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J. C. ANDRADE, H. JUNG, AND A. SHAMESALDEEN

ABSTRACT. In this paper, we extend to the function field setting the
heuristics formerly developed by Conrey, Farmer, Keating, Rubinstein
and Snaith, for the integral moments of L-functions. We also adapt to
the function field setting the heuristics first developed by Conrey, Farmer
and Zirnbauer to the study of mean values of ratios of L-functions.
Specifically, the focus of this paper is on the family of quadratic Dirichlet
L-functions L(s, xp) where the character x is defined by the Legendre
symbol for polynomials in F,[T] with F, a finite field of odd cardinality
and the averages are taken over all monic and irreducible polynomials P
of a given odd degree. As an application, we also compute the formula
for the one-level density for the zeros of these L-functions.

1. INTRODUCTION

In this paper we study the family of quadratic Dirichlet L-functions
L(s,xp) where the character x is defined by the Legendre symbol (?) and
P ranges over monic irreducible polynomials of degree 2¢g + 1 over F,[T7.
We present the conjectures for the moments and ratios of this family of L-
functions, Conjectures [2.2] and [2.3] respectively, by making use of the recipe
developed by Conrey et al. in [7] and adapting it for this family of L-
functions.

The study of moments of families of L-functions is a central topic in an-
alytic number theory. Many mathematicians have studied this subject and
considerable progress was made in the last decades in the direction of get-
ting a better understanding of the asymptotic behaviour of such moments.
For example, in the case of the Riemann zeta function, the problem is to
understand the asymptotic behaviour of

T
(1.1) My(T) :/0 ¢ (& +it) [ at,
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as T' — oo.
Hardy and Littlewood [22] proved in 1918 an asymptotic formula for the
second moment, i.e.,

(1.2) Mi(T) ~TlogT.
In 1926 Ingham [24] showed that when k = 2,

(1.3) Ma(T) ~ T;T (log T)"

For values of & > 3 it still remains an unsolved problem to obtain asymp-
totic formulas for My(T'). However, it is conjectured that for every k > 0
there is a constant ¢; such that

(1.4) My(T) ~ e T (log T)*" .

Conrey and Ghosh [13] made a conjecture for the sixth moment of the
Riemann zeta-function and later on Conrey and Gonek [14] put forward a
conjecture for the eighth moment but their approach fails to provide con-
jectures for higher moments. Keating and Snaith [28], using random matrix
theory, conjectured the precise value of the constant ¢, for all values of k& > 0.
In fact, their conjecture produce a value for ¢ for R(k) > —1/2. More re-
cently Conrey and Keating, in a series of papers [9] [10, 11, 12] returned to
the problem of obtaining conjectures for the higher moments of the Riemann
zeta-function using only number-theoretic heuristics. Their new approach
produced conjectures for moments of the Riemann zeta function, as well as
explained the role of the non-diagonal contribution to the main terms in the
asymptotic formulas.

A different example is the family of quadratic Dirichlet L-functions L(s, x4),
where xg4 is the real primitive Dirichlet character modulo d defined by the
Kronecker symbol y4(n) = (%) The problem here is to establish an asymp-
totic formula for

d<Xx
as X — oo, where the sum is taken over all positive discriminants d and
k is a positive integer. In this case, as it is for the Riemann zeta-function,
just the first few moments were computed. In 1981, Jutila [25] established
the asymptotic formula for the first and second moments. The asymptotic
formulas he obtained are

(1.6) > L(3,xa) ~ 1 Xlog X,
d<X
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and

(1.7) ST L(3xa)” ~ C2X (log X)?,
d<X

where the constants C; and Cs can be expressed in terms of Euler prod-
ucts and factors containing the Riemann zeta function. Soundararajan [32]
computed the asymptotic formula for the third moment. He proved that

(1.8) Z L (%7X8d)3 ~ 03X (log X)°,
d<X

where d is an odd, square-free and positive number, ygq is a real, even prim-
itive Dirichlet character with conductor 8d, and Cj3 is a constant.

In another paper, Soundararajan and Young [33] claimed that they are
able to establish an asymptotic formula for the fourth power moment for this
family of L-functions under the Generalized Riemann Hypothesis (GRH).
The claim is that

(1.9) STL(Axa) ~ CaX (log X)1,
d<Xx

where Cy is constant. Recently, Shen [31] proved the asymptotic formula for
the fourth moment of quadratic Dirichlet L-functions under the Generalized
Riemann Hypothesis (GRH). He consider the characters of the form xg; and
has established that

* 1 4 aq 10

(1.10) > L(boxsa)' ~ g5 gr e - X0 X)),
d<X
(d,2)=1

where a4 is as defined in [27].

In 2005 Conrey, Farmer, Keating, Rubinstein and Snaith [7] presented a
new heuristic for all of the main terms in the integral moments of several
families of primitive L-functions. Their conjectures agree with previously
known results. For the Riemann zeta function, they gave a precise conjecture
for M(T) including an asymptotic expansion for the lower order terms using
shifted moments. For the family of quadratic Dirichlet L-functions they
conjectured that

(L.11) > L(Gxa)* =) Qrllogd])(1 + (1)),
d d

where Q) is polynomial of degree k(k + 1)/2 with k € N.
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It is important to observe that Diaconu, Goldfeld and Hoffstein [16] have
also conjectured moments of families of L-functions using different tech-
niques. Their method is based on multiple Dirichlet series. Recently, Di-
aconu and Whitehead [I7] established a smoothed asymptotic formula for
the third moment of quadratic Dirichlet L-functions at the central value. In
addition to the main term, which is known, they prove the existence of a
secondary term of size #3/%. The error term in their asymptotic formula is
on the order of O(2%/3+9) for every § > 0.

In 2008 Conrey, Farmer and Zirnbauer [8] presented a generalisation of
the heuristic method for moments presented in [7] to the case of ratios of
products of L-functions. These conjectures are very powerful since they
encode information about statistics of zeros of such L-functions. The ratios
conjectures as put forward by Conrey, Farmer and Zirnbauer can be used
to prove very precise results about the distribution of zeros of families of
L-functions such as pair-correlation and n-level density (for more details
see [15]). Their ratios conjecture for the family of quadratic Dirichlet L-
functions are read as follow.

Conjecture 1.1 (Conrey, Farmer, Zirnbauer). Let D = {L(s,xq) : d >
0} to be the symplectic family of L-functions associated with the quadratic
character xq. For positive real parts of ay, and 7y, we have

(1.12)
Z Hszl L(% + oy Xd)
0<d<X ng:1 L(% + Ym> Xd)

d 3k (ko —a)
s

0<d<X ec{—1,1}K

K
x [ o+ 3+ 25E%) Y (101, exaksy) Ap (104, -+ exar;y) + o(X),
k=1

where

(113) g+<8> = ( ) )

(1 14) Y(a ’y) = HjSkSK C (1 + aj + ak) HmSTSQ C (1 + Tm + ’Yr) .

T it € (14 ak + 7m)

and



THE INTEGRAL MOMENTS AND RATIOS CONJECTURES 5

(1.15)

[Tj<k<r (1 - W) | (1 - Iﬁ)
Ap(e;7) =[] pra— .
P JJ Py | (1 - m)

X 1+ (1 + ;) - Z Hg:l a (PCm)

2y ok (GHar)+ X, om(5+7m)
0<> " ak+>,, Cm i even PTF 72 mom

In 1979 Goldfeld and Viola [21] introduced a variant of the problem about
moments of quadratic Dirichlet L-functions. They conjectured an asymp-
totic formula for

(1.16) S L)

p<X
p=3 (mod4)

where the sum is taken over prime numbers and x,(n) = (%) is the usual

Legendre symbol. In this direction, Jutila [25] studied the first moment of
this family of L-functions and proved that

1
(1.17) > (logp) L (%, xp) ~ ;X log X.
p<X
p=3 (mod4)
Recently, assuming the Generalized Riemann Hypothesis (GRH), Baluyot
and Pratt [5] obtained the leading order term for the second moment. They
proved that

S (ogp)L(dx)" =c

p<X
p=1 (mod8)

(logX)3 +0 (X (log X)11/4> ,

ke

where c is a positive constant.

