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Introduction
What is this course about?

We will study some classical analytic number theory problems and
techniques in the context of polynomials over finite fields.

• Elementary number theory is concerned with arithmetic
properties of Z and its field of fractions Q.

• Early on the development of the subject it was noticed that Z
has many properties in common with A = Fq[T ], the ring of
polynomials over a finite field.

• both rings are principal ideal domains.
• both have the property that the residue class ring of any

non-zero ideal is finite.
• both rings have infinitely many prime elements.
• both rings have finitely many units.
• ...

• Thus, one is led to suspect that many results which hold for Z
have analogues of the ring A. This is indeed the case.



Introduction
What is this course about?
We will study some classical analytic number theory problems and
techniques in the context of polynomials over finite fields.

• Elementary number theory is concerned with arithmetic
properties of Z and its field of fractions Q.

• Early on the development of the subject it was noticed that Z
has many properties in common with A = Fq[T ], the ring of
polynomials over a finite field.

• both rings are principal ideal domains.
• both have the property that the residue class ring of any

non-zero ideal is finite.
• both rings have infinitely many prime elements.
• both rings have finitely many units.
• ...

• Thus, one is led to suspect that many results which hold for Z
have analogues of the ring A. This is indeed the case.



Introduction
What is this course about?
We will study some classical analytic number theory problems and
techniques in the context of polynomials over finite fields.

• Elementary number theory is concerned with arithmetic
properties of Z and its field of fractions Q.

• Early on the development of the subject it was noticed that Z
has many properties in common with A = Fq[T ], the ring of
polynomials over a finite field.

• both rings are principal ideal domains.
• both have the property that the residue class ring of any

non-zero ideal is finite.
• both rings have infinitely many prime elements.
• both rings have finitely many units.
• ...

• Thus, one is led to suspect that many results which hold for Z
have analogues of the ring A. This is indeed the case.



Introduction
What is this course about?
We will study some classical analytic number theory problems and
techniques in the context of polynomials over finite fields.

• Elementary number theory is concerned with arithmetic
properties of Z and its field of fractions Q.

• Early on the development of the subject it was noticed that Z
has many properties in common with A = Fq[T ], the ring of
polynomials over a finite field.

• both rings are principal ideal domains.
• both have the property that the residue class ring of any

non-zero ideal is finite.
• both rings have infinitely many prime elements.
• both rings have finitely many units.
• ...

• Thus, one is led to suspect that many results which hold for Z
have analogues of the ring A. This is indeed the case.



Introduction
What is this course about?
We will study some classical analytic number theory problems and
techniques in the context of polynomials over finite fields.

• Elementary number theory is concerned with arithmetic
properties of Z and its field of fractions Q.

• Early on the development of the subject it was noticed that Z
has many properties in common with A = Fq[T ], the ring of
polynomials over a finite field.

• both rings are principal ideal domains.

• both have the property that the residue class ring of any
non-zero ideal is finite.

• both rings have infinitely many prime elements.
• both rings have finitely many units.
• ...

• Thus, one is led to suspect that many results which hold for Z
have analogues of the ring A. This is indeed the case.



Introduction
What is this course about?
We will study some classical analytic number theory problems and
techniques in the context of polynomials over finite fields.

• Elementary number theory is concerned with arithmetic
properties of Z and its field of fractions Q.

• Early on the development of the subject it was noticed that Z
has many properties in common with A = Fq[T ], the ring of
polynomials over a finite field.

• both rings are principal ideal domains.
• both have the property that the residue class ring of any

non-zero ideal is finite.

• both rings have infinitely many prime elements.
• both rings have finitely many units.
• ...

• Thus, one is led to suspect that many results which hold for Z
have analogues of the ring A. This is indeed the case.



Introduction
What is this course about?
We will study some classical analytic number theory problems and
techniques in the context of polynomials over finite fields.

• Elementary number theory is concerned with arithmetic
properties of Z and its field of fractions Q.

• Early on the development of the subject it was noticed that Z
has many properties in common with A = Fq[T ], the ring of
polynomials over a finite field.

• both rings are principal ideal domains.
• both have the property that the residue class ring of any

non-zero ideal is finite.
• both rings have infinitely many prime elements.

• both rings have finitely many units.
• ...

• Thus, one is led to suspect that many results which hold for Z
have analogues of the ring A. This is indeed the case.



Introduction
What is this course about?
We will study some classical analytic number theory problems and
techniques in the context of polynomials over finite fields.

• Elementary number theory is concerned with arithmetic
properties of Z and its field of fractions Q.

• Early on the development of the subject it was noticed that Z
has many properties in common with A = Fq[T ], the ring of
polynomials over a finite field.

• both rings are principal ideal domains.
• both have the property that the residue class ring of any

non-zero ideal is finite.
• both rings have infinitely many prime elements.
• both rings have finitely many units.

