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The Dictionary between Fq[T ] and Z
Number Fields Function Fields

Z A = Fq[T ]

Q k = Fq(T )
positive integers A+ monic polynomials
prime numbers P monic irreducible polynomials

absolute value |n| norm of a polynomial |f | = qdeg(f )

n = pe1
1 pe2

2 . . . pet
t f = αPe1

1 Pe2
2 . . .Pet

t
2 q-1

φ(n) =
∑n

k=1
(k,n)=1

1 Φ(f ) =
∑

k monic
deg(k)<deg(f )

gcd(f ,k)=1

1

n = pe1
1 . . . pet

t f = αPe1
1 . . .Pet

t
ζ(s) =

∑∞
n=1

1
ns ζA(s) =

∑
f monic

1
|f |s

ξ(s) = π−
s
2 Γ( s

2 )ζ(s) = ξ(1− s) ξA(s) = q−sΓA(s)ζA(s) = ξA(1− s)
ζ(s) has analytic continuation ζA(s) = (1− q1−s)−1

π(x) ∼ x
log(x)

πA(n) = qn

n + O( qn/2

n )

µ(n), dk (n), ϕ(n),Λ(n), λ(n) µ(f ), dk (f ),Φ(f ),Λ(f ), λ(f )

We will extend this dictionary in this lecture.
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Averages of Arithmetic Functions in Fq[T ]

• We introduce the notion of the average values in the context of
polynomials.

Suppose h(x) is a complex valued function on N. Suppose the following
limit exists

lim
n→∞

1
n

n∑
k=1

h(n) = α.

We then define α to be the average value of the function h.
In the ring A = Fq[T ] the analogue of the positive integers is the set of
monic polynomials. Let h(x) be a function on the set of monic
polynomials. For n > 0 we define

Aven(h) =
1

qn

∑
f monic

deg(f )=n

h(f ).

This is the average value of h on the set of monic polynomials of degree
n.
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We define the average value of h to be limn→∞ Aven(h) provided
this limit exists.

It is an exercise to show that if the average value exists in the
sense just given, then it is also equal to the following limit:

lim
n→∞

1
1 + q + q2 + · · ·+ qn

∑
f monic

deg(f )≤n

h(f ).

This limit does not always exist. However, even when it doesn’t
exist, one can speak of the average rate of growth of h(f ). Define

H(n) =
∑

f monic
deg(f )=n

h(f ).

As we will see, the function H(n) sometimes behaves in a quite
regular manner even though the values h(f ) vary erratically.
We will use the method of Carlitz which uses Dirichlet series to
investigate the mean values of arithmetic functions in Fq[T ].
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Given a function h as previously, we define the associated Dirichlet
series to be

Dh(s) =
∑

f monic

h(f )

|f |s =
∞∑

n=0

H(n)

qns . (1.1)

In what follows, we will work in a formal manner with these series.
If one wants to worry about convergence, it is useful to remark
that if |h(f )| = O(|f |β), then Dh(s) converges for R(s) > 1 + β.
The proof just uses the comparison test and the fact that ζA(s)
converges for R(s) > 1.

The right hand side of equation above is simply
∑∞

n=0 H(n)un, so
the Dirichlet series in s becomes a power series in u = q−s whose
coefficients are the averages H(n).
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Average value of d(f )

Recall the function d(f ) which is the number of monic divisors of
f .

Let

D(n) =
∑

f monic
deg(f )=n

d(f ).

Then,

Proposition (2.5)
Dd (s) = ζA(s)2 = (1− qu)−2. Consequently, D(n) = (n + 1)qn.
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Proof.

ζA(s)2 =

(∑
h

1
|h|s

)(∑
g

1
|g |s

)

=
∑

f

( ∑
h,g

hg=f

1
)

1
|f |s =

∑
f

d(f )

|f |s = Dd (s).

This proves the first assertion. To prove the second assertion,
notice

Dd (s) =
∞∑

n=0
D(n)un = (1− qu)−2.

It is easily seen that (1− qu)−2 =
∑∞

n=0(n + 1)qnun. Thus, the
second assertion follows by comparing the coefficients of un on
both sides of this identity.
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A Few Remarks

Notice that Aven(d) = n + 1 so the average value of d(f ) in the
way we have defined it doesn’t exist. On average, the number of
divisors of f grows with the degree.

If we set x = qn then our result reads D(n) = x logq(x) + x which
resembles closely the analogues result for the integers

n∑
k=1

d(k) = x log(x) + (2γ − 1)x + O(
√

x).

This formula is due to Dirichlet. It is a famous problem in number
theory to find the best possible error term. In the polynomial case,
there is no error term!This is because of the very simple nature of
the zeta function ζA(s).
Similar sums in the general function field context lead to more
difficult problems. We shall have more to say later in this course.
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Dirichlet Product
It is an interesting fact that many multiplicative functions have
corresponding Dirichlet series which can be simply expressed in
terms of the zeta function. We have just seen this for d(f ).

More
generally, let h(f ) be multiplicative. The multiplicativity of h(f )
leads to the identity

Dh(s) =
∏
P

( ∞∑
k=0

h(Pk)

|P|ks

)
.

As an example, consider the function µ(f ). Since∑∞
k=0

µ(Pk )
|P|ks = 1− |P|−s , we find Dµ(s) = ζA(s)−1.

Let λ and ρ be two complex valued functions on the monic
polynomials. We define their Dirichlet product by the following
formula (all polynomials involved are assumed to be monic)

(λ ∗ ρ)(f ) =
∑
h,g

hg=f

λ(h)ρ(g).
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Proposition

Dλ(s)Dρ(s) = Dλ?ρ(s).

Proof.
The calculation is just like in the previous proposition.