We should notice that the second moment for this family of L-functions
seem to be the limit of the current technology. This is in part due to the fact
that for this family we are dealing with character sums over prime numbers
and these sums are more complicated than those over square-free numbers.
For example, in the case for square-free numbers, it was possible to obtain
the third moment by making use of the Poisson summation formula, but the
same does not seem to apply for the family over prime numbers since we
cannot directly apply Poisson to the sums over primes.
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1.1. The Function Field Setting. Let Hy,11 4 be the hyperelliptic ensem-
ble of monic, square-free polynomials of degree 2g + 1. When the cardinality
of the field F, is ¢ = 1 (mod 4), Andrade and Keating [2] computed the first
moment of the family of L-functions associated to the quadratic character
XD, with D € Hay11,4. They proved that

(1.18) Z L (3,xp) ~|D|P (log, |DI),
DeHagyi,q

where P; is a linear polynomial. For the second, third and fourth moments
of this family, Florea [18] [19] proved that

(1.19) S L(4.x0)" ~IDIP: (log, D),
DeHtagri,q

where Py, is a polynomial of degree 3, 6 and 10 respectively, whose coeflicients
can be computed explicitly, except for Py where only the first few coefficients
were obtained. It is worth noticing that Florea in [20] improved the error
term for the first moment and was able to obtain a strenuous lower order
term that was never predicted by random matrix theory or other heuristics.

In another paper, Andrade and Keating [4] adapted the recipe of [7] and of
[8] to the function field setting and conjectured asymptotic formulas for the
integral moments and ratios of the family of quadratic Dirichlet L-functions
in function fields. Their main conjectures are presented below.

Conjecture 1.2 (Andrade and Keating - Integral Moments Conjecture).
Suppose that q odd is the fized cardinality of the finite field F, and let
Xp(s) = |D|Y?75X(s) and

X(S) _ q—1/2+s'
That is Xp(s) is the factor in the functional equation
(1.20) L(s,xp) = Xp(s)L(1 — s,xD).

Summing over fundamental discriminants D € Hog1 4 we have

(1.21) S L) = Y Qullog, DN+ o(1)

DeHag+1,q DeHtagi1,q

where Qy is polynomial of degree k(k + 1)/2 given by the k-fold residue

(1.22)

_(—1)’“(’“’1)/2 2k 1 Gzt 2i) A2, 22)?
Qx(z) = k! (2mi)F j{j{ 15, 221

=11

z 5k )
X qg Zi:lzl le...Zk_’
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A(z1,--+ ,2) the Vandermonde determinant given by
(1.23) Az, o) =[1<i<i<k(z - 2),
(1.24)
k 1
Gz, yan) = A(gszn ) [[AG+2072 [T G +z+2),
i=1 1<i<j<k

and Ay is the Euler product, absolutely convergent for |R(z;)| < %, defined
by

(1.25)

1
1. _
Agiam = I 11 (“uawzﬁzj)

P monic 1<i<j<k
irreducible

—1 k —1
1 1 1 1
< s (TI{1- + 1+ —— +
2\ ( |P|%+Zf> P ( Pr%“i) 1P|

Conjecture 1.3 (Andrade and Keating - Ratios Conjecture). Let oy and
Ym complex numbers with positive and small real parts. Let ® = {L(s,xp) :
D € Hagi1,4} to be the family of L-functions associated with the quadratic
character xp. Then,

(1.26)
Z Hf:l L (% + O‘kaXD)
DeHagt1,q Hg:l L (% + Yms XD)

K
= Z Z |D’*%E§:1(€kak*ak) H X (% 4 ak*;kak)
k=1

DEMagi1,q ce{—1,1}k

x Yp (e101,- -+ ,exak;y) Ap (€101, -+ ,exax;y) +o(D),

with
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(1.27)
A (a ) _ H H]SkSK (1 - Wﬁ) HmSTSQ (1 — W)
o(a;7) = | R
P monic szl Hm:1 \P|1+%+“/m
irreducible
-1
x [ 1+ (1 + 1) S o, p(Pom)
1 1
‘P‘ 0<> ) ak+>_,, cm is even ‘P’Zk k(o) 2 em (5 +7m)

and

(128)  Yo(asn) = [Ticher Ca(l+aj+an) [ncregCa (T4 vm + )
T T Ca (1 + e+ i)

where A(s) is the zeta function associated to the polynomial ring A = Fy[T]

and X(s) is a function that depends on q.

One can note that (1.21)) and ((1.26) are the function field analogues of
the formulas ((1.11)) and (1.12)) respectively.

The main aim of this paper is to formulate a conjectural asymptotic for-
mula for

(1.29) S L),

PePagii,q

where Pog11 4 is the set of all monic, irreducible polynomials of odd degree
2g + 1 with coefficients in Fy, as |P| — oo.

Andrade and Keating [3] established asymptotic formulas for the first and
second moments of ((1.29), namely

1
(1.30) S° (o, IPI) L (5,xp) ~ 5P| (log | P + 1),
PeP2gt1,q
1.31 L(tyvp):~ L1 1Pl (log |P])?
(1.31) Z (@XP) Nﬂ?@ﬂ |<qu| ‘) .
PeP2rgr1,4

Recently, Bui and Florea [6] improved Andrade and Keating’s result for the
second moment and proved that

(1.32)
1 3 3 1
—_— E L (%,XP)2 = BCi(2) + ¢* (2 + ) +O: (g3/2+5)

’P2g+1,q PeP2gii1,4
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In this paper, we adapt to the function field case the recipe for the conjec-
tures of the moments and ratios of L-functions for the family of quadratic
Dirichlet L-functions associated with xp over a fixed finite field F,. In
Section [2| we present some basic facts on L-functions over function fields
followed by the statement of our main results. In section [3| we present the
details of the recipe of [7] when it is adapted for the function field setting. In
Section [4, we use the integral moments conjecture over function fields when
k = 1,2, and compare with the main theorems of [4]. Then we conjecture
the precise value for the third moment, i.e., when £ = 3 in this setting. In
Section |5, we present the recipe of [§] for the same family of L-functions
over function fields. In Section [6] we use the ratios conjecture for function
fields and compute the one-level density of the zeros of this same family of
L-functions.

2. STATEMENT OF THE MAIN RESULTS

In this section, we gather some basic facts about L-functions over func-
tion fields. Many of the results and notation here can also be found in [29].

Let IF, be a finite field of odd cardinality ¢ = p®, with p a prime. Denote
the polynomial ring over F, by A = F,[T], and the rational function field
by k = Fy(T). For a polynomial f in F,[T] we define the norm of f by
|f] := q@°&8). For %(s) > 1, the zeta function attached to A is defined by

(2'1) _ H (1 _ ‘P’_S)_l ‘

. P monic
irreducible

Since there are ¢" monic polynomials of degree n, we can easily prove that

(22) A = T

which provides an analytic continuation of the zeta-function to the whole
complex plane, with simple pole at s = 1, which leads to the analogue of
the Prime Number Theorem for polynomials in A = [Fy[T7].

Theorem 2.1. (Prime Polynomial Theorem) Let w4(n) denote the number
of monic irreducible polynomials of degree n in A. Then

(2.3) ma(n) = % Lo (q”/2> .

n

Now, Let P be a monic irreducible polynomial, define the quadratic char-
acter (%) by
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1 if f is a square (mod P), Pt f
(2.4) <f) =4 —1 if f is not a square (mod P),P 1 f
0 iP|f.

The quadratic reciprocity law states that for A, B non-zeros and relatively
prime monic polynomials, we have

(2.5) <g> = <i) (_1)%0168:(-4)(1%(3)'

We denote by xp the quadratic character defined in terms of the quadratic
residue symbol for A

(2. xp(f) = (P> |
where f € A.

In this paper, the focus will be in the family of quadratic Dirichlet L-
functions associated with polynomials P € Pyg11,4, where

(2.7) Pag+1,4 = {P € A, monic, irreducible and deg(P) = 2g + 1}.

The quadratic Dirichlet L-function attached to the character y p is defined
to be

xp(f)
| f]®

L('S»XP):
feA
(2.8) f monic
= I G-—xePP)™",  %(s)>1,

. P monic
irreducible

With the change of variables u = ¢—*, L(s, xp) is a polynomial of degree 2¢
given by

29
29) Lisxr) = £nxn) =32 3 el
deg(f)=n

(see Propositions 14.6 and 17.7 in [29]).
We are now in a position to state the main conjectures of this paper.
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Conjecture 2.2. Suppose that ¢ = 1(mod 4) is the fixed cardinality of the
finite field B, and let Xp(s) = |P|*/?75X(s) where

X(S) _ q71/2+s'
That is Xp(s) is the factor in the functional equation
(2.10) L(s,xp) = Xp(5)L(1 — 5, xp).

