )/|P |)−1 . We define the randon Euler product
L(1,X) by
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L(1,X) : =
∑

f monic

X(f)

|f |

=
∏

P monic
irreducible

(
1− X(P )

|P |

)−1
=

∏
P monic
irreducible

LP (1,X(P )),

(2.9)

Where the product converges almost surely by our choice of the probability,
for more details see [8], [12] and [15]. Since for each prime P ∈ A, the
expectation of X, E [X(P )/|P |] = 0, we have

∑
P monic
irreducible

E

[∣∣∣∣X(P )

|P |

∣∣∣∣2
]

=
∑

P monic
irreducible

1

|P |2
<∞,

and

LP (1,X) = 1 +

∞∑
n=1

X(P )n

|P |n
,

which converges for almost all P (see [12, Theorem 1.7]). Moreover, L(1,X) >
0 for almost all P .

Lemma 2.9. Let k > 0, then the infinite product
∏
P E

[
LP (1,X)k

]
is con-

vergent, the random variable L(1,X)k is integrable, and we have

∏
P monic
irreducible

E
[
LP (1, .)k

]
= E

[
L(1,X)k

]

Proof. For each prime P , we have E [X(P )m] = 0 ifm is odd and E [X(P )m] =
1 if m is even. Therefore, its follows from Lebesgue’s dominated convergence
theorem and the formula of dk(n) on page 22 of [21] that

E
[
LP (1,X)k

]
= E

( ∞∑
n=0

X(P )n

|P |n

)k
= E

[ ∞∑
m=0

X(P )m

|P |m
∑

m=n1+n2+···+nk

1

]
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E
[
LP (1,X)k

]
= E

[ ∞∑
m=0

X(P )m

|P |m
(k +m− 1)!

m!(k − 1)!

]

=
∞∑
m=0

(k +m− 1)!

m!(k − 1)!|P |m
E [X(P )m]

=
∞∑
n=0

dk(P
2n)

|P |2n
.

(2.10)

From this and the fact that dk(P )�k,ε |P |ε, we have that

E
[
LP (1,X)k

]
= 1 +Ok

(
|P |2ε−2

)
.

f
Since

∑
P |P |2ε−2 <∞, the infinite product

∏
P E

[
LP (1,X)k

]
is convergent.

Now, for n > 2 put Yn(P ) :=
∏

deg(P )6n LP (1,X)k, and Y (P ) = L(1,X)k.

Since X’s are independent random variables, then

∏
P irreducible
deg(P )6n

E [Y (P )] = E [Yn] .
(2.11)

Moreover, using (2.10), (2.8) and the independence of X’s, we have

E
[
|Yn|2

]
=

∏
P irreducible
deg(P )6n

E
[
LP (1,X)2k

]

=
∏

P irreducible
deg(P )6n

E

[
1 +

∞∑
n=1

d2k(P
2n)

|P |2n

]

=
∏

P irreducible
deg(P )6n

(
1 +Ok

(
|P |2ε−2

))
< Ck,

where Ck > 0 is constant depending on k. Making use of Lemma 3 in
[9], we get that the sequence {Yn} is uniformly integrable. Recall that∏

deg(P )6n LP (1,X)→ L(1,X) as n→∞ for almost all P. Therefore, Yn(P )→
Y (P ) as n→∞ for almost all P. Since {YN} is uniformly integrable and by
[9, Theorem 4(b)], we have that Y is also integrable and E [YN ]→ E [Y ] as
n→∞. Combining this with (2.11) we complete the proof. �

Lemma 2.10. For k > 0, we have that

E
[
L(1,X)k

]
=

∑
f monic

dk(f
2)

|f |2
.
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Proof. Recall that dk(n) is a multiplicative function (see p.5 in [21]), and
from Lemma 2.9, and (2.10) we can write

∑
f monic

dk(f
2)

|f |2
=

∏
P monic
irreducible

∞∑
n=0

dk(P
2n)

|P |2n

= E
[
L(1,X)k

]
.

�

Lemma 2.11. Let f ∈ A be monic polynomial, we have

E [X(f)] =

{
0 if f is not a square

1 if f is a square

Proof. Let f = P e11 · · ·P err be the prime power factorization of f . By the
independence of X’s we have

E [X(f)] = E [X(P1)
e1 ] · · ·E [X(Pr)

er ]

=

r∏
i=1

E [X(Pi)
ei ] .