Dλ(s)Dρ(s) =

(∑
h

λ(h)

|h|s

)(∑
g

ρ(g)

|g |s

)

=
∑

f
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hg=f

λ(h)ρ(g)

)
1
|f |s

= Dλ∗ρ(s). (1.2)
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We now proceed to calculate the average value of Φ(f ).

We have seen
that

Φ(f ) = |f |
∏
P|f

(1− |P|−1).

Define λ(f ) = |f |. A moment’s reflection shows that

|f |
∏
P|f

(1− |P|−1) =
∑
g|f

µ(g)|f /g | = (µ ∗ λ)(f ).

Thus, by the previous proposition we find

DΦ(s) = Dµ∗λ(s) = Dµ(s)Dλ(s) = ζA(s)−1ζA(s − 1). (1.3)

Proposition ∑
deg(f )=n
f monic

Φ(f ) = q2n(1− q−1).
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Proof of Proposition

Proof.
Let A(n) be the left-hand side of the above equation.

Then, with
the usual transformation u = q−s , Equation (1.3) becomes

∞∑
n=0

A(n)un =
1− qu
1− q2u .

Now, expand (1− q2u)−1 into a power series using the geometric
series, multiply out, and equate the coefficients of un on both
sides. One finds A(n) = q2n − q2n−1. The result follows.
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We do a similar analysis to the function σ(f ).

Let 1(f ) denote the
function which is identically equal to 1 on all monics f . For any
complex valued function λ on monics, we see immediately that
(1 ∗ λ)(f ) =

∑
g |f λ(g). In particular, if λ(f ) = |f |, then

(1 ∗ λ)(f ) = σ(f ). Thus,

Dσ(s) = D1∗λ(s) = D1(s)Dλ(s) = ζA(s)ζA(s − 1). (1.4)
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Proof of Proposition

Proof.
Define S(n) to be the sum on the left hand side of the above
equation.

Then, making the substitution u = q−s in Equation
(1.4) we find

∞∑
n=0

S(n)un = (1− qu)−1(1− q2u)−1.

Expanding the two terms on the right using the geometric series,
multiplying out, and collecting terms, we deduce

S(n) =
∑

k+l=n
qkq2l .

The result follows after applying a little algebra.
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The Reciprocity Law
Let P ∈ A be an irreducible polynomial and d a divisor of q− 1 (recall that q is
the cardinality of Fq).

If a ∈ A and P does not divide a, then, by Proposition
1.10 from the first lecture, we know xd ≡ a(mod P) is solvable if and only if

a
|P|−1

d ≡ 1(mod P).

The left-hand side of this congruence is, in any case, an element of order
dividing d in (A/PA)∗. Since F∗q → (A/PA)∗ is one to one, there is a unique
α ∈ F∗q such that

a
|P|−1

d ≡ α(mod P).

Definition
If P does not divide a, let (a/P)d be the unique element of F∗q such that

a
|P|−1

d ≡
( a

P

)
d

(mod P).

If P | a define (a/P)d = 0. The symbol (a/P)d is called the d-th power
residue symbol.
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When d = 2, the symbol (a/P)d is just like the Legendre symbol
of elementary number theory.

The situation is a bit more flexible in
A since A∗ = F∗q is cyclic of order q − 1, whereas Z∗ is just {±1}.
Note that the value of the residue symbol is in the finite field Fq
and not in the complex numbers.

Proposition
The d-th power residue symbol has the following properties:

1
( a

P
)

d =
(

b
P

)
d

if a ≡ b(mod P).

2
(

ab
P

)
d

=
( a

P
)

d

(
b
P

)
d

.

3
( a

P
)

d = 1 iff xd ≡ a(mod P) is solvable.
4 Let ζ ∈ F∗q be an element of order dividing d. There exists an

a ∈ A such that
( a

P
)

d = ζ.
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Proof.
The first assertion follows immediately from the definition.

The second follows
from the definition and the fact that if two constants are congruent modulo P
then they are equal. The third assertion follows from the definition and
Proposition 1.10 (first lecture). Finally, note that the map from (A/PA)∗ → F∗q
given by a→ (a/P)d is a homomorphism whose kernel is the d-th powers in
(A/PA)∗ by part 3. Since (A/PA)∗ is a cyclic group of order |P| − 1, the order
of the kernel is (|P| − 1)/d . Consequently, the image has order d and part 4
follows from this.
It is an easy matter to evaluate the residue symbol on a constant.
Proposition (3.2)
Let α ∈ Fq. Then, (

α

P

)
d

= α
q−1

d deg(P).

Proof.
Let δ = deg(P). Then,

|P| − 1
d =

qδ − 1
d = (1 + q + · · ·+ qδ−1)

q − 1
d .

The result now follows from the definition and the fact that for all α ∈ Fq we
have αq = α. Notice that if d | deg(P) every constant is automatically a d-th
power residue modulo P.
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We are now in a position to state the reciprocity law.

Theorem (The d-th power reciprocity law)
Let P and Q be monic irreducible polynomials of degrees δ and ν
respectively. Then,(Q

P

)
d

= (−1)
q−1

d δν
(P

Q

)
d
.



We are now in a position to state the reciprocity law.

Theorem (The d-th power reciprocity law)
Let P and Q be monic irreducible polynomials of degrees δ and ν
respectively. Then,(Q

P

)
d

= (−1)
q−1

d δν
(P

Q

)
d
.



Proof of the Theorem

Let’s define (a/P) = (a/P)q−1.

Then (a/P)d = (a/P)
q−1

d . The theorem would
follow in full generality if we could show(Q

P

)
= (−1)δν

(P
Q

)
,

since the general result would follow by raising both sides to the (q − 1)/d
power. Let α be a root of P and β a root of Q. Let F

′
be a finite field which

contains Fq, α, and β. Using the theory of finite fields we find

P(T ) = (T − α)(T − αq) . . . (T − αqδ−1
) (2.1)

and
Q(T ) = (T − β)(T − βq) . . . (T − βqν−1

). (2.2)
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Continuation of Proof
We now take congruences in the ring A

′
= F

′
[T ].