• ...
• Thus, one is led to suspect that many results which hold for Z

have analogues of the ring A. This is indeed the case.



Introduction
What is this course about?
We will study some classical analytic number theory problems and
techniques in the context of polynomials over finite fields.

• Elementary number theory is concerned with arithmetic
properties of Z and its field of fractions Q.

• Early on the development of the subject it was noticed that Z
has many properties in common with A = Fq[T ], the ring of
polynomials over a finite field.

• both rings are principal ideal domains.
• both have the property that the residue class ring of any

non-zero ideal is finite.
• both rings have infinitely many prime elements.
• both rings have finitely many units.
• ...

• Thus, one is led to suspect that many results which hold for Z
have analogues of the ring A. This is indeed the case.



Introduction
What is this course about?
We will study some classical analytic number theory problems and
techniques in the context of polynomials over finite fields.

• Elementary number theory is concerned with arithmetic
properties of Z and its field of fractions Q.

• Early on the development of the subject it was noticed that Z
has many properties in common with A = Fq[T ], the ring of
polynomials over a finite field.

• both rings are principal ideal domains.
• both have the property that the residue class ring of any

non-zero ideal is finite.
• both rings have infinitely many prime elements.
• both rings have finitely many units.
• ...

• Thus, one is led to suspect that many results which hold for Z
have analogues of the ring A.

This is indeed the case.



Introduction
What is this course about?
We will study some classical analytic number theory problems and
techniques in the context of polynomials over finite fields.

• Elementary number theory is concerned with arithmetic
properties of Z and its field of fractions Q.

• Early on the development of the subject it was noticed that Z
has many properties in common with A = Fq[T ], the ring of
polynomials over a finite field.

• both rings are principal ideal domains.
• both have the property that the residue class ring of any

non-zero ideal is finite.
• both rings have infinitely many prime elements.
• both rings have finitely many units.
• ...

• Thus, one is led to suspect that many results which hold for Z
have analogues of the ring A. This is indeed the case.



Function Fields

Algebraic number theory arises from elementary number theory by
considering finite algebraic extensions K of Q, which are called
algebraic number fields, and investigating properties of the ring of
algebraic integers OK ⊂ K , defined as the integral closure of Z in
K .

Similarly, we can consider k = Fq(T ), the quotient field of A and
finite algebraic exstensions L of k. Fields of this type are called
algebraic function fields. More precisely, an algebraic function field
with a finite constant field is called a global function field. A
global function field is the true analogue of algebraic number field
and much of this course will be concerned with investigating
properties of global function fields.
The main aim of the course is to study number theory over
A = Fq[T ] and k = Fq(T ).
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The Plan for the Course

The plan for the course is the following one: (subject to change)

1 Lecture 1 (01/05/2015):
• Analogies between function fields and number fields.
• Polynomials over finite fields.
• Primes and zeta function for A = Fq[T ].
• Prime Number Theorem for Polynomials.
• Arithmetic Functions

2 Lecture 2 (11/05/2015):
• Arithmetic Functions and Dirichlet Multiplication for Fq[T ].
• Averages of Arithmetical Functions.
• Congruences and Reciprocity Law.
• Dirichlet Characters and L-series for Fq(T ).
• Dirichlet’s Theorem on Primes in Arithmetic Progression in

Fq[T ].
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The Plan for the Course

3 Lecture 3 (15/05/2015):
• Foundations of the Theory of Algebraic Function Fields and

Global Function Fields.

4 Lecture 4 (22/05/2015):
• Average Value Theorems in Function Fields.
• Tauberian Theorems.
• Some Sieve Methods in Function Fields.

5 Lecture 5 (29/05/2015):
• Selberg’s Theorem in Function Fields.
• An Introduction to Katz-Sarnak Philosophy and RMT.
• Traces of the Frobenius class in the hyperelliptic ensemble.

6 Lecture 6 (01/06/2015):
• Moments of L-functions in Function Fields.
• Ratios Conjecture and statistics of zeros of L-functions over

Fq(T ).
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The Plan for the Course

7 Lecture 7 (05/06/2015):
• Revisiting Mean Values of Arithmetic Functions in Fq[T ].
• Equidistribution theorems, arithmetic statistics and matrix

integrals.

8 Lecture 8 (11/06/2015):
• Overview of a proof of the Function Field Riemann Hypothesis.
• New directions and problems.

Assessment: At the end of the course, participants will choose
from a list of topics/original research articles and should write up
an exposition of the chosen result. This exposition should place
the result in the context of what has been discussed in the course,
and should be detailed for other course participants to be able to
follow the main steps of the argument.
Problem Sheets: The completion of the weekly problem sheets is
optional but strongly encouraged.



The Plan for the Course

7 Lecture 7 (05/06/2015):
• Revisiting Mean Values of Arithmetic Functions in Fq[T ].
• Equidistribution theorems, arithmetic statistics and matrix

integrals.
8 Lecture 8 (11/06/2015):

• Overview of a proof of the Function Field Riemann Hypothesis.
• New directions and problems.