Since E [X(P )ei ] = 0 when ei is odd and E [X(P )ei ] = 1 when ei is even, we
obtain the Lemma. �

3. Nagoshi’s Theorems in Function Fields

3.1. Moments of L(1, χP ). gkh

For k ∈ N, we define

(3.1) ak :=
∑

f monic

dk(f
2)

|f |2
∈ R,

which is convergent by the bound dk(f)�k,ε |f |ε, for any ε > 0 (see Theo-
rem 2 in [11]). Remember that the set Pn is defined by

Pn = {P ∈ Fq[T ] : P monic, irreducible, deg(P ) = n} .
We now state the main result of this section which can be seen as the function
field analogue of Theorem 1.1.

Theorem 3.1. Let q be a fixed power of an odd prime, we have that∑
P∈P2g+1

log |P |L(1, χP )k = |P |ak +O
(
|P |

1
2 (log |P |)k+1

)
,

where ak is defined as in (3.1).
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Before we prove the main result we need the following two lemmas.

Lemma 3.1. For k > 2, and f monic polynomial in Fq[T ]. We have that

1. q−kg log |P |
∑

P∈P2g+1

∑
f monic

deg(f)6kg−1

dk(f)χP (f)

� |P |1−
k
2 q

kg−1
2 (log |P |)

k(k+1)
2
−1 .

2. log |P |
∑

P∈P2g+1

∑
f monic

deg(f)6kg
f 6=�

dk(f)

|f |
χP (f)� |P |

1
2 (log |P |)k+1 .

Proof. rmm
Put

I1 = q−kg log |P |
∑

f monic
deg(f)6kg−1

f=�

dk(f)
∑

P∈P2g+1

χP (f)

and

I2 = q−kg log |P |
∑

f monic
deg(f)6kg−1

f 6=�

dk(f)
∑

P∈P2g+1

χP (f),

then we have

q−kg log |P |
∑

P∈P2g+1

∑
f monic

deg(f)6kg−1

dk(f)χP (f) = I1 + I2,

Consider the sum I1, since f is a perfect square then we can write f = l2, l ∈
A. Making use of the Prime Polynomial Theorem 2.1 and Lemma 2.4

I1 � |P |1−
k
2 q[

kg−1
2 ] (log |P |)

k(k+1)
2
−1 .

Applying Lemma 2.7, I2 is bounded by

I2 � |P |
1
2 (log |P |)k .

Hence we obtain the first part of the Lemma. For the second part it follows
from Lemma 2.7. �

The next lemma we need is the following.



THE CLASS NUMBERS OF PRIMES 15

Lemma 3.2. For k > 2, and f monic polynomial in Fq[T ]. We have

log |P |
∑

P∈P2g+1

∑
f monic

deg(f)6kg
f=�

dk(f)

|f |
χP (f) = |P |ak +O

(
|P |q−

kg
2 (log |P |)

k(k+1)
2
−1
)
,

where ak is defined as in (3.1) and [x] is the integer paert of x.

Proof. Write f = l2, l ∈ A, since f is a perfect square, then we have χP (l2) =
1 for (P, l) = 1 and deg(l) < deg(P ) = 2g + 1. By the Prime Polynomial
Theorem 2.1 we have

log |P |
∑

P∈P2g+1

∑
f monic

deg(f)6kg
f=�

dk(f)

|f |
χP (f)

=|P |
∑

l monic
deg(l)6[ kg2 ]

dk(l
2)

|l|2
+O

|P | 12 ∑
l monic

deg(l)6[ kg2 ]

dk(l
2)

|l|2

 .

From Lemma 2.2 the O-term is bounded by |P |
1
2 . For the main term we

have

|P |
∑

l monic
deg(l)6[ kg2 ]

dk(l
2)

|l|2
= |P |

 ∑
l monic

dk(l
2)

|l|2
−

∑
l monic

deg(l)>[ kg2 ]

dk(l
2)

|l|2


= |P |ak +O

(
|P |q−[ kg2 ] (log |P |)

k(k+1)
2
−1
)
,

where ak is defined in (3.1). �

We are now in a position to prove the main result of this section.

Proof of Theorem 3.1. From the “approximate” functional equation (2.1)
we have
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∑
P∈P2g+1

log |P |L(1, χP )k

= log |P |
∑

P∈P2g+1

{ ∑
f monic

deg(f)6kg
f=�

dk(f)

|f |
χP (f) +

∑
f monic

deg(f)6kg
f 6=�

dk(f)

|f |
χP (f)

l + q−kg
∑

f monic
deg(f)6kg−1

dk(f)χP (f)

}
.

(3.2)

Applying Lemma 3.1 and Lemma 3.2 in (3.2) we obtain the Theorem 3.1.
�

3.2. Extending Nagoshi’s Results. gbg

In this section we extend Theorem 3.1 and write the sum ak in to a specific
form that is more suitable for the calculations that we present in this section.
We start with the following lemma.