Note that if f (T ) ∈ A
′

we
have f (T ) ≡ f (α)(mod (T − α)). Also note that if g(T ) ∈ A then
g(T )q = g(T q) which follows readily from the fact that the coefficients of
g(T ) are in Fq. From this remark, and the definition, we compute that (Q/P)
is congruent to

Q(T )1+q+···+qδ−1
≡ Q(T )Q(T q) · · ·Q(T qδ−1

)

≡ Q(α)Q(αq) · · ·Q(αqδ−1
)(mod (T − α)). (2.3)

By symmetry this congruence holds modulo (T − αqi
) for all i and it follows

that it holds modulo P. Combining this result with equation (2.3) yields the
following congruence:(Q

P

)
≡

δ−1∏
i=0

ν−1∏
j=0

(αqi
− βqj

)(mod P).

Both sides of this congruence are in F
′

so they must be equal. Thus,(Q
P

)
=

δ−1∏
i=0

ν−1∏
j=0

(αqi
− βqj

) = (−1)δν
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j=0
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i=0

(βqj
− αqi

) = (−1)δν
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Q

)
.

This concludes the proof.
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As in the classical theory, it is convenient to extend the definition
of the d-th power reciprocity symbol to the case where P is
replaced with an arbitrary non-zero element b ∈ A.

Definition
Let b ∈ A, b 6= 0, and b = βQf1

1 Qf2
2 . . .Qfs

s be the prime
decomposition of b. If a ∈ A, define

(a
b

)
d

=
s∏

j=1

(
a

Qj

)fj

d
. (2.4)

Notice that this definition ignores β = sgn(b) and so the symbol
only depends on the principal ideal bA generated by b. The basic
properties of this extended symbol are easily derived from those of
the d-th power residue symbol.
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(a
b

)
d

=
s∏

j=1

(
a

Qj

)fj

d
. (2.4)

Notice that this definition ignores β = sgn(b) and so the symbol
only depends on the principal ideal bA generated by b. The basic
properties of this extended symbol are easily derived from those of
the d-th power residue symbol.



Proposition (3.4)
The symbol (a/b)d has the following properties.

1 If a1 ≡ a2(mod b) then (a1/b)d = (a2/b)d .
2 (a1a2/b)d = (a1/b)d (a2/b)d .
3 (a/b1b2)d = (a/b1)d (a/b2)d .
4 (a/b)d 6= 0 iff (a, b) = 1 (a is relatively prime to b).
5 If xd ≡ a(mod b) is solvable, then (a/b)d = 1, provided that

(a, b) = 1.

Proof.
Properties 1–4 follow from the definition and the properties of the
symbol (a/P)d . To show property 5, suppose cd ≡ a(mod b).
Then, by properties 1 and 2, (a/b)d = (cd/b)d = (c/b)d

d = 1.
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It is useful to have a form of the reciprocity law which works for
arbitrary (i.e., not necessarily monic or irreducible) elements of A.

For f ∈ A, f 6= 0, define sgnd (f ) to be the leading coefficient of f
raised to the q−1

d power.

Theorem (The general reciprocity law)
Let a, b ∈ A be relatively prime, non-zero elements. Then,(a

b

)
d

(b
a

)−1

d
= (−1)

q−1
d deg(a)deg(b)sgnd (a)deg(b)sgnd (b)−deg(a).

Proof.
When a and b are monic irreducibles this reduces to Theorem on
the d-th power reciprocity law. In general, the proof proceeds by
appealing to Proposition 3.2, the theorem on the d-th power
reciprocity law, the definitions, and the fact that the degree of a
product of two polynomials is equal to the sum of their
degrees.
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A Brief Discussion

The importance of the reciprocity law lies in the fact that it relates two natural
questions.

Given a polynomial m of positive degree, what are the d-th powers
modulo m? Since (A/mA)∗ is finite, one can answer this question in principle
by just writing down the elements of (A/mA)∗, raising them to the d-th power,
and making a list of the results. The answer will be a list of cosets or residue
classes modulo m. In practice this may be hard because of the amount of
calculation involved. One can appeal to the structure of (A/mA)∗ to find
shortcuts.
Parenthetically, it is an interesting question to determine the number of d-th
powers modulo m. Recall that we are assuming d | (q − 1). Under this
assumption, the answer is Φ(m)/dλ(m), where λ(m) is the number of distinct
monic prime divisors of m. This follows from a proposition from last lecture
and the Chinese Remainder Theorem.
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A Brief Discussion - Continuation

Now let’s turn things around somewhat. Given m, find all primes P such that
m is a d-th power modulo P. It turns out that there are infinitely many such
primes, so that it is not possible to answer the question by making a list. One
has to characterize the primes with this property in some natural way. This is
what the reciprocity law allows us to do. For simplicity, we will assume that m
is monic. It is no loss of generality to assume that all the primes we deal with
are monic as well. Let {a1, a2, . . . , at} be coset representatives for the classes in
(A/mA)∗ which have the property (a/m)d = 1. If there is a b ∈ A such that
(b/m)d = −1 let {b1, b2, . . . , bt} be coset representatives for all classes with
this property.
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Proposition (3.6)
With the previous assumptions we have

1 If deg(m) is even, (q − 1)/d is even, or p = char(F ) = 2, m is
a d-th power modulo P iff P ≡ ai (mod m) for some
i = 1, 2, . . . , t.
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A number of interesting number-theoretic questions are of the
following form: if a certain property holds modulo all but finitely
many primes, does it hold in A?

One such property is that of being
a d-th power. In this case the question has a positive answer. The
key to the proof, as we shall see, is the reciprocity law.