Summing over primes P € Pagi14 we have

(2.11) S LG ) = Y Qullog, [P+ o(1))

PePagii1,4 PePrgi1,q

where Q. is polynomial of degree k(k + 1)/2 given by the k-fold residue

(2.12)
(—1)’“(’“*1)/2 2k 1 G(z1, -, 2k) A2, - - ,zﬁ)2
Qr(x) = Ne ko 2k—1
k! (271) |
X q% Z:i'c:1 Zi dzl e Zk}’
where A (z1,- -, zx) is defined as in ,
(2.13)
k 1
G(Zla"' 7216):14]6(%;21"" 7Z]€)HX(%+Zi)_§ H CA(1+Zi+Zj)’
i=1 1<i<j<k

and Ay, is the Euler product, absolutely convergent for |R(z;)| < &, defined
by

(2.14)

1
1. _
Argianm) = I 11 (“,muzim)

P monic 1<i<j<k
irreducible

1(F 1 ok 1 -
X = 1—- + 1+
2@( P|%+Zi> 13( |P|%+Zi> )

More generally, we have

(2.15)

> L5 +a1,xp) - L(3 + ok xp)
PePagi1,q

k
= Y JIAG + ) 2P E T Qylog, [Pl a) (1 + o(1))

PeP2g41,q =1
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where

(2.16)

(-1) k(k=1)/2 ok (21,0, 2i) (23, -+ 7213)2 H§:1 i
Qk(% Oé) k! Qﬂ-z % ?{ Hl 1 H] 1(z] Oéz')(Zj + Oéz‘)

X q% Ei:l Zi dzl . o Zk‘)
and the path of integration encloses the +a’s.

Note that, for the cases k = 1,2, our conjecture agrees with Andrade and
Keating’s results in (1.30) and (1.31)) and Bui and Florea’s result in ([1.32)).
See Sections [4.1] and [4.2] for further details.

The next conjecture is the translation for function fields of the ratios
conjecture for quadratic Dirichlet L-functions associated with the characters
XP-

Conjecture 2.3. Suppose that the real part of ag and ~iare positive and
that q odd is the fized cardinality of the finite field Fy. Let P = {L(s,xp) :
P € Pagi1,4} to be the family of L-functions associated with the quadratic
character xp. Then with the same notation as before we have

(2.17)
Z HszlL(% + o, xp)

Q 1
PePogii1,q Hm:l L (i + Tm XP)

= Z Z |P| §Zk 1(erag—ag) ﬁ ak skak)

P€P2g+1,q €€{—1,1}k

X Yy (era1,- - exar;y) Agp (e1aq, - - ,5KaK§'Y) +o(P),

1 1
H]SRSK (1 - |P‘1+O‘j+°‘k) HmST’SQ (1 - |P|1+"/m+’Yr>
N K Q 1
P monic Hk:l Hm:l (1 - |P|1+C¥k+"/m)

irreducible

HQ—1 p (Pm)
1 m=
AT 2 PPk k() P e (5 7m)

0<> "k a+>_,, cm is even

and

[j<rer Ca @+ o+ ar) [L<r<qCa (L4 vm + ’Yr)

. Y5
(219) - Yplasn) = T TI9 2 Ca (1 + ag + 7im)
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If we compare the above conjectures with the ones presented by Andrade
and Keating in the previous section, one can immediately see that although
they are similar in nature, there is an important difference between the for-
mulas and the final shape of the conjectures. More specifically, one of the
main differences is the arithmetic term that is produced in both conjectures.
These factors are not the same and this is due to the fact that in one setting
we are averaging over square-free polynomials and so an Euler product is
produced that needs to be carried out through the recipe and in the end
produce the term Ay in Andrade and Keating conjecture, while in the case
presented in this paper the average is taken over prime numbers and the fi-
nal formula produces a simpler arithmetic factor due to precise formula that
we have when using the prime polynomial theorem in F,[T’]. This difference
comes from the fourth step in the recipe when we replace each summand by
its expected value.

In the following sections, we present the details of how to arrive at these
conjectures.

3. INTEGRAL MOMENTS OF L-FUNCTIONS OVER PRIME POLYNOMIALS

In this section, we present the details of the recipe for conjecturing mo-
ments of the family of quadratic Dirichlet L-function L(s, yp) associated to
hyperelliptic curves of genus g over fixed finite field F; as ¢ — oco. As in
Andrade and Keating [4], we will adjust the recipe first presented in [7] to
the function field setting.

Let P € Pagy1,4. For a fixed k, we aim to obtain an asymptotic expression
for

(3.1) Z L(%J(P)k,

PePagi1,4

as g — o0o. In order to achieve this we consider the more general expression
obtained by introducing small shifts, say ai,--- , ax

(3.2) > L(3+oao1,xp)-L(3+arxp).
PePagi1,q

Introducing the shifts helps to reveal the hidden structures in the form
of symmetries. Moreover, the calculations are simplified by the removal of
higher-order poles. In the end, letting each «y, - - - , ax tend to 0 will provide
an asymptotic formula for .

3.1. Analogies between classical L-functions and L-functions over
function fields.



14 J. C. ANDRADE, H. JUNG, AND A. SHAMESALDEEN

The first step to obtaining a conjecture for the integral moments of L-
functions of any family is the use of the approximate functional equation.
Thus, the “approximate” functional equation for the L-function attached to
the character yp is given by

xp(n) xp(n)
(3.3) L(s,xp)= > e + () Y [
drégr?g)nécg deg(g)cgslzil

where P € Pagi14 and Xp(s) = ¢2729). Note that Xp(s) can also be
re-written as,

(3.4) Xp(s) = [P|27X(s),
where X (s) = q_%“ corresponds to the gamma factor that appears in the
classical quadratic L-functions.

The next result, quoted from [4], make the analogy between the function

field case and the number field case more apparent.

Lemma 3.1. We have that,

(3.5) Xp(s)2 = Xp(1— )72,
and
(3.6) Xp(s) Xp(l—s)=1.

Consider the following completed L-function

(3.7) Ze(s,xp) = Xp(s)"2L(s, xp).

We will apply the recipe to this completed L-function, since it simplifies the
calculations, and satisfies a more symmetric functional equation given by
the next lemma.

Lemma 3.2. Let Zp(s,xp) be the Z-function defined above, then we have
the following functional equation,

(38> Zﬁ(“})XP) = Zﬁ(l - S?XP)'
Proof. Direct from the definition of Z,(s, xp) and Lemma 3.1} O
Now, let

(3.9) Lp(s)= Y Z(s;an,--- o),

PeP2g+1,q
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be the k-shifted moment, with

k

(3.10) Z(s;an, - ap) = | [ Ze(s + i xp)-
i=1

Using the “approximate” functional equation (3.3]) and Lemma we have

(3.11)
1 xr(n) 1 xr(n)
Zc(s,xp) = Xp(s) 2 Z Inf* + (1 —s)2 Z In[i=s"
deg(m)<g deg(n)<g—1

3.2. Adapting the CFKRS recipe for the function field case.

We present the steps of the recipe which follows from [7] and [4] with the
necessary modifications for the family of L(s, xp).

(1) Write the product of k-shifted L-functions.

(312) Z(%;Oél, T aak) - Zﬁ(% +a17XP) e Zﬁ(% + ak7XP)-

(2) Replace each L-function with the two terms from its approximate
functional equation (3.3)) with s = 1/2 + «;.

(3.13)
k
_l n ...n
o= 3 ([ 4aand 3 X0
81::&1 =1 N1, Nk H’L:l |TLZ|2 B
deg(n;)<f(ei)

where f(1) =g, and f(—-1)=g¢g— 1.
(3) Replace each product of € ¢-factors by its expected value when aver-
aged over Pogi1q 4.

In our case ey-factors are equal to 1. Thus the product will not
appear and will not affect the result.

(4) Replace each summand by its expected value when averaged over
Pagt1,q:

We need first to average over all primes P € Pagy1 4. The next
lemma gives the orthogonality relation for these quadratic Dirichlet
characters over function fields.
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(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

J. C. ANDRADE, H. JUNG, AND A. SHAMESALDEEN

Lemma 3.3.

1 1 ifn=0
lim —— E n) =
deg(P)—00 #Pog 1,4 PEParig xe(n) {O otherwise.

Proof. Consider the case when n = [J, then we have

Y oxem)= D> xe@®)= D> 1,

PePagi1,q PeP2gi1,4 PePogi1,q
PHl
since we are summing over primes of degree 2g + 1 and P { [, and
deg(l) < 2g, which means that we are counting all primes of degree
2g + 1, thus

Z 1 =#Pagi1,4-

PeP2gi1,4
Pl

Hence if n is a square of a polynomial,
1

lim @———— xp(n) = 1.
deg(P)—o0 #732g+1,q P€g+1 .