Assessment: At the end of the course, participants will choose
from a list of topics/original research articles and should write up
an exposition of the chosen result. This exposition should place
the result in the context of what has been discussed in the course,
and should be detailed for other course participants to be able to
follow the main steps of the argument.
Problem Sheets: The completion of the weekly problem sheets is
optional but strongly encouraged.



The Plan for the Course

7 Lecture 7 (05/06/2015):
• Revisiting Mean Values of Arithmetic Functions in Fq[T ].
• Equidistribution theorems, arithmetic statistics and matrix

integrals.
8 Lecture 8 (11/06/2015):

• Overview of a proof of the Function Field Riemann Hypothesis.
• New directions and problems.

Assessment: At the end of the course, participants will choose
from a list of topics/original research articles and should write up
an exposition of the chosen result. This exposition should place
the result in the context of what has been discussed in the course,
and should be detailed for other course participants to be able to
follow the main steps of the argument.
Problem Sheets: The completion of the weekly problem sheets is
optional but strongly encouraged.



Polynomials over Finite Fields

Let Fq denote a finite field with q elements.

The model for such a
field is Z/pZ, where p is a prime number. This field has p
elements. In general the number of elements in a finite field is a
power of a prime, q = pa. Of course, p is the characteristic of Fq.
Let A = Fq[T ] be the polynomial ring over Fq. Let f ∈ A, i.e.,

f (T ) = α0T n + α1T n−1 + · · ·+ α1T + αn,

with αi ∈ Fq.

Definition
If α0 6= 0 we say that f has degree n, notationally deg(f ) = n. In
this case we set sgn(f ) = α0 and call this element of F∗q the sign
of f .
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If f and g are non-zero polynomials in A we have

• deg(fg) = deg(f ) + deg(g).

• sgn(fg) = sgn(f )sgn(g).
• deg(f + g) ≤ max(deg(f ), deg(g)).

(equality holds if deg(f ) 6= deg(g)).

Definition
If sgn(f ) = 1 we say that f is a monic polynomial.
Monic polynomials play the role of positive integers.
It is sometimes useful to define the sign of the zero polynomial to
be 0 and its degree −∞.
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A is an unique factorization domain
Proposition (1.1)
Let f , g ∈ A with g 6= 0. Then there exist elements q, r ∈ A such that
f = qg + r and r is either 0 or deg(r) < deg(g). Moreover, q and r are
uniquely determined by these conditions.

Proof.
Let n = deg(f ), m = deg(g), α = sgn(f ), β = sgn(g).

We give the proof
by induction on n = deg(f ). If n < m, set q = 0 and r = f . If n ≥ m, we
note that f1 = f − αβ−1T n−mg has smaller degree than f . By induction,
there exist q1, r1 ∈ A such that f1 = q1g + r1 with r1 being either 0 or
with degree less than deg(g). In this case, set q = αβ−1T n−m + q1 and
r = r1 and we are done.
If f = qg + r = q′ g + r ′ , then g divides r − r ′ and by degree
considerations we see r = r ′ . In this case, qg = q′ g so q = q′ and the
uniqueness is established.
This proposition shows that A is an Euclidean domain and thus a
principal ideal domain and a unique factorization domain. It also allows a
quick proof of the finiteness of the residue class rings.
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Finiteness of the Residue Class Rings

Proposition (1.2)
Suppose g ∈ A and g 6= 0. Then A/gA is a finite ring with qdeg(g)

elements.

Proof.
Let m = deg(g). By Proposition 1.1 one easily verifies that
{r ∈ A : deg(r) < m} is a complete set of representatives for
A/gA. Such elements look like

r = α0T m−1 + α1T m−2 + · · ·+ αm−1 with αi ∈ Fq.

Since the αi vary independently through Fq there are qm such
polynomials and the result follows.
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Norm of a Polynomial

Definition (Norm of a Polynomial)
Let g ∈ A. If g 6= 0, set |g | = qdeg(g). If g = 0, set |g | = 0.

|g | is a measure of the size of g , the norm of g . Note that if n is
an ordinary integer, then its usual absolute value, |n|, is the
number of elements in Z/nZ. Similarly, |g | is the number of
elements in A/gA. It is immediate the following properties:

• |fg | = |f ||g |.
• |f + g | ≤ max(|f |, |g |), with equality holding if |f | 6= |g |.
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Group of Units

It is a simple matter to determine the group of units in A, A∗. If g
is a unit, then there is an f such that fg = 1. Thus,
0 = deg(1) = deg(f ) + deg(g) and so deg(f ) = deg(g) = 0.

The
only units are non-zero constants and each such constant is a unit.

Proposition (1.3)
The group of units in A is F∗q. In particular, it is a finite cyclic
group with q − 1 elements.