Theorem (3.7)
Let m ∈ A be a polynomial of positive degree. Let d be an integer
dividing q − 1. If xd ≡ m(mod P) is solvable for all but finitely
many primes P, then m = md

0 for some m0 ∈ A.
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Dirichlet L-Series and Primes in
Arithmetic Progression

• In this section we will prove the analogue of Dirichlet’s famous
theorem about primes in arithmetic progression. This was first
proved by H. Kornblum and E. Landau.

• The proof of the theorem uses the theory of Dirichlet series
over k = Fq(T ).

• The main difficulty is to proof that L(1, χ) 6= 0 for non-trivial
characters χ.

• To conclude we give a refinement of Dirichlet’s theorem,
which shows that given an arithmetic progression
{a + mx | a,m ∈ A, (a,m) = 1} , then for all sufficiently large
integers N, there is a prime P of degree N which lies in this
arithmetic progression.
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Dirichlet density of primes in A
The Dirichlet density of a set of primes in A gives a quantitative measure how
big such a set is.

Let f (s) and g(s) be two complex valued functions of a real
variable s both defined on some open interval (1, b). We define f ≈ g to mean
that f − g remains bounded as s → 1 inside (1, b).

Proposition (4.1)
We have

log ζA(s) ≈ log
( 1

s − 1

)
≈
∑

P

|P|−s ,

where the sum is over all irreducible monic polynomials P.

Proof.
Since ζA(s) = (1− q1−s)−1 we see that lims→1(s − 1)ζA(s) = 1/ log(q). Thus,
log ζA(s)− log(s − 1)−1 is bounded as s → 1, which establishes the first
relation. As for the second relation we see, using the Euler product for ζA(s)

log ζA(s) = −
∑

P

log(1− |P|−s) =
∑
P,k

|P|−ks

k =
∑

P

|P|0s +
∑

P,k≥2

|P|−ks

k .

Now,
∑

k≥2 |P|
−ks/k <

∑
k≥2 |P|

−ks = |P|−2s(1− |P|−s)−1 < 2|P|−2s . Thus
the last sum in the above equation is bounded by 2ζA(2). This shows that
log ζA(s) ≈

∑
P |P|

−s which completes the proof.
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Definition
The word “prime” will denote a monic irreducible in A.

Let S be a
set of primes in A. The Dirichlet density of S, δ(S) is defined to be

δ(S) = lim
s→1

∑
P∈S |P|−s∑

P |P|−s ,

provided that the limit exists. The limit is assumed to be taken
over the values of s lying in a real interval (1, b).

Remark
1 0 ≤ δ(S) ≤ 1.
2 If S = S1 ∪ S2, then δ(S) = δ(S1) + δ(S2) provided S1 and
S2 both have densities and are disjoint.

3 The Dirichlet density of a finite set is zero.

Thus, Dirichlet density is something like a probability measure.
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If the Dirichlet density of a set exists and is positive, we are assured
that the set is infinite.

One of the two main results in this section
asserts that if a and m are relatively prime polynomials, then the
Dirichlet density of the set S = {P ∈ A|P prime,P ≡ a(mod m)}
exists and is equal to 1/Φ(m).

Definition
Let m be an element of A of positive degree. A Dirichlet
character modulo m is a function from A→ C such that

(a) χ(a + bm) = χ(a) for all a, b ∈ A.
(b) χ(a)χ(b) = χ(ab) for all a, b ∈ A.
(c) χ(a) 6= 0 if and only if (a,m) = 1.
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A Dirichlet character modulo m induces a homomorphism from (A/mA)∗ → C
and conversely, given such a homomorphism there is a uniquely corresponding
Dirichlet character.

The trivial Dirichlet character χ0 is defined by the
property that χ0(a) = 1 if (a,m) = 1 and χ0(a) = 0 if (a,m) 6= 1.

It can be shown that there are exactly Φ(m) Dirichlet character modulo m
which is the same cardinality as that of the group (A/mA)∗. Let Xm be the set
of Dirichlet characters modulo m. If χ, ψ ∈ Xm define their product, χψ, by the
formula χψ(a) = χ(a)ψ(a). This makes Xm into a group.

The identity of this group is the trivial character χ0. The inverse of a character
is given by χ−1(a) = χ(a)−1 if (a,m) = 1, and χ−1(a) = 0 if (a,m) 6= 1.

It can be shown that Xm is isomorphic to (A/mA)∗. This is a special case of a
general result which asserts that a finite abelian group G is isomorphic to its
character group Ĝ , see Lang, “Algebra”, Chapter 1, Section 9.

If χ ∈ Xm let χ be defined by χ(a) = χ(a) = complex conjugate of χ(a). Since
the value of a character is either zero or a root of unity, it is easy to see that
χ = χ−1.
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character group Ĝ , see Lang, “Algebra”, Chapter 1, Section 9.

If χ ∈ Xm let χ be defined by χ(a) = χ(a) = complex conjugate of χ(a). Since
the value of a character is either zero or a root of unity, it is easy to see that
χ = χ−1.



A Dirichlet character modulo m induces a homomorphism from (A/mA)∗ → C
and conversely, given such a homomorphism there is a uniquely corresponding
Dirichlet character. The trivial Dirichlet character χ0 is defined by the
property that χ0(a) = 1 if (a,m) = 1 and χ0(a) = 0 if (a,m) 6= 1.

It can be shown that there are exactly Φ(m) Dirichlet character modulo m
which is the same cardinality as that of the group (A/mA)∗. Let Xm be the set
of Dirichlet characters modulo m. If χ, ψ ∈ Xm define their product, χψ, by the
formula χψ(a) = χ(a)ψ(a). This makes Xm into a group.

The identity of this group is the trivial character χ0. The inverse of a character
is given by χ−1(a) = χ(a)−1 if (a,m) = 1, and χ−1(a) = 0 if (a,m) 6= 1.