Lemma 3.3. For k > 2, and f monic polynomial in Fq[T ]. We have that

log |P |
∑

P∈P2g+1

∑
f monic

deg(f)6kg
f=�

dk(f)

|f |
χP (f)

= |P |Bk +O

(
|P |

1
2 q−

kg
2
(
logq |P |

) k(k+1)
2
−1
)
,

where

Bk =

[kg/2]∑
n=0

k(k+1)/2∑
i=1

c−i

(
n+ i− 1

i− 1

)
(−q)i

 q−n.

The sum is parenthesis is a polynomial in n of degree k(k+1)
2 −1 with leading

term

Ak(1)(
k(k+1)

2 − 1
)

!
n
k(k+1)

2
−1.

Proof. As in Lemma 3.2, write f = l2, l ∈ A, then from the Prime Polyno-
mial Theorem 2.1 we have
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I = log |P |
∑

P∈P2g+1

∑
f monic

deg(f)6kg
f=�

dk(f)

|f |
χP (f)

= |P |
[kg/2]∑
n=0

q−2n
∑

l monic
deg(l)=n

dk(l
2) +O

|P | 12 [kg/2]∑
n=0

q−2n
∑

l monic
deg(l)=n

dk(l
2)

 .

Using Lemma 2.4 we have

I = |P |
[kg/2]∑
n=0

q−2nqn

(k(k+1))/2∑
i=1

c−i

(
n+ i− 1

i− 1

)
(−q)i


nbncjnbn mbn +O

|P | [kg/2]∑
n=0

q−2nqεn

+O

|P | 12 [kg/2]∑
n=0

q−2nqnn
k(k+1)

2
−1



= |P |
[kg/2]∑
n=0

(k(k+1))/2∑
i=1

c−i

(
n+ i− 1

i− 1

)
(−q)i q−n +O

(
|P |q(ε−2)[

kg
2 ]
)

nbncjnbn mbn +O
(
|P |

1
2 q−[ kg2 ]g

k(k+1)
2
−1
)

= |P |Bk +O

(
|P |

1
2 q−[ kg2 ] (logq |P |

) k(k+1)
2
−1
)
.

�

From Lemma 3.1, Lemma 3.3 and equation (3.2) we establish the following
theorem.

Theorem 3.2. Let k ∈ N, q be a fixed power of an odd prime. We have
that

∑
P∈P2g+1

log |P |L(1, χP )k = |P |Bk +O
(
|P |

1
2 (log |P |)k+1

)
.

where Bk is defined as in Lemma 3.3.

For any non-constant irreducible polynomial P ∈ A with sgn(P ) ∈ {1, γ},
where γ is a fix generator of F×q , let O be the integer closure of A in the

quadratic function field k
(√

P
)

. Let hP be the ideal class number of O,

and RP be the regulator of O if deg(P ) is even and sgn(P ) = 1. We have a
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formula, quoted from [17] Theorem 17.8, which connects L(1, χP ) with hP ,
namely

(3.3)

L(1, χP ) =


√
q|P |−

1
2hP if deg(P ) is odd,

(q − 1)|P |−
1
2hPRP if deg(P ) is even and sgn(P ) = 1,

1
2(q + 1)|P |−

1
2hP if deg(P ) is even and sgn(P ) = γ.

Combining Theorem 3.2 and equation (3.3), we obtain the following corol-
lary.

Corollary 3.4. Let q be a fixed power of an odd prime. Then with the same
notation as in Lemma 3.3, we have that

∑
P∈P2g+1

(hP )k =
|P |1+

k
2

log |P |
q−

k
2Bk +O

(
|P |

k+1
2 (log |P |)k

)
.

3.3. The Second Moment of L(1, χP ). gbg

We start this section proving the following lemma.

Lemma 3.5. Let f monic polynomial in A = Fq[T ]. We have

log |P |
∑

P∈P2g+1

∑
f monic

deg(f)62g
f=�

d(f)

|f |
χP (f)

=|P |1
2
ζA(2)2q−2

(
q−g−1(g2

(
−q2 + 2q − 1

)
+ g

(
−5q2 + 4q + 1

)
− 6q2) + 2q2 + 2q + 2

)
+O

(
(log |P |)2

)
.

Proof. Write f = l2, since χP (l2) = 1 for (P, l) = 1 and deg(l) < deg(P ) =
2g + 1, using the Prime Polynomial Theorem 2.1 we have

T = log |P |
∑

P∈P2g+1

∑
f monic

deg(f)62g
f=�

d(f)

|f |
χP (f)

= |P |
g∑

n=0

q−2n
∑

l monic
deg(l)=n

d(l2) +O

|P | 12 g∑
n=0

q−2n
∑

l monic
deg(l)=n

d(l2)

 .