Proof.
The only thing left to prove is the cyclicity of F∗q. This follows
from the very general fact that a finite subgroup of the
multiplicative group of a field is cyclic.
In what follows we will see that the number q − 1 often occurs
where the number 2 occurs in ordinary number theory. This stems
from the fact that the order of Z∗ is 2.
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Irreducible Polynomials
Definition (irreducible polynomials)
A non-constant polynomial f ∈ A is irreducible if it cannot be written as
a product of two polynomials, each of positive degree.

Since every ideal in A is principal, we see that a polynomial is irreducible
if and only if it is prime. For the definitions of divisibility, prime,
irreducible, etc., see the book by Ireland and Rosen “A Classical
Introduction to Modern Number Theory”.
Every non-zero polynomial can be written uniquely as a non-zero
constant times a monic polynomial. Thus, every ideal in A has a unique
monic generator. This should be compared with the statement that every
non-zero ideal in Z has a unique positive generator. Finally, the unique
factorization property in A can be sharpened to the following statement.
Every f ∈ A, f 6= 0, can be written uniquely in the form

f = αPe1
1 Pe2

2 · · ·Pet
t ,

where α ∈ F∗q, each Pi is a monic irreducible, Pi 6= Pj for i 6= j , and each
ei is a non-negative integer.
The letter P will often be used for a monic irreducible polynomial in A.
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The rings A/fA

The next order of business is to investigate the structure of the rings
A/fA and the unit groups (A/fA)∗.

Proposition (Chinese Remainder Theorem)
Let m1,m2, . . . ,mt be elements of A which are pairwise relatively prime.
Let m = m1m2 . . .mt and φi be the natural homomorphism from A/mA
to A/mi A. Then, the map φ : A/mA→ A/m1A⊕A/m2A⊕ · · · ⊕A/mtA
given by

φ(a) = (φ1(a), φ2(a), . . . , φt(a))

is a ring isomorphism.

Proof.
This is a standard result which holds in any principal ideal domain
(properly formulated it holds in much greater generality).
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The rings A/fA

Corollary
The same map φ restricted to the units of A, A∗, gives rise to a
group isomorphism

(A/mA)∗ ' (A/m1A)∗ × (A/m2A)∗ × · · · × (A/mtA)∗.

Proof.
This is a standard exercise. See Ireland and Rosen (Proposition
3.4.1).
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Now, let f ∈ A be non-zero and not a unit and suppose that
f = αPe1

1 Pe2
2 · · ·P

et
t is its prime decomposition. From the previous

considerations we have

(A/fA)∗ ' (A/Pe1
1 A)∗ × (A/Pe2

2 A)∗ × · · · × (A/Pet
t A)∗.

This isomorphism reduces our task to that of determining the
structure of the groups (A/PeA)∗ where P is an irreducible
polynomial and e is a positive integer. When e = 1 the situation is
very similar to that in Z.
Proposition (1.5)
Let P ∈ A be an irreducible polynomial. Then, (A/PA)∗ is a cyclic
group with |P| − 1 elements.

Proof.
Since A is a principal ideal domain, PA is a maximal ideal and so
A/PA is a field. A finite subgroup of the multiplicative group of a
field is cyclic. Thus (A/PA)∗ is cyclic. That the order of this group
is |P| − 1 is immediate.
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Contrast between A = Fq[T ] and Z

We now consider the situation when e > 1.

Here we encounter
something which is quite different in A from the situation in Z. If
p is an odd prime number in Z then it is a standard result that
(Z/peZ)∗ is cyclic for all positive integers e. If p = 2 and e ≥ 3
then (Z/2eZ)∗ is the direct product of a cyclic group of order 2 and
a cyclic group of order 2e−2. The situation is very different in A.

Proposition (1.6)
Let P ∈ A be an irreducible polynomial and e a positive integer.
The order of (A/PeA)∗ is |P|e−1(|P| − 1). Let (A/PeA)(1) be the
kernel of the natural map from (A/PeA)∗ to (A/PA)∗. It is a
p-group of order |P|e−1. As e tends to infinity, the minimal
number of generators of (A/PeA)(1) tends to infinity.



Contrast between A = Fq[T ] and Z

We now consider the situation when e > 1. Here we encounter
something which is quite different in A from the situation in Z.

If
p is an odd prime number in Z then it is a standard result that
(Z/peZ)∗ is cyclic for all positive integers e. If p = 2 and e ≥ 3
then (Z/2eZ)∗ is the direct product of a cyclic group of order 2 and
a cyclic group of order 2e−2. The situation is very different in A.

Proposition (1.6)
Let P ∈ A be an irreducible polynomial and e a positive integer.
The order of (A/PeA)∗ is |P|e−1(|P| − 1). Let (A/PeA)(1) be the
kernel of the natural map from (A/PeA)∗ to (A/PA)∗. It is a
p-group of order |P|e−1. As e tends to infinity, the minimal
number of generators of (A/PeA)(1) tends to infinity.