It remains to consider the case when n # [, Rudnick [30] shows
that

> xpln)| < P12 deg(n),

e
Pehrn log, | P|

and from Polynomial Prime Theorem (2.1)) we have

1 —1
T Z xp(n) < |P| 2deg(n).
29+17q P€P2g+l,q

Hence if n is not a square of a polynomial we have that

1
lim xp(n) =0.
deg(P)—o0 #Pagt1,4 Pe%—u q "

O

Using Lemma [3.3| we can average the summand in (3.13]), that is
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1
DD zx‘)

deg(P)—00 #P2g 11

4 PEPagi,q L i—1|
- I
m monic M1, Hz 1 ‘n ‘2—5—51041
ny- nk m2
(5) Let each nq,--- ,ny to be monic polynomials, and call the total re-
sult M¢(s,aq,- -+, o) to produce the desired conjecture.
If we let

1
(3.22) Ry (3100, epay) = Z Z s e

. . 2
m monic M1, Nk Hz:l ‘nl‘
n; monic

ny--np=m?2

then the extended sum produced by the recipe is
(3.23)

k 1
son, ) = > [[xe (3 +eiu) ? Ri (3re100, -+ exan) .
67;::‘:11':1

M (

(6) The conclusion is

(3.24)

> Z(0n, )= Y. M(301,,0) (140(1)).

PePagt1,4 PePagt1,4

3.3. Putting the conjecture in a more useful form.

In this section we put the conjecture (3.24) in a more useful form, we
write Ry as an Euler product, then factor out the appropriate (4(s)-factors.
Let

1
(3.25) Pla) = Y e e

N1, Nk
n; monic
ni-NEp=c

then it is easy to see that t(m?) is multiplicative on m. We can write
Rk(57 aq, - ,O[k) as
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Ri(s;an, -+ op) = Z W»(m?)

m monic
(3.26) > .
-] 1+z¢<p2]>),
P monic 7j=1
irreducible
where
A 1
27y —
(3'27) ¢(P ) - Z ’n1‘5+a1 R ’nk‘5+0‘k ’
N1y Nk
n; monic
ny--np=P
Since we have ny---n, = P then for each i = 1,--- ,k, write n; as

= P%, for some e; > 0 and e1 + - -- + e; = 27, and (3.27) becomes

(3.28) 1/1(P2j) = Z H ’P’e (staq)

cep>0 =1
el—i— ter=27

and so, we have

(3.29) Ri(s;on, -+ o) = H <1 +Z Z H |P|el sta;) )

P monic =1 ey, ,ep>0 =1

irreducible €1+--~+ek:2j
One can see that when a; = 0 and s = 1/2, the poles only arise from the
terms with e; + --- 4+ e, = 2. Define Ry p(s;aq, -+, a;) to be as follow
(3.30)

Ry p(s;on, -« —1+Z Z H‘P’el (s+ai)

=1 ey, ,e,>0 =1
61+"'+6k*2‘j

=1+ Z H |p|el(s+az) + (lower order terms)

ey, ,ep>0 i=1
61+'~~+6k=2

1 —4s4-€
=1+ Z |Pstaita; +O<‘P‘ ’ )
1<i<j<k

for R(a;) small enough (see [7] for more details). And so, we have

Rk‘,P(S; A,y ,Oék-)

(331) _ H (1 + M) « (1 +0 (|P|—4s+6)) )
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Recall that,

Ca(2s) 1
(3.3 Gay - O (+pE)

P monic
irreducible

has a simple pole as s = 1/2. Therefore

(3.33) I1 (1 + O(\Py—4s+€))

. P monic
irreducible

is analytic in R(s) > 1/4, and [[p Ry p has a pole at s = 1/2 of order k(k+
1)/2 if a; =0 for all i = 1,--- , k. It remains to factor out the appropriate
zeta-factors. Since we have

(334) Rk(S;Oll, e ,Oék) = H Rk‘,P(S;al) e 7ak)a

. P monic
irreducible

then from (3.31) and (3.32) we can write

(335) Rk(S;Oél,"',ak) = H CA(2S+al+a])Al€(Saal7 7al€)7

1<i<j<k
where
(3.36)
A(s;a, -+, ag)
‘ 1
= I |Bertsian---.an) ] L= pperata;
P monic 1<i<j<k

irreducible

Notice that for some § > 0 and for all «;’s in some sufficiently small
neighborhood of 0, Ay, is an absolutely convergent Dirichlet series for 2R(s) >
1/2 + 4. Combining ([3.23)) and (3.35)), we have

(3.37)
k 1
M(%;O&l,-” ,Ozk): Z HXP (%—l—siai)_i H CA(I—FO%"FOJ]')
gi=%1i=1 1<i<j<k
x Ap (3ie100, -+ epou) -

Hence,
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> Z (300, 0n)

PePagi1,q

1
(3.38) = Z Z HXP 5 i) 2 Ag (5ie100, - epay)

P€P29+1q82 +1:=1
H Cal+a;+a;)(1+0(1)).
1<i<j<k

From the definition of Xp(s) in (3.4]), we have

=

(3.39) Xp (L4 o) 2 = 1P| (L + o) 2
Hence,
(3.40)
> Al a)
PePagi1,q

Z HX —}-{:‘ZO(Z % Z Ry, (2,81011,"' ,Ekak)

gi=*+14i=1 PcEPagi1,q
x |P|2Xmses (14 0(1)).

We finish this section writing Ay as an Euler product in the following
lemma.

Lemma 3.4. We have

(3.41)

1

P monic 1<i<j<k

irreducible
k -1 k -1
1 1 1
x5 (1_[1 <1 N ’P’1/2+ai> +1_[1 < ‘P‘1/2+a1> ) :
1= 1=

Proof. Applying Ai(s; o, -+ ,ax) and Ry p(s; o, -+, ax) in - 3.36) and (3.30] -

for s = 1/2 we have
(3.42)
Ap(3ra1,-+ o)

ST () (N 5 Mt )

P monic 1<i<j<k 7=1 ey, ,e >0 i=1
irreducible e1+'“+€k:2]
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By simplifying the second brackets we obtain the result in the lemma,
that is
(3.43)

1+Z > H <|p| (/25an) )

7=1 e1,,e,>0 =1

61+~~~+6k.=2j
0o 1 €q
i v I Tole
— 2 |P|
Jj=0 ey, e >0 =1
€1+~~+ek:2j

k €i k oo €i
1 1
2(1_1 0(‘]3‘(1/%%)) 2 e (IPWM) )

f[ (1 ‘p’1/2+az) t ﬁ ( |p1/2+az)1>'

=1

3.4. The contour integral representation of the conjecture.

We begin this section with Lemma 2.5.2 from [7], which helps to write
our conjecture as a contour integral.

Lemma 3.5. Suppose F is a symmetric function of k wvariables, reqular
near (0,---,0), and that f(s) has a simple pole s = 0 of residue 1 and is
otherwise analytic in a neighbourhood of s = 0, and let

(3.44) K(ay,,ap) =F(ay, - ar) ] flai+ay),
1<i<j<k

or

(3.45) K(ay, - ,a5) =F(ar, -+ ,ar) [[  flai+ay).
1<i<j<k

If a; + o are contained in the region of analyticity of f(s), then

( k(k—1)/2 ok
Z K(€1a1,"' 7Ekak) 27”/ f %K 21, " 7Z

» A, 5)? Hf 1%
Hf:lHj:l zi — o) (2 + o)

dz1 ce dzk,

and
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(3.47)
k
Z <H€Z> K(Elal, cee ,Ekak)
g;i=x1 \i=1

1)k(k=1)/2 ok
- El 27rz 7{ ?{K 2 %)

« kA(Z%7 o 7Zk) Hi:l @ le-”
| Hj:l( —aj)(z + o)

where the path of the integration encloses the +a;’s

Recall that,

Z Z (3500, ,a)
PePagii1,4
(3.48)

= Z HXP +ozl %L(%Jrai,xp),

PePogi1,qi=1

where Xp(s) is defined in 1) Since Xp (% + ai)_% does not depend on P,
we can factor out it, and from (3.48)) and (3.40) we have

(3.49)

Z HL(%—i—ai,Xp)

PeP2gt1,q =1

- ¥ zzoaznx w%znx i)

P€7729+1q gi=11i=1
XAk: (%,a17 O[k;)‘P’ = Oszal
H CA(l—l-&iai—l-&jOéj)(l-l-O(l)).
1<i<j<k

From each term in the second product we factor out (logq)~! to get
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(3.50)
k
Z H L (% + ag, XP)
PEPagt1,qi=1
1

1
- 3 MR IE Tl 5 L)