It can be shown that Xm is isomorphic to (A/mA)∗. This is a special case of a
general result which asserts that a finite abelian group G is isomorphic to its
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Proposition (4.2)
Let χ and ψ be two Dirichlet characters modulo m and a and b two elements
of A relatively prime to m.

Then

1
∑

a χ(a)ψ(a) = Φ(m)δ(χ, ψ).

2
∑

χ
χ(a)χ(b) = Φ(m)δ(a, b).

The first sum is over any set of representatives for A/mA and the second sum
is over all Dirichlet characters modulo m. By definition, δ(χ, ψ) = 0 if χ 6= ψ
and 1 if χ = ψ.

Definition
Let χ be a Dirichlet character modulo m. The Dirichlet L-series corresponding
to χ is defined by

L(s, χ) =
∑

f monic

χ(f )

|f |s .

From the definition and by comparison with the zeta function ζA(s) one sees
immediately that the series for L(s, χ) converges absolutely for R(s) > 1.
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Since characters are multiplicative we can deduce that the
following Euler products holds for R(s) > 1.

L(s, χ) =
∏
P

(
1− χ(P)

|P|s
)−1

.

An immediate consequence of this product decomposition is the
fact that the L-series corresponding to the trivial character is
almost the same as ζA(s). More precisely,

L(s, χ0) =
∏
P|m

(
1− 1
|P|s

)
ζA(s).

This shows that L(s, χ0) can be analytically continued to all of C
and has a simple pole at s = 1 since the same is true of ζA(s). On
the other hand,

Proposition (4.3)
Let χ be a non-trivial Dirichlet character modulo m. Then, L(s, χ)
is a polynomial in q−s of degree at most deg(m)− 1.
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Proof of Proposition 4.3.
Define

A(n, χ) =
∑

deg(f )=n
f monic

χ(f ).

It is clear from the definition of L(s, χ) that

L(s, χ) =

∞∑
n=0

A(n, χ)q−ns .

Thus the result will follow if we can show that A(n, χ) = 0 for all n ≥ deg(m).
Let’s assume that n ≥ deg(m). If deg(f ) = n, we can write f = hm + r , where
r is a polynomial of degree less than deg(m) or r = 0. Here, h is a polynomial
of degree n − deg(m) ≥ 0, whose leading coefficient is sgn(m)−1 (since f is
monic). Conversely, all monic polynomials of degree n ≥ deg(m) can be
uniquely written in this fashion. Since χ is periodic modulo m and since h can
be chosen in qn−deg(m) ways, we have

A(n, χ) = qn−deg(m)
∑

r

χ(r) = 0,

by the first orthogonality relation since χ 6= χ0, and the sum is over all r with
deg(r) < deg(m), which is a set of representatives for A/mA.
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The previous proposition shows that if χ is non-trivial, then L(s, χ)
which was initially defined for R(s) > 1 can be analytically
continued to an entire function on all of C.

We have already seen
that L(s, χ0) can be analytically continued to all of C with a
simple pole at s = 1. These facts are much harder to establish
when working over Z rather than A.
In the proof of Dirichlet’s theorem on primes in arithmetic
progressions the most difficult part is the proof that L(1, χ) 6= 0 if
χ is non-trivial. This turns out to be substantially easier in
function fields because the L-series are essentially polynomials. We
begin with a lemma.

Lema (4.4)
Let χ vary over all Dirichlet characters modulo m. Then, for each
prime P not dividing m, there exist positive integers fP and gP
such that fPgP = Φ(m) and∏

χ

L(s, χ) =
∏
P-m

(1− |P|−fPs)−gP .
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Proof of Lemma 4.4.
For a fixed prime P not dividing m, the map χ→ χ(P) is a
homomorphism from the group Xm → C∗.

The image must be a
cyclic group of order fP , say, generated by ζfP . If gP is the order of
the kernel, clearly fPgP = Φ(m). With these preliminaries, we can
calculate for fixed P.

∏
χ

(1− χ(P)|P|−s) =
fP−1∏
i=0

(1− ζ i
fP |P|

−s)gP = (1− |P|−fPs)gP .

Now take the inverse of both sides, multiply over all P, and the
lemma follows.
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Lema (4.5)
Suppose χ is a complex Dirichlet character modulo m, i.e. χ 6= χ.

Then, L(1, χ) 6= 0.

Proof.
The right-hand side of the equation in the statement of Lemma 4.4
is equal to a Dirichlet series with positive coefficients and constant
term 1. Consequently, its value at real numbers s such that s > 1
is a real number greater than 1. Suppose χ is a complex Dirichlet
character and that L(1, χ) = 0. Then, by complex conjugation we
see L(1, χ) = 0 as well. In the product

∏
χ L(s, χ) the term

corresponding to the trivial character has a simple pole at s = 1.
All the other terms are regular there and two of them have zeros.
Thus, the product is zero at s = 1. This contradicts the fact,
established above, that for all s > 1 the value of the product is
greater than 1. Thus, L(1, χ) 6= 0, as asserted.
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The next step is to deal with real-valued characters.

It is not hard to see that
these coincide with characters of order 2. The proof for such characters will be
a modification of a proof of the classical case due to de la Vallée Poussin.
Assume now that χ has order 2 and consider the function

G(s) =
L(s, χ0)L(s, χ)

L(2s, χ0)
.

This can be written as a product over all monic irreducibles not dividing m. Let
P be such a prime. Then χ(P) = ±1. The factor of the above series
corresponding to P is

(1− |P|−s)−1(1− χ(P)|P|−s)−1

(1− |P|−2s)−1 .

If χ(P) = −1 this whole factor reduces to 1. If χ(P) = 1 it simplifies to

(1 + |P|−s)

(1− |P|−s)
= 1 + 2

∞∑
k=1

|P|−ks .

