EXERCISES: ANALYTIC NUMBER THEORY IN $\mathbb{F}_q[x]$ EXETER 2018

Exercise 1. The divisor function $d_k(f)$ for a monic polynomial $f \in \mathbb{F}_q[x]$ is the number of k-tuples $(a_1, \ldots, a_k) \in \mathbb{F}_q[x]^k$ of monic polynomials so that $f = a_1 \cdots a_k$.

Show that for $\operatorname{Re}(s) > 1$,

$$\sum_{f \text{ monic}} \frac{d_k(f)}{|f|^s} = \zeta_q(s)^k.$$

Exercise 2. The Möbius function for $\mathbb{F}_q[x]$ is defined as $\mu(f) = (-1)^k$ if $f = cP_1 \cdots P_k$ is a product of k distinct monic irreducibles, $c \in \mathbb{F}_q^*$, and $\mu(f) = 0$ otherwise. Show that for $\operatorname{Re}(s) > 1$,

$$\sum_{f \text{ monic}} \frac{\mu(f)}{|f|^s} = \frac{1}{\zeta_q(s)}.$$

Exercise 3. Show that

$$\sum_{d|f} \Lambda(d) = \deg f$$

Exercise 4. Let $\mathbb{F}_q[x]$ be the polynomial ring over a finite field \mathbb{F}_q of q elements. The divisor function $d_k(f)$ for a monic polynomial $f \in \mathbb{F}_q[x]$ is the number of k-tuples $(a_1, \ldots, a_k) \in \mathbb{F}_q[x]^k$ of monic polynomials so that $f = a_1 \cdots a_k$.

Show that for $k \geq 2$, the mean value of $d_k(f)$ over all monic polynomials of degree n is given by the binomial coefficient

$$\frac{1}{q^n} \sum_{\substack{\deg f = n \\ f \text{ monic}}} d_k(f) = \binom{n+k-1}{k-1} = \frac{(n+k-1) \cdot \ldots \cdot (n+1)}{(k-1)!}$$

Exercise 5. Show that

$$\sum_{\substack{\deg f=n\\f \text{ monic}}} \mu(f) = 0, \quad n \ge 2$$

Exercise 6. Show that

$$\sum_{\deg P \le N} \frac{1}{|P|} \sim \log N, \qquad N \to \infty$$

EXERCISES

the sum over all prime polynomials (monic irreducibles) and in particular that $\sum_{P} 1/|P| = \infty$.

Exercise 7. The cycle structure of a permutation σ of n letters is $\lambda(\sigma) = (\lambda_1, \ldots, \lambda_n)$ if in the decomposition of σ as a product of disjoint cycles, there are λ_j cycles of length j. In particular $\lambda_1(\sigma)$ is the number of fixed points of σ .

For each partition $\lambda \vdash n$, denote by $p(\lambda)$ the probability that a random permutation on n letters has cycle structure λ :

$$p(\lambda) = \frac{\#\{\sigma \in S_n : \lambda(\sigma) = \lambda\}}{\#S_n} .$$

Show that

$$p(\lambda) = \prod_{j=1}^{n} \frac{1}{j^{\lambda_j} \cdot \lambda_j!}$$

In particular, this shows that the proportion of n-cycles in the symmetric group S_n is 1/n.

Exercise 8. For $f \in \mathbb{F}_q[x]$ of positive degree n, we say its cycle structure is $\lambda(f) = (\lambda_1, \ldots, \lambda_n)$ if in the prime decomposition $f = \prod_{\alpha} P_{\alpha}$ (we allow repetition), we have $\#\{\alpha : \deg P_{\alpha} = j\} = \lambda_j$. In particular $\deg f = \sum_j j\lambda_j$. Thus we get a partition of $\deg f$, which we denote by $\lambda(f)$. For instance, f is prime if and only if $\lambda(f) = (0, 0, \ldots, 0, 1)$.

Given a partition $\lambda \vdash n$, show that the probability that a random monic polynomial f of degree n has cycle structure λ is asymptotic, as $q \rightarrow \infty$, to the probability that a random permutation of n letters has that cycle structure:

$$\frac{1}{q^n} \# \{ f \text{ monic, } \deg f = n : \lambda(f) = \lambda \} = p(\lambda) \Big(1 + O(\frac{1}{q}) \Big).$$

Hint: start with primes, where the statement is just the Prime Polynomial Theorem.

 $\mathbf{2}$