Contrast between A = Fq[T ] and Z

We now consider the situation when e > 1. Here we encounter
something which is quite different in A from the situation in Z. If
p is an odd prime number in Z then it is a standard result that
(Z/peZ)∗ is cyclic for all positive integers e. If p = 2 and e ≥ 3
then (Z/2eZ)∗ is the direct product of a cyclic group of order 2 and
a cyclic group of order 2e−2. The situation is very different in A.

Proposition (1.6)
Let P ∈ A be an irreducible polynomial and e a positive integer.
The order of (A/PeA)∗ is |P|e−1(|P| − 1). Let (A/PeA)(1) be the
kernel of the natural map from (A/PeA)∗ to (A/PA)∗. It is a
p-group of order |P|e−1. As e tends to infinity, the minimal
number of generators of (A/PeA)(1) tends to infinity.



Contrast between A = Fq[T ] and Z

We now consider the situation when e > 1. Here we encounter
something which is quite different in A from the situation in Z. If
p is an odd prime number in Z then it is a standard result that
(Z/peZ)∗ is cyclic for all positive integers e. If p = 2 and e ≥ 3
then (Z/2eZ)∗ is the direct product of a cyclic group of order 2 and
a cyclic group of order 2e−2. The situation is very different in A.

Proposition (1.6)
Let P ∈ A be an irreducible polynomial and e a positive integer.
The order of (A/PeA)∗ is |P|e−1(|P| − 1). Let (A/PeA)(1) be the
kernel of the natural map from (A/PeA)∗ to (A/PA)∗. It is a
p-group of order |P|e−1. As e tends to infinity, the minimal
number of generators of (A/PeA)(1) tends to infinity.



Euler’s Φ-function
We have developed more than enough material to enable us to give
interesting analogues of the Euler φ-function and the little theorems of
Euler and Fermat.

Definition (Euler’s φ-function in A)
To begin with, let f ∈ A be a non-zero polynomial. Define Φ(f ) to be
the number of elements in the group (A/fA)∗.
We can give another characterization of this number which makes the
relation to the Euler φ-function even more evident. We have seen that
{r ∈ A : deg(r) < deg(f )} is a set or representatives for A/fA. Such an r
represents a unit in A/fA if and only if it is relatively prime to f . Thus
Φ(f ) is the number of non-zero polynomials of degree less than deg(f )
and relatively prime to f , i.e.

Φ(f ) =
∑

k monic
deg(k)<deg(f )

gcd(f ,k)=1
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Proposition (1.7)

Φ(f ) = |f |
∏
P|f

(
1− 1
|P|

)
.

Proof.
Let f = αPe1

1 Pe2
2 . . .Pet

t be the prime decomposition of f . By the
corollary of the Chinese Remainder Theorem and by Proposition
1.6, we see that

Φ(f ) =
t∏

i=1
Φ(Pei

i ) =
t∏

i=1
(|Pi |ei − |Pi |ei−1),

from which the result follows immediately.
The similarity of the formula in this proposition to the classical
formula φ(n) = n

∏
p|n(1− p−1) is striking.
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Euler’s little theorem

Proposition (Euler’s little theorem)
If f ∈ A, f 6= 0, and a ∈ A is relatively prime to f , i.e., (a, f ) = 1, then

aΦ(f ) ≡ 1(modf ).

Proof.
The group (A/fA)∗ has Φ(f ) elements. The coset of a modulo f , a, lies
in this group. Thus, aΦ(f ) = 1 and this is equivalent to the congruence in
the proposition.
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Fermat’s little theorem

Corollary (Fermat’s little theorem)
Let P ∈ A be irreducible and a ∈ A be a polynomial not divisible
by P. Then,

a|P|−1 ≡ 1(modP).

Proof.
Since P is irreducible, it is relatively prime to a if and only if it
does not divide a. The corollary follows from the proposition and
the fact that for an irreducible P, Φ(P) = |P| − 1 (Proposition
1.5).
The theorems above play the same very important role in this
context as they do in elementary number theory. By way of
illustration we proceed to the analogue of Wilson’s theorem. Recall
that this states that (p − 1)! ≡ −1(modp) where p is a prime
number.
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Wilson’s theorem in Fq[T ]

Proposition (1.9)
Let P ∈ A be irreducible of degree d. Suppose X is an indeterminate.
Then,

X |P|−1 − 1 ≡
∏

0≤deg(f )<d

(X − f )(modP).

Corollary (1)
Let d divide |P| − 1. The congruence X d ≡ 1(modP) has exactly d
solutions. Equivalently, the equation X d = 1 has exactly d solutions in
(A/PA)∗.
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Wilson’s theorem in Fq[T ]

Corollary (Wilson’s theorem)
With the same notation,∏

0≤deg(f )<deg(P)

f ≡ −1(modP).