Using Lemma 2.4 we have
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T =|P |
g∑

n=0

q−n
(

1 +
1

2

(
3 + q−1

)
n+

1

2

(
1− q−1

)
n2
)

+O

(
|P |

1
2

g∑
n=0

q−nn2

)

=|P |1
2
ζA(2)2q−2

(
q−g−1(g2

(
−q2 + 2q − 1

)
+ g

(
−5q2 + 4q + 1

)
− 6q2) + 2q2 + 2q + 2

)
+O

(
(log |P |)2

)
.

This proves the lemma. �

Now, consider the “approximate” functional equation (2.1) when k = 2,

∑
P∈P2g+1

log |P |L(1, χP )2

= log |P |
∑

P∈P2g+1

{ ∑
f monic

deg(f)62g
f=�

d(f)

|f |
χP (f) +

∑
f monic

deg(f)62g
f 6=�

d(f)

|f |
χP (f)

+ q−2g
∑

f monic
deg(f)62g−1

d(f)χP (f)

}
.

From Lemma 3.5 and Lemma 3.1 with k = 2 we proved the asymptotic
formula for the second moment of L(1, χP ).

Theorem 3.3.∑
P∈P2g+1

log |P |L (1, χP )2 = |P |ζA(2)2q−2
(
q2 + q + 1

)
+O

(
|P |

1
2 (log |P |)3

)
.

3.4. Applying Theorem 3.1 when k = 2. dlkjh

In this section we use Theorem 3.2 to obtain an explicit formulae for
the second moment of quadratic Dirichlet L-functions associated to χP over
function fields, then compare it with the result that we established in Section
3.3. For k = 2,

3∑
i=1

c−i

(
n+ i− 1

i− 1

)
(−q)i

= −1

2
c−3q

3n2 +

(
c−2q

2 − 3

2
c−3q

3

)
n−

(
c−3q

3 − c−2q2 + c−1q
)
,

and so
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B2 =

g∑
n=0

(
−1

2
c−3q

3n2 +

(
c−2q

2 − 3

2
c−3q

3

)
n−

(
c−3q

3 − c−2q2 + c−1q
))

q−n

=ζA(2)2q−2
(
− q6

q − 1
c−3 + c−2q

4 − c−1(q − 1)q2
)

+O
(
|P |−

1
2 (log |P |)2

)
.

Hence, the second moment using Theorem 3.2 is

∑
P∈P2g+1

log |P |L (1, χP )2

= |P |B2 +O
(
|P |

1
2 (log |P |)3

)
= ζA(2)2|P |q−2

(
− q6

q − 1
c−3 + c−2q

4 − c−1(q − 1)q2
)

+O
(
|P |

1
2 (log |P |)3

)
.

(3.4)

We know that c−i, i = 1, 2, 3, are actually constants and with simple
arithmetic calculation we can see that Theorem 3.3 agrees with equation
(3.4) when we have the following relation

c−1 =
q2 + q + 1

(1− q)q2
− q2

1− q
c−2 −

q4

(1− q)2
c−3.

3.5. The Statistical Distribution of Class Number. kljfhkfj

Let F be the distribution function of the random variable L(1,X), which
is defined by

(3.5) F (x) := P ({L(1,X) 6 x}) for x ∈ R,

and let F̃ be the distribution function of the random variable lnL(1,X),
defined by

F̃ (x) := P ({lnL(1,X) 6 x}) for x ∈ R.
Its easy to see that F̃ (x) = F (ex) for x ∈ R. Moreover, the expected

value E
[
L(1, .)it

]
, t ∈ R, is the characteristic function of F̃ (x).

In this section we give the proof of the function field analogue of Theorem
1.2. Our main result is:

Theorem 3.4. Let x ∈ R, for n odd we have,

(3.6) lim
n→∞

1

#Pn

∣∣∣{P ∈ Pn | hP q−
1
2 |P |

1
2 ex
}∣∣∣ = F (ex) = F̃ (x),

and for n even we have
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(3.7) lim
n→∞

1

#Pn

∣∣∣{P ∈ Pn | hPRP 6 (q − 1)−1 |P |
1
2 ex
}∣∣∣ = F (ex) = F̃ (x).

Moreover the characteristic function of F has the form

(3.8) 1 +

∞∑
k=1

ak
k!

(it)k , t ∈ R,

where the numbers ak are as in equation (3.1). The characteristic function

E
[
L(1, .)it

]
of F̃ has the form

(3.9)
∏

P monic
irreducible

(
1

2

(
1− 1

|P |

)−it
+

1

2

(
1 +

1

|P |

)−it)
; t ∈ R,

and satisfies

E
[
L(1, .)it

]
� exp

(
−c |t|

ln (2 + |t|)

)
for all t ∈ R

with absolute constant c > 0. The distribution function F̃ has a density f .