(log q) (k+1)/2

PePagyi1,q —~
x A (3101, ap) | P|2 Zimo e
IT cati+ot ai)oza)(1+o(1).
1<i<j<k
Now, call
. 1
(351)  Flag,--- o) = HX(% + o) 2 A (S 0, 0 )\P\z Z la“

i—1

and

(3.52) f(s) =Ca(l+s)logg andso f(o;+ ;) =Ca(l+ o+ )logg,
where f(s) has a simple pole at s = 0 with residue 1.
If we denote

(3.53) K(ay, -+ a5) = Flon,ox) [ flea+ay),
1<i<j<k

then (3.50) can be written as

(3.54)

Z HL(%"‘O%,XP)

PePagt1,q1=1

-y [T, 1P Sooi (3 + aq)?

k(k+1)/2
PePrmes (log q)

X Z K(ejaq, - ,epar) (L+0(1)).
gi==%1

Using Lemma [3.5] we have
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(3.55)

Z HL +a17XP

PePagy1,q1=1

I15, P73 S0 (§ 4+ aq)? (—1)Mb-D/2 9
> (log q)k(k+1)/2 rik kKl

PeP2g+1,q

oy A s,
<fo e A T — a4
><<1+o(1))

k _1\k(k—1)/2 ok
= ¥ H|p|—% ?:oai;((%Jrai)%(l)i‘Qf

, (2mi)k k!
PePagy1,q1=1

X j{-"%F('Zh-“ , 2k) H Ca(l +eia; + gja )
1<i<j<k
X A2, 23)? Hf:l i
k k
[Tz ITj2 (2 — ) (2 + o))

dz1 -+ dzi, + o(|P|)

k _1\k(k—1)/2 ok
= ¥ H,p|—% ?:oai;((%Jrai)%( 1) ‘ 2"

(2mi)k k!
PePagy1,q1=1

A(22. ... 22277k :
[Tici ITj=i (=i — ) (=i + )

+o(|P]),

with

(3.56) K(Zl,‘-- ,Zk) = F(Zl,-” ,Zk) H CA(1+€iai+€jaj).

1<i<j<k
Moreover, if we denote
(3.57)
k 1
Glat, ) = [[X G +a) 2 A (Brai - o) [ Call+z+2)
i=1 1<i<j<k

then (3.55) becomes



THE INTEGRAL MOMENTS AND RATIOS CONJECTURES 25

(3.58)

k _1\k(k=1)/2 ok
—15k o 1 N3 (1) 27
> [IIprez=enx (54 a) @ri)k Kl

PePagy,qi=1

k
% %G 21 |P| e ozz A(Z%7 7213)2 Hi:l Zi lede
Hf:l H?:l(zi —aj)(z + o)

+o(|P]).
Now, letting a; — 0, we have

Z L(%axp)k

PeP2gi1,4

( k(k—1)/2 ok
(359) — Z 27_‘_@ % %G 21y ‘P| i= 021

PEP29+1q
A(22 0 222718 5
% (217 ];zk)QkHz—l Z'Ldzl .. .dzk + O(‘P‘)
| B

Calling

1)k(=1)/2 ok
Qk’(x):( 2 f fG 21y ,Z

(3.60) (2mi)k
’ VA | LIS
XqQ ZL OZZ (zl’ ka) szl szzl...dzkh
Hz 1 7,2k
we obtain the formula of the Conjecture 2.2] i.e.,
(3.61) Y. Lxp)' = Y Qillogg|P)(1+0(1)).
PePogi1,q PePagii1,q

4. SOME CONJECTURAL FORMULAE FOR MOMENTS OF L-FUNCTIONS
ASSOCIATED WITH Xp

We use Conjecture to obtain explicit conjectural values for several
moments of quadratic Dirichlet L-functions associated with x p over function
fields.

4.1. First moment.
We will use Conjecture when k£ = 1 to compute the first moment of

our family of L-functions, then compare the result with that of Andrade and
Keating proved in [3]. For k£ = 1 the formula in Conjecture gives
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(4.1) Yo L(zxe)= > Qilog,|P|)(1+0(1)),

PePagii1,q PeP2gt1,4

where Q1(x) is polynomial of degree 1. From the contour integral formula

for Qx(x) in (2.14), we have

A(2)? .
(4.2) Qi(z) = ;%G(zil(zl) q2"tdz,
where
(4.3) Glz1) = A(L20) X (L +21) 72 Ca(1 +221).

Recall that, the Vandermonde determinant is defined

(4.4) Az, m) = [ (z—=2)

which for k =1 is equal to

(4.5) AR =1,
and
(4.6) X (5+ zl)‘% = ¢ /2

Therefore, (4.2)) becomes

1 le,

(4.7) Qi1(z) = 1% A(3321) Z\(l +221) o

)
with

- T (1)

P monic
(48) irreducible

L((, 1 -1 . 1 -1
x5 B | P|1/2+2 Tt |P|1/2+21 '

In order to compute the integral in (4.7)) where the contour is a small
circle around the origin, we need to locate the poles of the integrand. So let

1.
(4.9) flz) = A (5;21) Ca(l +221) quleI’

21
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note that the zeta function (4(1 + 2z1) has a simple pole at z; = 0, which
means that f(z1) has a pole of order 2 at z; = 0. we compute the residue
by expand f(z1) as a Laurent series and consider the coefficient of z; L
Expanding the numerator of f(z1) around z; = 0 we have,

(1)
A(gim) = A(3:0) + 4 (3:0) 21 + A"( 0) 27 + -
(2)
Ca(l+2z1) = 210gq211 + % + é(logq)a - %(logq)sﬁ’ +e
(3)

o 1 1
(T =1+ (@~ D(logg)a + glw — 1) (log )= + -

Hence, f(z1) can be written as

f(zl)
~(AGO = + A0+ 54 R0z +--)

(410) X (210ng %"‘é(logq)zl—%(logq)3z%+...>
X(l—*longl—l—l(l()gq) +)

X ( (log qQ)rz + 8(log q)*2%23 + - )

Considering the coefficient of Z1_ we have

1 1

1
4.11 R 1 A(5;0 A(L:27).
A1) Reyf(e) = {0+ 0)AG0) + g A=)

After straightforward calculations, using the definition for A (2 J21, zk),
we have
(4.12) A (%;zl) =1, and A’ (%;zl) =0,
and so
1

(4.13) Resf(z1) = = (1 + x).

21=0 4

Hence, we have
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Qi(z) = 471T (1+x)7{1dz1

= %(1 +z).

Finally, we can write the first moment as,

(4.14)

> LExe)= > @illog,|P|)(1+0(1))

PePagii1,q PeEPagi1,4

1
(4.15) = 3 (+1og,|P) (1 +o(1)
PeP2gt1,q
_ P
2log, |P|

If we compare Theorem 2.4 of [3] with the conjecture, we can see that
the main term and the principal lower order terms are the same. In other
words, Theorem 2.4 of [3] proves our conjecture with an error O(|P |3/ e,
In the next two sections we use our conjecture to determine the asymptotic
of the second and third moments of our family of L-functions and it can be
seen that the polynomials Q2(z) and Q3(z) in (4.22)) and (4.25) are similar
to ones in [4].

(1+1log, |P]) 4+ o(|P]).

4.2. Second moment.

For k = 2, the conjecture gives

(4.16) ST o L(Exe) = D Qa(log,|Pl) (1+0(1)),

PePagt1,4 PePagii1,q

where Q2(z) is a polynomial of degree 3, given by

2\2
(4.17) - 27{7{ (21, 2) A ) eivm) g, g,
T

Zl 22
with

N

G(Zl,ZQ) =A (%,2’1,2’2) X (% +21)_% X (% +22)_

(4.18)
X CA(1 4 221)Ca(1 + 21 + 22)Ca(1 + 229),
_1 _1

(4.19) X (% _|_Z1) 2 X (% +22) 2 — q—%(zﬁ-zz),

and

(4.20) A(ef, 23) = (25 — 21)*.



THE INTEGRAL MOMENTS AND RATIOS CONJECTURES 29

If
(4.21)
f(zla 22)
_A(3i2122) a1 +221)¢a(1 ;r i + 22)Ca(l + 229) (25 — Z%)Qq%l(zlm)
2172

then we have

(4 22)
1
fof 21,22 dzleQ
1
((x + 622 + 11z 4+ 6)A(1/2;0,0) log®(q) + (322 4+ 12z + 11)

2410g ( )

log®(q)(A1(3;0,0) + A2(530,0)) + 12(2 + ) log(q) A12(5; 0, 0)

— 2(A222($;0,0) — 3A122(3:0,0) — 3A4112(3;0,0) + A111(3;0, 0))>,
where A; is the partial derivative, evaluate at zero, of the function A (%, 21,00, 2k)

with respect to jth variable, with indices denoting higher derivatives, i.e:

o o?