Proof.
Just set X = 0 in the proposition. If the characteristic of Fq is odd
then |P| − 1 is even and the result follows. If the characteristic is 2
then the result also follows since in characteristic 2 we have
−1 = 1.
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d-th power residues
As a final topic in this section we give some theory of d-th power
residues.

This will be of importance for the next class when we will
discuss quadratic reciprocity and more general reciprocity laws for A.
Definition (d-th power residue)
If f ∈ A is of positive degree and a ∈ A is relatively prime to f , we say
that a is a d-th power residue modulo f if the equation xd ≡ a(modf ) is
solvable in A. Equivalently, a is a d-th power in (A/fA)∗.
Suppose f = αPe1

1 Pe2
2 · · ·P

et
t is the prime decomposition of f . Then it is

easy to check that a is a d-th power residue modulo f if and only if a is a
d-th power residue modulo Pei

i for all i between 1 and t. This reduces
the problem to the case where the modulus is a prime power.
Proposition (1.10)
Let P be irreducible and a ∈ A not divisible by P. Assume d divides
|P| − 1. The congruence X d ≡ a(modPe) is solvable if and only if

a
|P|−1

d ≡ 1(modP).

There are Φ(Pe)
d d-th power residues modulo Pe .
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Dictionary between Fq[T ] and Z

So far we have the following correspondence:

Number Fields Function Fields
Z A = Fq[T ]
Q k = Fq(T )

positive integers A+ monic polynomials
prime numbers P monic irreducible polynomials

absolute value |n| norm of a polynomial |f | = qdeg(f )

n = pe1
1 pe2

2 . . . pet
t f = αPe1

1 Pe2
2 . . .Pet

t
2 q-1

φ(n) =
∑n

k=1
(k,n)=1

1 Φ(f ) =
∑

k monic
deg(k)<deg(f )

gcd(f ,k)=1

1
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Zeta Function and Primes in A = Fq[T ]

• We now discuss properties of primes and prime decomposition
in A.

• The discussion will be facilitated by the use of the zeta
function associated to A.

• This zeta function is an analogue of the classical Riemann
zeta function ζ(s).

• In A, the zeta function is is a much simpler object. This will
lead us to a sharp version of the prime number theorem.

• When we investigate arithmetic in more general function fields
than Fq(T ), the corresponding zeta function will turn out to
be a much more subtle invariant.
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Remembering the Riemann zeta function
The classical Riemann zeta function is defined by

ζ(s) =
∞∑

n=1

1
ns , R(s) > 1. (3.1)

Some properties:

• analytic continuation to C except for

• simple pole at s = 1 with residue 1.
• Functional Equation. If ξ(s) = π−s/2Γ( s

2 )ζ(s). Then

ξ(s) = ξ(1− s),

where Γ(s) is the classical Gamma function.
• ζ(−2n) = 0 for n ∈ Z+. (trivial zeros)

The Riemann Hypothesis: All the non-trivial zeros of ζ(s) have
real part equals 1/2.
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Zeta Function in A

Definition
The zeta function of A, denoted ζA(s), is defined for R(s) > 1 by
the infinite series

ζA(s) =
∑
f ∈A

f monic

1
|f |s . (3.2)

There are exactly qd monic polynomials of degree d in A, so one
has

∑
deg(f )≤d

|f |−s = 1 +
q
qs +

q2

q2s + · · ·+ qd

qds ,

and consequently
ζA(s) =

1
1− q1−s . (3.3)
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Properties of ζA(s)

• Analytic continuation. By equation (3.3), ζA(s) is well defined
for the whole complex plane C except for

• Simple pole at s = 1 with residue 1
log(q) .

• Functional Equation. Let ΓA(s) = (1− q−s)−1 be the
Gamma function over A. Set ξA(s) = q−sΓA(s)ζA(s). Then it
is easy to check that

ξA(s) = ξA(1− s).

As opposed to the case of the classical zeta-function, the proofs
are very easy for ζA(s). Later we will consider generalizations of
ζA(s) in the context of function fields over finite fields. Similar
statements will hold, but the proofs will be more difficult and will
be based on the Riemann-Roch theorem for algebraic curves.
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Euler Product

Euler noted that the unique decomposition of integers into
products of primes leads to the following identity for the Riemann
zeta-function:

ζ(s) =
∏

p prime
p>0

(
1− 1

ps

)−1
.

This is valid for R(s) > 1. The exact same reasoning (which we
won’t repeat here) leads to the following identity:

ζA(s) =
∏

P monic
irreducible

(
1− 1
|P|s

)−1
. (3.4)

One can immediately put this Equation in use.
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Primes in Fq[T ]

Proposition
There are infinitely many monic irreducibles in Fq[T ].

Proof.
Suppose there were only finitely many irreducible polynomials in A.
The right-hand side of the Euler product would then be defined at
s = 1 and even have a non-zero value there. On the other hand,
the left hand side has a pole at s = 1. This shows there are
infinitely many irreducibles in A.
One doesn’t need the zeta function to show this. Euclid’s proof
that there are infinitely many prime integers works equally well in
A.
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Prime Number Theorem
Let x be a real number and π(x) be the number of prime numbers
less than or equal to x .