Further, F̃ and f are infinitely differentiable.

We first prove the following auxiliary lemma.

Lemma 3.6. We have the following estimate,∑
f monic

dk(f
2)

|f |2
� Ck,q,

where Ck,q is an absolute constant that depend on k and q.

Proof. Recall that dk(P
α) = (k+ r−1)!/(k−1)!r!, then using the the series

expansion and comparinging the coeffetion we can show that the following
inequality holds for k and fix P .

1 +
dk(P

2)

|P |2
+
dk(P

4)

|P |4
+ · · · < 1 +

k2

|P |2
1

(1− |P |−1)k
.

Consider the monic irreducible polynomial P with deg(P ) 6 k. With some
calculations and using the Prime Polynomial Theorem 2.1 and Mertens’
Lemma 2.8, we can bound the Euler product

∏
P prime
|P |6k

(
1 +

k2

|P |2
1

(1− |P |−1)k

)
< kc1π(log k)

 ∏
P prime
|P |6k

1

1− |P |−1


k

< ec1π(k) ln k+γk+k ln k,
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where c1 is a constant that depend on q. Now, consider the monic irreducible
polynomial P with deg(P ) > k, and with some calcultions and using the
Prime Polynomial Theorem 2.1, we have

∏
P prime
|P |>k

(
1 +

k2

|P |2
1

(1− |P |−1)k

)
<

∏
P prime
|P |>k

(
1 +

c2k
2

1− |P |−2

)

< exp

 ∑
P prime
degP>k

ln

(
1 +

ck2

|P |2

)

< exp

c2k2 ∑
P prime
degP>k

1

|P |2


< exp

(
c2k

2q−kΦ
(
q−1, 1, k

))
where Φ (z, s, a) =

∑
n z

n/(a+n)s, a 6= 0,−1, · · · is the Lerch’s transcendent
and c2 is a constant that depend on q.
Finally, using the calculation above and the Euler product we have

∑
f monic

dk(f
2)

|f |2
=

∏
P prime

(
1 +

dk(P
2)

|P |2
+
dk(P

4)

|P |4
+ · · ·

)
< Ck,q,

where Ck,q is an absolute constant that depend on k and q. �

We are now in a position to present the proof of the main result in this
section.

Proof of Theorem 3.4. Now, Theorem 3.1 and simple arithmetic manipula-
tion yield that, for k ∈ N,

(3.10)
∑
P∈Pn

L (1, χP )k ∼ ak|P |
logq |P |

as n→∞,

since

(3.11) ak � Ck,q,

(see Lemma 3.6 above), where we can see that the power series 1+
∑∞

k=1 akw
k/k!

has infinite radius of convergence. From Lemma 2.10, Theorem 30.1 in
[5] and Lemma 5.7 in [4], we can deduce that F defined in (3.5) is the
unique distribution function with the moments a1, a2, .... Therefore, since
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#Pn ∼ |P |/ log |P | as n → ∞, it follows from the method of moments,
Theorem 30.2 in [5] and (3.10) that

(3.12) lim
n→∞

1

#Pn
|{P ∈ Pn | L(1, χP ) 6 y}| = F (y)

for each y ∈ R at which F is continuous. Moreover, we obtain equation (3.8)
from (3.11) and [[5],(26.7)] or [[4],Lemma 5.7].

Now, for any fixed t ∈ R, by the independence of X’s (see (26.12) in [5])
we have

∏
P irreducible

degP6n

E
[
LP (1,X)it

]
= E

 ∏
P irreducible

degP6n

LP (1,X)it

 .
Note that ∏

degP6n

E
[
LP (1,X)it

]
→ E

[
L(1,X)it

]
,

as n→∞ for almost all P , and that∏
degP6n

E
[
LP (1,X)it

]

= cos

t log
∏

degP6n

LP (1,X)

+ i sin

t log
∏

degP6n

LP (1,X)

 ,

where cos(·) and sin(·) above are bounded uniformly for all P and n, there-
fore we deduce from Lebesgue’s dominant convergent Theorem that

(3.13)
∏

P irreducible
degP6n

E
[
LP (1,X)it

]
→ E

[
L(1,X)it

]
as n → ∞ for any fixed t ∈ R. Recall the Taylor’s series (1 + x)k =∑∞

m=0

(
α
m

)
xm, since we have for |t|/|P | small

E
[
LP (1,X)it

]
=

1

2

(
1− 1

|P |

)−it
+

1

2

(
1 +

1

|P |

)−it
= 1− t2 − it

2|P |2
+O

(
|t|3 + |t|2 + |t|

|P |3

)(3.14)

where the infinite product
∏
P E

[
LP (1,X)it

]
converges absolutely and uni-

formly for t in any compact subset of R. Hence, making use of (3.13), we
obtain (3.9) and that E

[
L(1,X)it

]
is a continuous function on R.
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Let q odd and cq > q > 1, be a positive constant depending on q. If
|t| > c1 and |P | > cq|t|, then we obtain from (3.14) that

∣∣E [LP (1,X)it
]∣∣ 6 1− t2

2|P |2
.