A2 (3;0,--+,0) = 021 072

s A (3321, 2)

z1=z9=+=23=0

Hence we can write the leading order asymptotic for the second moment
for the family of L-function when g — oo as

1
(4.23) D LGxe) ~ gy Pllog, 1PD?.

PeP2g+1,9

Comparing with Andrade and Keating result (Theorem 2.5 of [3]) we see
that their theorem proves our conjecture with an error O (|P|log, |P]) .

4.3. Third moment.

For the third moment, Conjecture states that

(4.24) ST oL(xe)’ = D Qs(log,|Pl)(1+0(1)),

PeP2g+1,4 PePagt1,4

where Q3(x) is a polynomial of degree 3.

Thus, with the help of the symbolic manipulation software Mathematica
we compute the triple contour integral and obtain
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(4.25)
Qs(z)

1
=—— [ 3(z+3)% (2 + 122> + 4922 + 78z + 40) A(0, 0, 0) log®
864010g6(q)< (z+3)° (z T x T ) A( )log”(q)

+ 4 (32° + 452" + 2602” + 72027 + 9497 + 471) (Ag(o, 0,0) + A5(0,0,0)

+ A1(0,0, 0)) log”(q) + 4 (152 + 180z + 7802* + 1440z + 949) (A23(0, 0,0)

+ A15(0,0,0) + A12(0,0, 0)) log*(g) — 10 (27 + 92 + 26 + 24) <2A333(0, 0,0)

— 3A233(0,0,0) — 3A4293(0,0,0) + 2452(0,0,0) — 34;33(0,0,0) — 364123(0,0,0)

— 34195(0,0,0) — 34113(0,0,0) — 34115(0,0,0) + 24;11(0,0, 0)) log®(q)

— 20 (32% + 18z + 26) (A2333(0, 0,0) 4+ A223(0,0,0) + A1333(0,0,0) — 6A1233(0,0,0)
— 6A1923(0,0,0) + A1222(0,0,0) — 6A1123(0,0,0) + A1113(0,0,0) + A;112(0,0, 0))

log®(q) + 6(x + 3) (21433333(07 0,0) — 5A423333(0,0,0) — 10A422333(0,0,0) — 10A22233(0, 0, 0)
— 5A422923(0,0,0) + 2A422922(0,0,0) — 5A413333(0,0,0) + 60A412233(0,0,0) — 5A412222(0,0,0)
— 10A411333(0,0,0) + 60A11233(0,0,0) + 60A11223(0,0,0) — 10A11222(0, 0, 0)
—10A411133(0,0,0) — 10A11122(0,0,0) — 5A411113(0,0,0) — 5A11112(0, 0, 0)

+2A11111(0,0, 0)) log(q) + 4 (3A233333 (0,0,0) — 20A222333(0,0,0) + 3A222223(0,0,0)

+ 3A4133333(0,0,0) — 30A4123333(0,0,0) + 30A122333(0, 0, 0) + 30 A122233(0, 0,0)

— 30A129223(0,0,0) + 3A129292(0,0,0) + 30A112333(0,0,0) + 30A47112203(0, 0, 0)
—20A111333(0,0,0) 4+ 30A111233(0,0,0) + 30A47111223(0,0,0) — 20A111222(0,0,0)

—30A111123(0,0,0) + 3A111113(0,0,0) + 3A4111112(0, 0, 0))) ;

where A (%;21,22,23) is defined in Lemma Hence the leading order
asymptotic for the third moment for our family of L-functions is given by

1

3
P€P29+1,q
where
6|P|2 — 8P| +3
1. —

P monic
irreducible



THE INTEGRAL MOMENTS AND RATIOS CONJECTURES 31

4.4. Leading order for general k.

The main aim in this section is to obtain a conjecture for the leading
order asymptotics of the moments for a general integer k. The calculations
presented here are based on the calculations first presented in [26] and [I].
To obtain the main formula we need the following lemma.

Lemma 4.1. Let F be a symmetric function of k variables, reqular near
(0,---,0) and f(s) has a simple pole of residue 1 at s =0 and analytic in a
neighbourhood of s = 0. Let

(4.28)
K (|Pl;wr, - wy) = Z eéloglplg?:laiwiF(slwl,~-- , EKWE)
Ei::tl

I fwi+ejuw)),

1<i<j<k

and define I (|P|,k;w = 0) to be the value of K when wy,--- ,w = 0. We
have that,

k

1 k(k+1)/2 k(k+1)/2 ’L'
(4.29) I(|P|,k;0) ~ (21og|P\) F(0,---,0)2 . H1 @l

Proof. See Lemma 5 in [4]. O

We are in a position to obtain the desired formula, from (3.55|) recall that

(4.30)

k
Z HL(% + ai, xp)

PeEP2gy1,qi=1

Zl a; 3
oy H|p|2 0 ffiwio‘”? Y Kron- enan) (1 +0(1)).

PeP2g41,q =1 logq gi=%1
where
K101, epou)
k 1
— X(l_i_g.a.)—gAk(l;ah... e )‘p‘ Sicocic
(4.31) 621}1 2 2

H CA(1+€ioci+€jaj)(logq).
1<i<j<k

Applying the above Lemma with
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f(s) = Ca(1 4 s)logg,
k
F(w17"'7 :HXl"i_al)_%Ak(%»wlaawk)v

K(‘P’§w17"' 7w Z |P| i 151w1F (81’Ll)1, . ,Ekwk)
ei==%1

IT £ (Ewi+ejuwy),

1<i<j<k

and letting a1, -+, ar — 0 we obtain

k(k+1)
2

1 1
1 k
Y Lot~ Y s (ngm)

(4.32) TPRor1a PEP2g 11,9 k
k(k+1
x A(%;0, - H
z:1
as g — 0co. Summing over P we get that
(4.33)
k
k(k+1)
Z L(3ixp)k ~ Z (log, |Pl)” 2 Aw(:0, H
P€P29+1aq P€P2g+1,q Z:l
k(k+1) 4

N)\»—A
I:l -

= |P| (log, |P|)

@
I
_

Hence, we have proved the following.

Theorem 4.1. Conditional on Conjecture we have that as g — oo the
following holds

k
k(k+1)
@34) > LG.xp)" ~ [P (log,|P) 2 M A0, H

PcEPagi1,4 z:l

4.4.1. Some Conjectural Values for Leading Order Asymptotic for the Mo-
ments of L(s,xp)-

We end this section by writing the asymptotic formula for the fourth and
the fifth moment for our family of L-functions. Theorem implies that
the leading order for the fourth moment can be written as
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4 .
> L)'~ 1Pl (og, [P) A (3:0.0.0.0) [] g

(435) PEP2g+1,q i=1

1 9 .
= Ja3s100 1 (logg [P1)”" 4 (3:0,0,0,0),
where
A(%’07070>O)
_ H 1— 20|P‘6_64|P|5+90|P|4—64|P|3—{—20|P|2_1
P PF ,
P monic
irreducible

and the leading order for the fifth moment is

> L)

PePagy1,q
14 5 .
(4.36) ~|P| (log, |P|)"" A (3;0,0,0,0,0) H )
i=1
146313216000 a i , P|12
lrreﬁlﬁlﬁe
with
(4.37) h(z) =500 — 28022 + 7652° — 124827 + 126025 — 72027

+ 1052* + 1602% — 12622 + 40x — 5.

5. RATIOS CONJECTURE FOR L-FUNCTIONS OVER FUNCTION FIELDS

The main aim of this section is to obtain a conjectural asymptotic formula
for

3 [T L(3 + o, xp)

(5.1)
PePagii1,q 1_[q:l (5 + g XP)

where Pagi1,4 = {P monic, P irreducible, deg(P) = 2¢g+1, P € F,[T]}, and
B = {L(s,xp) : P € Pagy1,4}. We adapt the original recipe of Conrey,
Farmer and Zirnbauer [8] for this family of L-functions.