Theorem (Prime Number Theorem (1896) - Hadamard and de
la Vallée-Poussin)

π(x) ∼ x
log(x)

.

Let d be a positive integer and x = qd . We will show that the
number of monic irreducibles P such that |P| = x is asymptotic to
x/ logq(x) which is clearly in the spirit of the classical result above.
Proposition (Gauss)
Let ad be the number of monic irreducibles of degree d. Then∑

d |n
dad = qn (3.5)
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Proof.
Define ad to be the number of monic irreducibles of degree d .

Then, from the equation defining ζA(s) we find

ζA(s) =
∞∏

d=1
(1− q−ds)−ad .

If we recall that ζA(s) = (1− q1−s)−1 and substitute u = q−s

(note that |u| < 1 if and only if R(s) > 1) we obtain the identity

1
1− qu =

∞∏
d=1

(1− ud )−ad .

Taking the logarithmic derivative of both sides and multiplying the
result by u yields

qu
1− qu =

∞∑
d=1

dad ud

1− ud .

Finally, expand both sides into power series using the geometric
series and compare coefficients of un.
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Prime Number Theorem for Polynomials
Theorem
Let πA(n) denote the number of monic irreducible polynomials in A = Fq[T ] of degree
n. Then,

πA(n) =
qn

n
+ O(

qn/2

n
). (3.6)

Proof.
We apply the Möbius inversion formula to the formula given in the proposition to
obtain that

an =
1
n

∑
d|n

µ(d)q
n
d .

From equation above we see that the highest power of q that occurs is qn and the
next highest power that may occur is qn/2 (this occurs if and only if 2 | n). All the
other terms have the form ±qm where m ≤ n

3 . The total number of terms is∑
d|n |µ(d)|, which is easily seen to be 2t , where t is the number of distinct prime

divisors of n. . Let p1, p2, . . . , pt be the distinct primes dividing n. Then,
2t ≤ p1p2 . . . pt ≤ n. Thus, we have the following estimate:∣∣∣an −

qn

n

∣∣∣ ≤ qn/2

n
+ qn/3.

Noting that an = πA(n) this establishes the theorem.
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We apply the Möbius inversion formula to the formula given in the proposition to
obtain that

an =
1
n

∑
d|n

µ(d)q
n
d .

From equation above we see that the highest power of q that occurs is qn and the
next highest power that may occur is qn/2 (this occurs if and only if 2 | n). All the
other terms have the form ±qm where m ≤ n

3 . The total number of terms is∑
d|n |µ(d)|, which is easily seen to be 2t , where t is the number of distinct prime

divisors of n.

. Let p1, p2, . . . , pt be the distinct primes dividing n. Then,
2t ≤ p1p2 . . . pt ≤ n. Thus, we have the following estimate:∣∣∣an −

qn

n

∣∣∣ ≤ qn/2

n
+ qn/3.

Noting that an = πA(n) this establishes the theorem.



Prime Number Theorem for Polynomials
Theorem
Let πA(n) denote the number of monic irreducible polynomials in A = Fq[T ] of degree
n. Then,

πA(n) =
qn

n
+ O(

qn/2

n
). (3.6)

Proof.
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We apply the Möbius inversion formula to the formula given in the proposition to
obtain that

an =
1
n

∑
d|n

µ(d)q
n
d .

From equation above we see that the highest power of q that occurs is qn and the
next highest power that may occur is qn/2 (this occurs if and only if 2 | n). All the
other terms have the form ±qm where m ≤ n

3 . The total number of terms is∑
d|n |µ(d)|, which is easily seen to be 2t , where t is the number of distinct prime

divisors of n. . Let p1, p2, . . . , pt be the distinct primes dividing n. Then,
2t ≤ p1p2 . . . pt ≤ n. Thus, we have the following estimate:∣∣∣an −

qn

n

∣∣∣ ≤ qn/2

n
+ qn/3.

Noting that an = πA(n) this establishes the theorem.



Prime Number Theorem for Polynomials

We have that
πA(n) =

qn

n + O
(

qn/2

n

)
.

Note that if we set x = qn the right-hand side of this equation is
x/ logq(x) + O(

√
x/ logq(x)) which looks like the conjectured

precise form of the classical prime number theorem. This still not
proven. It depends on the truth of the Riemann hypothesis.
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The number of square-free polynomials
We will use the zeta function for other counting problems.

What is the number of
square-free monics of degree n?

Proposition
Let bn = # {f ∈ A,monic, deg(f ) = n, f square-free}. Then b1 = q and for n > 1,
bn = qn(1− q−1).

Proof.
Consider the product ∏

P

(
1 +

1
|P|s

)
=
∑ δ(f )

|f |s
.