Since
∣∣E [LP (1,X)it

]∣∣ 6 1, we have that for any real numbers q 6 y1 < y2

E
[
L(1,X)it

]
6

∏
y16|P |6y2

E
[
LP (1,X)it

]
.

By choosing y1 = cq|t| and y2 = 2cq|t| we have for any t ∈ R with |t| large

∣∣E [L(1,X)it
]∣∣ 6 ∏

logq cq |t|6deg(P )6logq 2cq |t|

E
[
LP (1,X)it

]

6 exp

−t2 logq 2cq |t|∑
r=log cq |t|

1

rqr


6 exp

(
−c̃q

|t|
log |t|

)
.

Then, by the continuity of E
[
L (1,X)it

]
we have

(3.15) E
[
L (1,X)it

]
� exp

(
−c̃q

|t|
log (2 + |t|)

)
for all t ∈ R, which gives

∫∞
−∞

∣∣∣E [L (1,X)it
]∣∣∣ < 0. Therefore, using the

inversion formula (Theorem 26.2 in [5]) we have that F̃ has a density f .
Moreover, using similar reasoning as presented in [5, pp. 344–347] and by
making use of equation (3.15) we can concluded that the density f and the

function F̃ is differentiable on R. In particular, the function F is continuous
on (0,∞) . Hence, from the above with (3.12) and Dirichlet’s class number
formula we have equations (3.6) and (3.7).

�

4. Complex Moments of L(1, χP )

In this part we investigate the complex moments of L(1, χP ), where χP
varies over quadratic characters associated to irreducible polynomials P of
degree n over Fq, in a large uniform range. We express the complex moments
of L(1, χP ) as follows.

Theorem 4.1. Let n be positive integer, and let z ∈ C such that |z| 6
log |P |

260 log2 |P | ln log2 |P |
. Then
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1

#Pn

∑
P∈Pn

L(1, χP )z =
∑

f monic

dz(f
2)

|f |2

(
1 +O

(
1

(log |P |)11

))
.

An applications of the above Theorem and Artin’s class number formula
over function fields (3.3) we obtain some corollaries for the average size of
the class number hP over Pn when we specialize n to be n = 2g + 1 and
n = 2g + 2 and letting the genus g →∞.

Corollary 4.1. Let z ∈ C such that |z| 6 g
130 log(g) ln log(g) . Then

1

#P2g+1

∑
P∈P2g+1

hzP = qgz
∑

f monic

dz(f
2)

|f |2

(
1 +O

(
1

g11

))
.

Corollary 4.2. Let z ∈ C such that |z| 6 g
130 log(g) ln log(g) . Then

1

#P2g+1

∑
P∈P2g+2

(hPRP )z =

(
qg+1

q − 1

)z ∑
f monic

dz(f
2)

|f |2

(
1 +O

(
1

g11

))
.

Let P ∈ Pn, z ∈ C such that |z| � log |P |/ (log2 |P | ln log2 |P |) . Let
Q represent an irreducible polynomial and dz(f), the generalized divisor
function, defined in equation (1.5), and extend it to all monic polynomials
multiplicatively. We will prove the following lemmas which allow us to
connect the complex moments of the random model to the complex moments
of L(1, χP ).

Lemma 4.3. Let P ∈ Pn, N > 4 be fixed constant and z ∈ C such that

|z| 6 log |P |
10N log2 |P | ln log2 |P |

and M = N log2 |P |. Then

L(1, χP )z =

(
1 +O

(
1

(log |P |)B

)) ∑
f monic
|f |≤|Q|1/3

Q|f⇒deg(Q)6M

χP (f)dz(f)

|f |
,

where B = N/2− 2.

Before giving the proof of the above, we state a few results.

Lemma 4.4. Let F be a monic polynomial, and χ be a non-trivial character
on (A/AF )× . For a positive integer M and any complex number s with
R(s) = 1 we have

lnL(s, χ) = −
∑

deg(P )6M

ln

(
1− χ(P )

|P |s

)
+O

(
q(

1
2
−s)M

M
deg(F )

)
.
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Proof. Recall that L(s, χ) =
∏
P, Prime (1− χ(P )/|P |s)−1 , then

lnL(s, χ) =−
∑

P monic
irreducible
deg(P )6M

ln

(
1− χ(P )

|P |s

)
−

∑
P monic
irreducible
deg(P )>M

ln

(
1− χ(P )

|P |s

)
.