The idea is to replace the L-functions in the numerator by their “approx-
imate” functional equation
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XP xp(n)
(5.2) (s, xp) Xp(s) Z. miEs
n monic 7. 1Monic

deg(n)<g deg(n)<g—1

and expand the L-functions in the denominator into the series

o (1—Xf3§f5)>

P monic

(5 . 3) irreducible

wu(n
Z ‘n‘s ’

m monic

where y(n) and yp(n) is defined in Section [2}

As in the previous section, we apply the recipe to the quantity

3 T Ze(3 + o, xp)

(5.4)
PEPagi1q Hq:1 L(5 + g xP)

where Z(s, xp) is defined in (3.7)) with “approximate” functional equation
given by (3.11). Now expanding the denominator we get

(5:5)

Z +ak7XP)

PeP2gyi1,q H ( +’YQ7XP)

u(h ho)xp(hi---h
- ¥ Hzﬁ + g, xP) Z +51Q> (M Q)
PEPagi1,q k=1 Ry, |hl‘2 - |hg|zTe
hqmomc

Making use of the “approximate” functional equation ([5.2)), we have

(5.6)
K

HZE(% + ag, xp)
k=1

K
1 1 xp(mi---mg)
= Z H Xp(5 +epag) 2 Z — S

en€{—1,1}K k=1 mi, MK |7n1|2 |mK|2
m; monic

so we can write (5.5)) as
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Z H +04k7XP)

PcPogi1,q Hq:l (§ + 7117 XP)

K
= Z Z HXP(% +Ekak)7%

P€P2g+1,q EkE{*l,l}K k=1
Z H§:1 )u(h’q)XP(Hle m Hqul hq)

K I 1 ’
mi, MK Hk:l |mk|2+€kak HQQ=1 ‘hq|2+'yq

1, )hQ
m;,h; monic

(5.7)

X

Following the recipe we replace each summand by its expected value when
averaged over primes P € Pagy1 4, in other words we have that

K
1 1
et} (#P > > TTweG+ean
eg(P)—o0 2g+1,q9 PEP2gi1,q epe{—1,1}K k=1
19, ulhg)xp(TTfey mu [T, hq>>
<)

1 1
mi, MK Hf:l ’mk‘ Rl H(?Zl |hq, 2

17“‘ 7hQ
mj,h; monic

K
= Z HXP(%—Fekak)_?
EkE{—l 1}K k=1

(5.8) . Z Hq 1 #(hg)d (Hk 1ml<;Hq 1h)
my m Hk:l |mk|§+€k0<k Hqul |hq‘§+7q

hi,,hq
m;,h; monic

[

)

where d(n) = 1 if n is a square and 0 otherwise.

Next we factor out the zeta-function factors. Note that, the main difficulty
here is to identify and factor out the appropriate zeta-functions factors that
contribute to poles and zeros. With the same notation used in [1], we define
the following series

Q m
(5.9)  Gplazy) = > L #0810 (Hk Sl )

T Ty g 305K [T Rl 270

1, 7hQ
mg,h; monic

If my, = [[p P* and hq = [[p P, then we can write Gy(a;y) as a conver-
gent Euler product provided that R(ay) > 0 and R(v,) > 0,
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(5.10)
Gep(e;7)
Pta
= A1 e 2 > 13 +L:L>(+z ) (3+7a)
P monic 0<> ", ag+>, cq is even | P |k s arhe
irreducible a4

We now write G in terms of the zeta-function of Fy[T']. First, we express
the contribution of all poles and zeros of (5.10)) in terms of (4(s) by rewriting

the Euler product in (5.10) as

(5.11)
Gyp(a;7)
1
— Pln:[ni (1 + P +( o) Z | P|(1+2a1)
irreduocibcle ]<k
o3 s S e )
r<q
where - - - are referring to the convergent terms. Recall that
1 \!
Cals) = H (1 - ‘P’s)
P monic
5 12) irreducible
(5 .
= 11 (2 (p
A\ P
P monic 7=0
irreducible

We can see from that the terms with S5, ap + Equl cq = 2 con-
tribute to the poles and zeros. The poles are coming from the terms with
aj =ar =1,1<j <k <K, a,=21<k <K, and also from the terms
with ¢, = ¢4, = 1,1 <r < ¢ < Q. Note that there are no poles coming from
the terms with ¢, = 2,1 < ¢ < @, since u(P?) = 0. Moreover, the zeros
comes from the terms with ay =c; =1 with 1 <k < K, and 1 <¢ < Q.

From the above, we can define the function Y (a;y) in terms of (4(s) by,

Ili<jcnen Ca(l+ o5+ o) [ 1<, cqeq Call + 7 + ’Yq)
[Tz T35 Calt + s+ )

Thus, we can factor out Y (a; ) from Gig(a; ), such that

(5.13) Yp(asy) :=
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(5.14) Gy(a;y) = Yyp(asv) Ap(a; ),
where Ag(o;7y) is the Euler product that converges absolutely for all of the
variables in the small disks around 0,

(5.15)
Agp(a;7)
1 1
10 Ii<jc<r (1 - W) [li<r<g<o (1 - W)
B . EooQ 1
irreducible e I (1 |P|1+%+W>

Z Hq 1 W(P)

1
A\t Pk ahron S, ()

0<> ) ar+>_, cq is even

Returning to the recipe, we can conclude from (5.7), (5.9), and (5.14))
that

(5.16)
Z H (+ak,XP)

PePogii,q Hq=1 (§+’7q7XP)

K
= Z Z HXP (%+8kak)7% Ym(flalv"‘ s EROE;Y)

PeP2gi1,q epe{—1,1}5 k=1
x Agp(eron, - epor;y) +o(|P]),

Now, using (3.7) we have

Z HII:IL (5 + o, xp)
P6P2g+1qH ( +'anXP)

= Z Z HXP +Oék %Xp (%+ak)7%

PePagt1,q epe{-1,1}K k=1

(5.17)

x Yyp(eraa, -+ epap;v)Aplerar, -+ erap;y) +o(|P]).

Remembering that,

(5.18) Xp(s) = [P[27°X(s)
with
(5.19) X(s)=q 2",

we have that
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N

_1
H.)(p (% +5kak) 2 Xp (% + Ekak)
(5.20)

K
= |P‘% Shy (Erok—ag) H X (% + alrgskak) '
k=1
For positive real parts of a;, and v, we have

3 [T i L(3 + o, xp)

PcPagi1,4 Hq:l (§ + 7(17 XP)

= ¥ > | P|3 Zka (eran—oan) ﬁ;( (L + cu=geon)

PEPag i1, epe{—1,1}K k=1

X Yp(eron, -+ epap; v)Apleran, - -+ epag;y) +o(|P)).

(5.21)

Finally, if we let

K
15k ) _
Hoy oy (w;y) = P2 2= TT & (5 + 255%)
(5.22) 1
X Yo (w; 7) A (w; ),

then the conjecture may be formulated as

(5.23)

Z +ak7XP)

PEPagi1q H ( + Y, XP)
_1yK
= Z P72 2k N Hy p oy (e0s) +0(|P)).

PeP2g+1,4 ee{—1,1}K

5.1. Refinements of Conjecture.

In this section, we state the final form of our ratios conjecture. In the first
part, we derive a closed form expression for the Euler product Ag(a;7), and
in the second part, we express the combinatorial sum as a multiple integral.

5.1.1. Closed form expression for Ag.

Suppose that f(z) =14 > 7, u,z". then

(5.24) > upw —5 fa) + f(=2) = 2),

n even
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and so, let
AR S ITg n(Per)
|P| = ,p|2kak<%+ak)+zch(%+vq)
BN zn e
(5.25) an k=1 IP\’“ z+an) o a1 1Pl 3+7%)

Q _ 1
M (l |P%+”q)
K . 1 .
Hk’Z]. (1 P%+ak>

Using the above equations we can establish the following lemma.

Lemma 5.1. We have that,

Z ]._[q 1 p(Pee)

‘P‘Zk ak 2+O‘k)+zq Cq(%‘i”‘/q)

1+

2ok Akt cq even

(5.26) Q 1 Q |
1 Hq:l 1 |P‘%+’Yq n Hq:l 1 + ‘P‘%+’Yq

2 K 1 K 1
i (1_P|%+ak> e {1+ G

The following result is a direct corollary from Lemma and equation
(15.15]).

Corollary 5.2.
(5.27)

1 1—-— L I1 1—-— 1
1<j<k<K |P|trestek 1<r<q<@Q |P|1Hrr+7g

Am(a; 7) = H . k Q
P monic Hk:l Hq:l ‘P‘1+ak+7q

irreducible

)
e (1_|P|%1+W> +H < PWQ;

X p—

2 K 1
szl (1 - |P|%+ak> Hk 1 < |P‘2+ak

5.1.2. The final form of the ratios conjecture.
To obtain our final form of the Ratios Conjecture we need the follow-
ing lemma (Lemma 6.8, []).