As usual, the product is over all monic irreducibles P and the sum is over all monics f .
The function δ(f ) is 1 when f is square-free, and 0 otherwise. This is an easy
consequence of unique factorization in A and the definition of square-free. Making the
substitution u = q−s , the right-hand side of equation above becomes

∑∞
n=0 bnun.

Consider the identity 1 + w = (1− w2)/(1− w). If we substitute w = |P|−s and then
take the product over all monic irreducibles P, we see that the left-hand side is equal
to ζA(s)/ζA(2s) = (1− q1−2s )/(1− q1−s ). Putting everything in terms of u leads to
the identity

1− qu2

1− qu
=

∞∑
n=0

bnun.

Expand the left-hand side in a geometric series and compare the coefficients of un.
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Let us compare the previous result with what is known to be true
in Z.

• Let Bn be the number of positive square-free integers less
than or equal to n. Then,

lim
n→∞

Bn
n =

6
π2 .

• The probability that a positive integer is square-free is 6/π2.
• Now the probability that a monic polynomial of degree n is

square-free is bn/qn, and this is equals to (1− q−1) for n > 1.
• Thus the probability that a monic polynomial in A is

square-free is (1− q−1) = 1
ζA(2) .

• Note that 6/π2 = 1
ζ(2)
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Arithmetic Functions
Our goal now is to introduce analogues of some well-known
number-theoretic functions and to discuss their properties.

We have
already introduced the Euler’s Φ(f ) function.

Definition (Möbius Function)

µ(f ) =

{
0 if f is not square-free
(−1)t if f = αP1P2 . . .Pt .

(3.7)

Definition (Divisor Functions)
Let dk(f ) denote the k-fold divisor function.

dk(f ) =
∑

f1...fk =f
1,

i.e., dk(f ) is the number of ways to express f as a product of k factors.
If k = 2 then d2(f ) = d(f ) is the usual divisor function.



Arithmetic Functions
Our goal now is to introduce analogues of some well-known
number-theoretic functions and to discuss their properties. We have
already introduced the Euler’s Φ(f ) function.

Definition (Möbius Function)
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Arithmetic Functions
Definition (Sum of Divisors)

σ(f ) =
∑
g |f
|g |,

where the sum is over all monic divisors of f .

Definition (Liouville function)

λ(f ) =

{
1 if f = α, α ∈ F∗q
(−1)a1+···+ak if f = αPa1

1 Pa2
2 . . .Pak

k .
(3.8)

Note that λ(αf ) = λ(f ).

Definition (von Mangoldt function)

Λ(f ) =

{
logq |P| = deg(P) if f = Pk

0 otherwise.
(3.9)
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Multiplicative Functions
Some of these functions, like their counterparts, have the property of being
multiplicative.

Definition
A complex valued function F on A− {0} is called multiplicative if
F (fg) = F (f )F (g) whenever f and g are relatively prime. We assume F is 1 on
F∗q .
Let

f = αPe1
1 Pe2

2 . . .Pet
t

be the prime decomposition of f . If F is multiplicative,
F (f ) = F (Pe1

1 )F (Pe2
2 ) . . .F (Pet

t ).

Thus, a multiplicative function is completely determined by its values on prime
powers. Using multiplicativity, one can derive the following formulas
Proposition
Let the prime decomposition of f be given as above. Then,

1 d(f ) = (e1 + 1)(e2 + 1) . . . (et + 1).
2

σ(f ) =
|P1|e1+1 − 1
|P1| − 1

|P2|e2+1 − 1
|P2| − 1 · · · |Pt |et +1 − 1

|Pt | − 1 .
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Reviewing the Dictionary between Fq[T ]
and Z

Number Fields Function Fields
Z A = Fq[T ]

Q k = Fq(T )
positive integers A+ monic polynomials
prime numbers P monic irreducible polynomials

absolute value |n| norm of a polynomial |f | = qdeg(f )

n = pe1
1 pe2

2 . . . pet
t f = αPe1

1 Pe2...Pet
t

2
2 q-1

φ(n) =
∑n

k=1
(k,n)=1

1 Φ(f ) =
∑

k monic
deg(k)<deg(f )

gcd(f ,k)=1

1

n = pe1
1 . . . pet

t f = αPe1
1 . . .Pet

t
ζ(s) =

∑∞
n=1

1
ns ζA(s) =

∑
f monic

1
|f |s

ξ(s) = π−
s
2 Γ( s

2 )ζ(s) = ξ(1− s) ξA(s) = q−sΓA(s)ζA(s) = ξA(1− s)
ζ(s) has analytic continuation ζA(s) = (1− q1−s)−1

π(x) ∼ x
log(x)

πA(n) = qn

n + O( qn/2

n )

µ(n), dk (n), ϕ(n),Λ(n), λ(n) µ(f ), dk (f ),Φ(f ),Λ(f ), λ(f )
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