It follows from these remarks that G(s) is a Dirichlet series with non-negative
coefficients. This will shortly play a crucial role.



The next step is to deal with real-valued characters. It is not hard to see that
these coincide with characters of order 2.

The proof for such characters will be
a modification of a proof of the classical case due to de la Vallée Poussin.
Assume now that χ has order 2 and consider the function

G(s) =
L(s, χ0)L(s, χ)

L(2s, χ0)
.

This can be written as a product over all monic irreducibles not dividing m. Let
P be such a prime. Then χ(P) = ±1. The factor of the above series
corresponding to P is

(1− |P|−s)−1(1− χ(P)|P|−s)−1

(1− |P|−2s)−1 .

If χ(P) = −1 this whole factor reduces to 1. If χ(P) = 1 it simplifies to

(1 + |P|−s)

(1− |P|−s)
= 1 + 2

∞∑
k=1

|P|−ks .

It follows from these remarks that G(s) is a Dirichlet series with non-negative
coefficients. This will shortly play a crucial role.



The next step is to deal with real-valued characters. It is not hard to see that
these coincide with characters of order 2. The proof for such characters will be
a modification of a proof of the classical case due to de la Vallée Poussin.

Assume now that χ has order 2 and consider the function

G(s) =
L(s, χ0)L(s, χ)

L(2s, χ0)
.

This can be written as a product over all monic irreducibles not dividing m. Let
P be such a prime. Then χ(P) = ±1. The factor of the above series
corresponding to P is

(1− |P|−s)−1(1− χ(P)|P|−s)−1

(1− |P|−2s)−1 .

If χ(P) = −1 this whole factor reduces to 1. If χ(P) = 1 it simplifies to

(1 + |P|−s)

(1− |P|−s)
= 1 + 2

∞∑
k=1

|P|−ks .

It follows from these remarks that G(s) is a Dirichlet series with non-negative
coefficients. This will shortly play a crucial role.



The next step is to deal with real-valued characters. It is not hard to see that
these coincide with characters of order 2. The proof for such characters will be
a modification of a proof of the classical case due to de la Vallée Poussin.
Assume now that χ has order 2 and consider the function

G(s) =
L(s, χ0)L(s, χ)

L(2s, χ0)
.

This can be written as a product over all monic irreducibles not dividing m. Let
P be such a prime. Then χ(P) = ±1. The factor of the above series
corresponding to P is

(1− |P|−s)−1(1− χ(P)|P|−s)−1

(1− |P|−2s)−1 .

If χ(P) = −1 this whole factor reduces to 1. If χ(P) = 1 it simplifies to

(1 + |P|−s)

(1− |P|−s)
= 1 + 2

∞∑
k=1

|P|−ks .

It follows from these remarks that G(s) is a Dirichlet series with non-negative
coefficients. This will shortly play a crucial role.



The next step is to deal with real-valued characters. It is not hard to see that
these coincide with characters of order 2. The proof for such characters will be
a modification of a proof of the classical case due to de la Vallée Poussin.
Assume now that χ has order 2 and consider the function

G(s) =
L(s, χ0)L(s, χ)

L(2s, χ0)
.

This can be written as a product over all monic irreducibles not dividing m.

Let
P be such a prime. Then χ(P) = ±1. The factor of the above series
corresponding to P is

(1− |P|−s)−1(1− χ(P)|P|−s)−1

(1− |P|−2s)−1 .

If χ(P) = −1 this whole factor reduces to 1. If χ(P) = 1 it simplifies to

(1 + |P|−s)

(1− |P|−s)
= 1 + 2

∞∑
k=1

|P|−ks .

It follows from these remarks that G(s) is a Dirichlet series with non-negative
coefficients. This will shortly play a crucial role.



The next step is to deal with real-valued characters. It is not hard to see that
these coincide with characters of order 2. The proof for such characters will be
a modification of a proof of the classical case due to de la Vallée Poussin.
Assume now that χ has order 2 and consider the function

G(s) =
L(s, χ0)L(s, χ)

L(2s, χ0)
.

This can be written as a product over all monic irreducibles not dividing m. Let
P be such a prime.

Then χ(P) = ±1. The factor of the above series
corresponding to P is

(1− |P|−s)−1(1− χ(P)|P|−s)−1

(1− |P|−2s)−1 .

If χ(P) = −1 this whole factor reduces to 1. If χ(P) = 1 it simplifies to

(1 + |P|−s)

(1− |P|−s)
= 1 + 2

∞∑
k=1

|P|−ks .

It follows from these remarks that G(s) is a Dirichlet series with non-negative
coefficients. This will shortly play a crucial role.



The next step is to deal with real-valued characters. It is not hard to see that
these coincide with characters of order 2. The proof for such characters will be
a modification of a proof of the classical case due to de la Vallée Poussin.
Assume now that χ has order 2 and consider the function

G(s) =
L(s, χ0)L(s, χ)

L(2s, χ0)
.

This can be written as a product over all monic irreducibles not dividing m. Let
P be such a prime. Then χ(P) = ±1.

The factor of the above series
corresponding to P is

(1− |P|−s)−1(1− χ(P)|P|−s)−1

(1− |P|−2s)−1 .

If χ(P) = −1 this whole factor reduces to 1. If χ(P) = 1 it simplifies to

(1 + |P|−s)

(1− |P|−s)
= 1 + 2

∞∑
k=1

|P|−ks .

It follows from these remarks that G(s) is a Dirichlet series with non-negative
coefficients. This will shortly play a crucial role.



The next step is to deal with real-valued characters. It is not hard to see that
these coincide with characters of order 2. The proof for such characters will be
a modification of a proof of the classical case due to de la Vallée Poussin.
Assume now that χ has order 2 and consider the function

G(s) =
L(s, χ0)L(s, χ)

L(2s, χ0)
.