We can see that the first term of our result already appears and we only
need to bound the second sum. From the fact that log(1 + x) = x + O(1)
and |χ(P )| 6 1 and Proposition 2.5 we have that

∑
P monic
irreducible
deg(P )>M

ln

(
1− χ(P )

|P |s

)
=

∞∑
k=M

∑
P monic
irreducible
deg(P )=k

χ(P )

|P |s
+O


∑

P monic
irreducible
deg(P )>M

1

|P |s


=

∞∑
k=M

q−sk
∑

P monic
irreducible
deg(P )=k

χ(P ) +O
(
q(1−s)M

)

� deg(F )
∞∑

k=M

q−sk
q
k
2

k

� deg(F )
q(

1
2
−s)M

M
,

with F a non-perfect square. �

The next result is given below.

Lemma 4.5. Let P ∈ Pn, N > 4 be fixed constant and z ∈ C such that

|z| 6 log |P |
10N log2 |P | ln log2 |P |

and M = N log2 |P |. Then for c0 some positive

constant we have

∑
f monic

Q|f⇒deg(Q)6M

χP (f)

|f |
dz(f) =

∑
f monic
|f |≤|P |1/3

Q|f⇒deg(Q)6M

χP (f)

|f |
dz(f) +O

(
|P |−

1
c0 log2 |P |

)
.

Proof. Let z ∈ C and k ∈ Z such that |z| < k. Consider the sum
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∣∣∣∣∣∣∣∣∣∣∣
∑

f monic
|f |>|P |1/3

Q|f⇒deg(Q)6M

χP (f)

|f |
dz(f)

∣∣∣∣∣∣∣∣∣∣∣
�

∑
f monic
|f |>|P |1/3

Q|f⇒deg(Q)6M

∣∣∣∣χP (f)

|f |
dz(f)

∣∣∣∣

�
∑

f monic
|f |>|P |1/3

Q|f⇒deg(Q)6M

dk(f)

|f |
,

since |χP (f)| 6 1 and dz(f) < dk(f) for |z| < k. Let 0 < α ≤ 1
2 then using

Rankin’s trick we have

∣∣∣∣∣∣∣∣∣∣∣
∑

f monic
|f |>|P |1/3

Q|f⇒deg(Q)6M

χP (f)

|f |
dz(f)

∣∣∣∣∣∣∣∣∣∣∣
� |P |−

α
3

∏
Q monic
irreducible
deg(Q)6M

1−
∞∑
j=1

dk(Q
j)

|Q|(1−α)j



� |P |−
α
3 exp


∑

Q monic
irreducible
deg(Q)6M

∞∑
j=1

dk(Q
j)

|Q|(1−α)j



� |P |−
1

3M exp

O
k

∑
Q monic
irreducible
deg(Q)6M

1

|Q|




for α = 1/M and dz(Q
r) = Γ(z + r)/Γ(z)r!. Choose M = N log2 |P | and

using Merten’s Theorem, Lemma 2.8, we have

∣∣∣∣∣∣∣∣∣∣∣
∑

f monic
|f |>|P |1/3

Q|f⇒deg(Q)6M

χP (f)

|f |
dz(f)

∣∣∣∣∣∣∣∣∣∣∣
� |P |−

1
3M exp (O (k lnM))

� |P |−
1

c0 log2 |P | .

�
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Proof of Lemma 4.3. Using Lemma 4.4 we can write

L(1, χP )z = exp

−z ∑
deg(Q)6M

ln

(
1− χP (Q)

|Q|

)
+O

(
|z|q

−M
2

M
deg(P )

)
= exp

−z ∑
deg(Q)6M

ln

(
1− χP (Q)

|Q|

) exp

(
O

(
|z|q

−M
2

M
deg(P )

))
.

Using the fact that M = N log2 |P | we have q−
M
2 = (log |P |)−

N
2 , and

deg(P ) = log |P |, |z| 6 log |P |
10N log2 |P | ln log2 |P |

, so we can write the expression

inside of the big Oh as

(log |P |)2

(log |P |)N/2
1

10a (log2 |P |)
2 ln log2 |P |

� 1

(log |P |)B
,

since N > 4. Hence,

L(1, χP )z =
∏

Q irreducible
deg(Q)6M

( ∞∑
i=0

χP (Qi)

|Q|i
dz(Q

i)

)(
1 +O

(
1

(log |P |)B

))

=
∑

f monic
Q|f⇒deg(Q)6M

(
χP (f)

|f |
dz(f)

)(
1 +O

(
1

(log |P |)B

))
.