Lemma 5.3. Suppose that F(z) = F(z1, - ,2K) is a function of K vari-
ables, which is symmetric and regular near (0,---,0). Suppose further that
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f(s) has a simple pole of residue 1 at s = 0 but is otherwise analytic in
|s| < 1. Let either

(5.28) H(z, - ,2K) = F(z1,+ ,2K) H f(zj + 2i)
1<j<k<K

or

(5.29) H(z, - ,2x) = F(21, - ,2K) H f(z; + 2x)-
1<j<k<K

If o] < 1 then

(5.30)
Z H(giaq,--- ,egak)
ee{-1,1}K
_ (—1)KE-D)/29K / H(z1,  zi) A2, 22)? Hle 2k et - doe
KW@ri)® e T T (2 = 09) (2 + )

and

(5.31)
Z sgn(e)H (11, -+ ,exak)
ee{-1,1}¥
(_1)K(K71)/22K H(Zl7 T 7ZK)A(Z%7 T 72%()2 Hf:l (073
Kl(2mi) |zil=1 Hj:l [Tz (21 — o) (26 + )

Now, we are in a position to present the final form of the ratios conjecture
2.3

Conjecture 5.1. Suppose that the real parts of oy, and 4 are positive. Then
we have,

(5.32)
Z [Tiei L (3 + o xp)
Q 1
PeP2g 1,4 Hq:l L (§ + % XP)
K(K—1)/29K
N S > T G e
K!(2mi)K
PePagt1,4
K
></ Hyplon(zn )AL 28 [y dez .

1 dZK
1S Ty (2 — ) (2 + )

+ o(|P]).
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6. ONE-LEVEL DENSITY

In this section, we give an application of the Ratios Conjecture for
L-functions over function fields. We compute a smooth linear statistic, the
one-level density for the family of quadratic Dirichlet L-functions associated
with monic irreducible polynomials in Fy[T]. The one-level density for the
family of quadratic Dirichlet L-functions over fundamental discriminants
was computed using the rations conjecture by Conrey and Snaith [I5] in the
number field setting and by Andrade and Keating [4] in the function field
setting.

Consider

E : L(l +a, XP)
PePagii1,q 2 T XP

Using the ratios conjecture as presented in the last section with one L-
function in the numerator and one L-function in the denominator we arrive
at the following particular conjecture.

Conjecture 6.1. With —1 < R(a) < 1, ﬁ < R(y) < 1 and (@), I(v) <

|P|1=¢ for every e > 0, we have

2 : L(%‘FOC,XP)
1
PEP2gi1,q L(§ + Y XP)

B Ca(l +2a) oy (L
(6.2) —Pegﬂ’q (CA(1+04+7) +[P[X (4 +a)

Rp(a;y) =

Ca(1 —2a)

Ca(l —a+7)> olPD.

To compute the one-level density we need to have a formula for

s L) _dp

(63) L(% + 7, XP) da a:'y:’r.

PePagii1,q

A direct calculation gives

6.4 d < Ca(l + 2a) )‘ ¢y (142r)

da \Ca(1+a+7) T a1+ 2r)

and that
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d —« 1
(17 G+

== (log q) |P|7"X (3 +7) Ca(1 = 27).

Therefore, the ratios conjecture implies that the following result holds.

CA(l — 2a) >
(6.5)

a=ry=r

Theorem 6.2. Assuming C’onjecture ﬁ < R(r) < L and 3(r) <

|P|'=¢ for every e > 0, we have

Z L/(% +7,xP)

1
PEP2g41,q L(§ T XP)
/
(6.6) _ Call+2r) N iplra (1
i Z CA(1+2T) (qu)’ | (2+7’)
€P2g+1,q

x Ca(l— 2r)) +o(|P]).

We have available all the necessary machinery to derive the formula for
the one-level density for the zeros of Dirichlet L-functions associated to qua-
dratic characters xp with P € Pa4y1 4, complete with lower order terms.

Let vp be the ordinate of a generic zero of L(s, xp) on the half-line. Since
L(s, xp) is a function of u = ¢—* and periodic with period 27i/log ¢ we can
restrict our analysis of the zeros for the range —mi/logq < J(s) < mi/loggq.
Consider the one-level density

(6.7) Si(f) = > > flw),

PePagi1,4 TP

where f is an even 27/ log g-periodic test functions and holomorphic.

Using Cauchy’s Theorem we have

©68) Sif)= 3 2;(/()— /()) TPy (i (s - 1/2)ds.

PePagii1,q

where (c) is the vertical line from ¢ — 7i/logq to ¢ + mi/logq and 1/2 +
1/log|P| < ¢ < 3/4. For the integral on the (c¢)-line, we make the following
variable change, letting s — ¢ + it, so

1 7/ logq I/ it
Z (c+it, xp) dt.

o f(=i(it +c—1/2)) L(c+it, xp)

(6.9)
—m/logg PeP2gt1,q
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Since the integrand is regular at t = 0, we move the path of the integration
to ¢ = 1/2, and replace the sum over P by Theorem to obtain

. w/logqf(t) > (Cg(1+2it)

o |- 1+ 2it
(6.10) " lesa PeEP2g+1,4 Cal )

, 1
— (logq) |P|™"X (2 + it) Ca(l— 2it)> dt +o(|P]).
The functional equation (2.10]) implies that

L'(1-s,xp) _Xp(s) L'(s,xp)

(6.11) L(1—s,xp) Ap(s) L(s,xp)’
with
(6.12) iﬁgzi :—log‘P‘+2;’((j)).

For the integral on the (1 — ¢)-line, we change variables, letting s — 1 —s,
then use (6.11) and with the similar calculations as for the integral on the
(c)-line we obtain the following theorem.

Theorem 6.3. Assuming the ratios Conjecture[6.1], we have that

(6.13)

Sitfy=">_. > fow)

PePagy1,q TP

1 7/logq X’(l —it)
“or t log |P|+ =2 "
2m *W/logqf( )pegﬂﬂ < Og‘ ‘+ X(% —it)
(1 + 2it y ' |
2 <M — (log q) |P| 7 & (& +it) Ca(1 — 2zt)))dt
+o(|P]),

where yp is the ordinate of a generic zero of L(s,xp) and f is an even and
periodic suitable test function.

6.1. The Scaled One-Level Density.

Defining

(6.14) ity =h <t(2921;g q>>

and scaling the variable ¢ from Theorem [6.3] as
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_ t(2glogq)
2 ’

(6.15)

we have that

(6.16)

Z Zf( QQIOgQ>

PeEP2gi1,4 TP

log |P
2glogq/ (Og I+

P€7’2g+1 q

1 (1 2miT
x (5 2glogq>

1 _2mir
X (2 2glogq>

AmiT
( ( + leogq) . (log Q) e(—27ri7'/2glogq) log|P|X ( + 2miT )

14 AmiT 2glogq
2gloggq

4miT
X Ca <1 — 2910gq> >>d7'~l—0(|P|).

Writing

6.17 Ca(l+5) = —— + 2 + L (logg)s + O(s?),
(6.17) A § ~slogg 2 12 0848
and

(1 +s) 1 1

1 2~ = s+ —logg— —(1
(6.18) CAlTs) 57+ 5 logg 12(0gQ) s+ 0(s%),
we have
(6.19)

3 Zf< 2glogq>

PeP2gy1,4 TP

X’ 1 _2miT
[ ¥ (log|P|+ k1)
-9 X

29log.q PePagi1,4 (% - zﬁﬁgq)
2glog q 1 4T o
2 — 71 | - (—2miT/2glog q) log | P|
+ < . ogq — 15 (loga) =~ % (logq)e

29 1 1 4mir
2miT
XX( +2glogq> <_47T’LT+2_]_2 29 )))dT‘i‘O(’PD
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then, for g large, only the term log|P|, the Q/CA and the final term in the
integral contribute, yielding the asymptotic

(6.20)

S Yy (w?g;j;gQ)

PeP2gt1,4 TP

1 o0
NQQIOgQ/—oo h(7)<(#7329+1,q)10gp’

2glogq _omir 2glog q
_ 291089 mir 29084 ) o
(#P2g+1,9) orin + (#Pog+1,9) € oxir |07

However, since h is an even function, we can drop out the middle term
and the last term can be duplicated with a change of sign of 7, leaving

(6.21)

i i, 2 07

g—o0 #PQg-i—l,q PEPagi1.q TP

> “omir L 2mi 1
= / h(T) (1 +e T —— 4 T - )dT
oo 2T —2miT

= /00 h(T) (1 + % ( (cos(2mT) — sin(277)) — (cos(2wT) — sin(277)) )) dr

= /_O; h(T) (1 + %( -2 sin(27r7’))> dr

_ /_Z W) (1 - SirlfTW))dT.
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