This can be written as a product over all monic irreducibles not dividing m. Let
P be such a prime. Then χ(P) = ±1. The factor of the above series
corresponding to P is

(1− |P|−s)−1(1− χ(P)|P|−s)−1

(1− |P|−2s)−1 .

If χ(P) = −1 this whole factor reduces to 1. If χ(P) = 1 it simplifies to

(1 + |P|−s)

(1− |P|−s)
= 1 + 2

∞∑
k=1

|P|−ks .

It follows from these remarks that G(s) is a Dirichlet series with non-negative
coefficients. This will shortly play a crucial role.



The next step is to deal with real-valued characters. It is not hard to see that
these coincide with characters of order 2. The proof for such characters will be
a modification of a proof of the classical case due to de la Vallée Poussin.
Assume now that χ has order 2 and consider the function

G(s) =
L(s, χ0)L(s, χ)

L(2s, χ0)
.

This can be written as a product over all monic irreducibles not dividing m. Let
P be such a prime. Then χ(P) = ±1. The factor of the above series
corresponding to P is

(1− |P|−s)−1(1− χ(P)|P|−s)−1

(1− |P|−2s)−1 .

If χ(P) = −1 this whole factor reduces to 1.

If χ(P) = 1 it simplifies to

(1 + |P|−s)

(1− |P|−s)
= 1 + 2

∞∑
k=1

|P|−ks .

It follows from these remarks that G(s) is a Dirichlet series with non-negative
coefficients. This will shortly play a crucial role.



The next step is to deal with real-valued characters. It is not hard to see that
these coincide with characters of order 2. The proof for such characters will be
a modification of a proof of the classical case due to de la Vallée Poussin.
Assume now that χ has order 2 and consider the function

G(s) =
L(s, χ0)L(s, χ)

L(2s, χ0)
.

This can be written as a product over all monic irreducibles not dividing m. Let
P be such a prime. Then χ(P) = ±1. The factor of the above series
corresponding to P is

(1− |P|−s)−1(1− χ(P)|P|−s)−1

(1− |P|−2s)−1 .

If χ(P) = −1 this whole factor reduces to 1. If χ(P) = 1 it simplifies to

(1 + |P|−s)

(1− |P|−s)
= 1 + 2

∞∑
k=1

|P|−ks .

It follows from these remarks that G(s) is a Dirichlet series with non-negative
coefficients. This will shortly play a crucial role.



The next step is to deal with real-valued characters. It is not hard to see that
these coincide with characters of order 2. The proof for such characters will be
a modification of a proof of the classical case due to de la Vallée Poussin.
Assume now that χ has order 2 and consider the function

G(s) =
L(s, χ0)L(s, χ)

L(2s, χ0)
.

This can be written as a product over all monic irreducibles not dividing m. Let
P be such a prime. Then χ(P) = ±1. The factor of the above series
corresponding to P is

(1− |P|−s)−1(1− χ(P)|P|−s)−1

(1− |P|−2s)−1 .

If χ(P) = −1 this whole factor reduces to 1. If χ(P) = 1 it simplifies to

(1 + |P|−s)

(1− |P|−s)
= 1 + 2

∞∑
k=1

|P|−ks .

It follows from these remarks that G(s) is a Dirichlet series with non-negative
coefficients.

This will shortly play a crucial role.



The next step is to deal with real-valued characters. It is not hard to see that
these coincide with characters of order 2. The proof for such characters will be
a modification of a proof of the classical case due to de la Vallée Poussin.
Assume now that χ has order 2 and consider the function

G(s) =
L(s, χ0)L(s, χ)

L(2s, χ0)
.

This can be written as a product over all monic irreducibles not dividing m. Let
P be such a prime. Then χ(P) = ±1. The factor of the above series
corresponding to P is

(1− |P|−s)−1(1− χ(P)|P|−s)−1

(1− |P|−2s)−1 .

If χ(P) = −1 this whole factor reduces to 1. If χ(P) = 1 it simplifies to

(1 + |P|−s)

(1− |P|−s)
= 1 + 2

∞∑
k=1

|P|−ks .

It follows from these remarks that G(s) is a Dirichlet series with non-negative
coefficients. This will shortly play a crucial role.



First, we look more carefully at L(s, χ0)/L(2s, χ0).

As we have already seen,

L(s, χ0) =
∏
P|m

(1− |P|−s)ζA(s) =
∏
P|m

(1− |P|−s)
1

1− q1−s .

A short calculation shows

L(s, χ0)

L(2s, χ0)
=
∏
P|m

(1 + |P|−s)−1 1− q1−2s

1− q1−s .

From this identity and what we have already proven about G(s) we deduce that

(1− q1−2s)L(s, χ)

(1− q1−s)
=
∑

n

a(n)

|n|s ,

a Dirichlet series with non-negative coefficients.
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It is now convenient to switch to a new variable, u = q−s .

The previous
equation becomes

(1− qu2)L∗(u, χ)

1− qu =
∑

d

A(d)ud ,

where L∗(u, χ) is a polynomial in u by Proposition 4.3, and

A(d) =
∑

n, deg(n)=d

a(n)

is non-negative for all d ≥ 0 and A(0) = 1. The Dirichlet series converges for
R(s) > 1 which implies the power series in u converges for |u| < q−1. Finally,
notice that s = 1 corresponds to q−1 so what we are trying to prove is that
L∗(q−1, χ) 6= 0. We now have developed everything we need to give a quick
proof of this.



It is now convenient to switch to a new variable, u = q−s . The previous
equation becomes

(1− qu2)L∗(u, χ)

1− qu =
∑

d

A(d)ud ,

where L∗(u, χ) is a polynomial in u by Proposition 4.3, and

A(d) =
∑

n, deg(n)=d

a(n)

is non-negative for all d ≥ 0 and A(0) = 1.