Applying Lemma 4.5 the lemma follows. �

Averaging L(1, χP ) over all P ∈ Pn making the use of Lemma 4.3 give us

∑
P∈Pn

L(1, χP )z =

(
1 +O

(
1

(log |P |)B

)) ∑
f monic
|f |6|P |1/3

Q|f⇒deg(Q)6M

dz(f)

|f |
∑
P∈Pn

χP (f)

=

(
1 +O

(
1

(log |P |)B

))
(S1 + S2) ,

where

(4.1) S1 :=
∑

f monic and square
|f |6|P |1/3

Q|f⇒deg(Q)6M

dz(f)

|f |
∑
P∈Pn

χP (f),

and
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(4.2) S2 :=
∑

f monic and not square
|f |6|P |1/3

Q|f⇒deg(Q)6M

dz(f)

|f |
∑
P∈Pn

χP (f).

4.1. Evaluating S2: Contribution of the Non-Square Terms. djh

Lemma 4.6. Let P ∈ Pn, N > 4 be a constant, z ∈ C be such that |z| 6
log |P |

10N log2 |P | ln log2 |P |
, k ∈ Z with |z| < k and M = N log2 |P |. Then

S2 � |P |
1
2 (log |P |)k ,

with S2 defined as in (4.2).

Proof. By Proposition 2.5 we have

S2 �
q
n
2

n

∑
f monic, f 6=�
|f |6|P |1/3

Q|f⇒deg(Q)6M

dz(f)

|f |
deg(f)

� q
n
2

n

[n/3]∑
j=0

q−jj
∑

f monic,
deg(f)=j

Q|f⇒deg(Q)6M

dk(f)

� |P |
1
2 (log |P |)k .

�

4.2. Evaluating S1: Contribution of the Square Terms. djh

Using the Prime Polynomial Theorem 2.1 we have

S1 =

(
1 +O

(
1

(log |P |)B

))

dkmdh×


∑

f monic and square
|f |6|P |1/3

Q|f⇒deg(Q)6M

dz(f)

|f |

(
|P |

log |P |
+O

(
|P |

1
2

log |P |

)) .

Our goal in this section is to find an estimate of the above term, which is
where the difficulty lies. So here enters the random model L(1,X) to help us
to obtain the desired formula. Let {X(P ) | P ∈ A, prime} be the sequence
defined in section 2.1. In this section we prove the following Lemma.
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Lemma 4.7. Let P ∈ Pn. Let z ∈ C be such that |z| 6 log |P |
260 log2 |P | ln log2 |P |

.

Then

1

#Pn

∑
P∈Pn

L(1, χP )z = E(L(1,X)z)

(
1 +O

(
1

(log |P |)11

))
.

Recall Lemma 2.10. Using the same reasoning as in the previous section
we have for any z ∈ C

E [L(1,X)z] =
∑

f monic

dz(f
2)

|f |2
,

since dz(f) and |f | can be seen as scalars and L(1,X) is defined in (2.9). We
have from the definition of random Euler product

E [L(1,X)z] =
∏

P monic
irreducible

E [LP (1,X)z] ,

where

E [LP (1,X)z] : = E

[(
1− X(P )

|P |

)−z]

=
1

2

((
1− 1

|P |

)−z
+

(
1 +

1

|P |

)−z)
.

Writing the Taylor expansion for deg(P ) > M we have that

(
1− 1

|P |

)−z
= 1 +

z

|P |
+O

(
|z|
|P |2

)
,

and

(
1 +

1

|P |

)−z
= 1− z

|P |
+O

(
|z|
|P |2

)
.

Thus, for monic irreducible polynomial Q with degQ > M we have

E [LP (1,X)z] = 1 +O

(
|z|
|Q|2

)
,

and so
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∏
P irreducible
deg(P )>M

E [LP (1,X)z]� exp

|z| ∑
P irreducible
deg(P )>M

1

|P |2


� exp

(
|z|
M2

)
= 1 +O

(
1

(log |Q|)B

)
.

The last equality follows from the relative size of |z| and M and for large
enough N . Finally, from Lemma 4.5 we have that

E [L(1,X)z] =
∑

f monic
P |f⇒deg(P )6M

dz(f
2)

|f |2

(
1 +O

(
1

(log |Q|)B

))

=
∑

f monic
|f |<|Q|1/3

P |f⇒deg(P )6M

dz(f
2)

|f |2

(
1 +O

(
1

(log |Q|)B

))
.

From the above and Lemma 4.3 and with the same choice made by Lumley
[15], i.e., N = 26 and B = 11 we have proved Lemma 4.7. Using the fact
that |P | = qn we obtain Theorem 4.1. Corollaries 4.1 and 4.2 follows from
the above discussion and equation (3.3).
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