The Dirichlet series converges for
R(s) > 1 which implies the power series in u converges for |u| < q−1. Finally,
notice that s = 1 corresponds to q−1 so what we are trying to prove is that
L∗(q−1, χ) 6= 0. We now have developed everything we need to give a quick
proof of this.



It is now convenient to switch to a new variable, u = q−s . The previous
equation becomes

(1− qu2)L∗(u, χ)

1− qu =
∑

d

A(d)ud ,

where L∗(u, χ) is a polynomial in u by Proposition 4.3, and

A(d) =
∑

n, deg(n)=d

a(n)

is non-negative for all d ≥ 0 and A(0) = 1. The Dirichlet series converges for
R(s) > 1 which implies the power series in u converges for |u| < q−1.

Finally,
notice that s = 1 corresponds to q−1 so what we are trying to prove is that
L∗(q−1, χ) 6= 0. We now have developed everything we need to give a quick
proof of this.



It is now convenient to switch to a new variable, u = q−s . The previous
equation becomes

(1− qu2)L∗(u, χ)

1− qu =
∑

d

A(d)ud ,

where L∗(u, χ) is a polynomial in u by Proposition 4.3, and

A(d) =
∑

n, deg(n)=d

a(n)

is non-negative for all d ≥ 0 and A(0) = 1. The Dirichlet series converges for
R(s) > 1 which implies the power series in u converges for |u| < q−1. Finally,
notice that s = 1 corresponds to q−1 so what we are trying to prove is that
L∗(q−1, χ) 6= 0.

We now have developed everything we need to give a quick
proof of this.



It is now convenient to switch to a new variable, u = q−s . The previous
equation becomes

(1− qu2)L∗(u, χ)

1− qu =
∑

d

A(d)ud ,

where L∗(u, χ) is a polynomial in u by Proposition 4.3, and

A(d) =
∑

n, deg(n)=d

a(n)

is non-negative for all d ≥ 0 and A(0) = 1. The Dirichlet series converges for
R(s) > 1 which implies the power series in u converges for |u| < q−1. Finally,
notice that s = 1 corresponds to q−1 so what we are trying to prove is that
L∗(q−1, χ) 6= 0. We now have developed everything we need to give a quick
proof of this.



We argue by contradiction.

Suppose L∗(q−1, χ) = 0. Then
(1− qu) divides L∗(u, χ) and the left-hand side of the above
equation is a polynomial in u. It follows that the right-hand side is
a polynomial in u with non-negative coefficients and constant term
1. It therefore cannot have a positive root. However, the left-hand
side vanishes when u = 1/√q. This is a contradiction, so
L∗(q−1, χ) 6= 0 and thus, L(1, χ) 6= 0. We have proven the
following key result.

Proposition (4.6)
Let χ be a non-trivial Dirichlet character modulo m. Then,
L(1, χ) 6= 0.
From Proposition 4.6 and previous remarks we see that as s → 1
with s real and greater than 1 we have

lim
s→1

log L(s, χ0) =∞ lim
s→1

log L(s, χ)

exists for χ 6= χ0. Here, and in what follows we take for log(z) the
principal branch of the logarithm.
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Theorem (4.7)
Let a,m ∈ A be two relatively prime polynomials with m of positive degree.

Consider the set of primes, S = {P ∈ A|P ≡ a(mod m)}. Then,
δ(S) = 1/Φ(m). In particular, S is an infinite set.
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Proof.
Using the product formula for L(s, χ) and the same technique used in the proof
of Proposition 4.1, one finds

log L(s, χ) =
∑

P

χ(P)

|P|s + R(s, χ),

where the function R(s, χ) is bounded as s tends to 1 from above.

Multiply
both sides by χ(a) and sum over all χ. Using the orthogonality relation for
Dirichlet characters, Proposition 4.2, part (2), we obtain∑

χ

χ(a) log L(s, χ) = Φ(m)
∑

P≡a( mod m)

1
|P|s + R(s),

where R(s) is a function which remains bounded as s → 1.
Divide each summand on the left-hand side of the above equation by

∑
P |P|

−s

and let s tend to 1 from above. By Proposition 4.1 and the remarks preceding
the theorem, the summand corresponding to the trivial character tends to 1,
while each summand corresponding to a non-trivial character tends to zero. If
we divide the right-hand side by

∑
P |P|

−s and let s tend to 1 from above, we
get Φ(m)δ(S). The result follows.
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The previous theorem is the original form of Dirichlet’s theorem.

It is possible,
with more work, to prove a much stronger form of the theorem. Suppose
a,m ∈ A are relatively prime and that m has positive degree. Consider the set
of primes

SN(a,m) = {P ∈ A|P ≡ a(mod m), deg(P) = N} .
We claim that for all large integers N this set is not empty. The following
theorem proves this and more.

Theorem (4.8)

#SN(a,m) =
1

Φ(m)

qN

N + O
(

qN/2

N

)
.

Let SN be the set of primes of degree N. We have seen on the first lecture that

#SN =
qN

N + O
(

qN/2

N

)
.

Putting this together with the statement of the theorem we find

lim
N→∞

#SN(a,m)

#SN
=

1
Φ(m)

.

This is a natural density analogue to the Dirichlet density form of the main
theorem.
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Proof of Theorem 4.8
The idea of the proof is to realize that the L-function L(s, χ) can be expressed
as a product in two ways.

One way, which we have already considered, is as an
Euler product. The other is as a product over its complex zeros. This is made
easier by rewriting, as we have done before, everything in terms of the variable
u = q−s . If χ is not trivial, then by Proposition 4.3, L(s, χ) is a polynomial in
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Our intention is to take the logarithmic derivative of both expressions, write the
results as power series in u and compare coefficients.

Afterwards we apply the
orthogonality relations to isolate the primes congruent to a modulo m.
However, in addition to the algebra involved, we will have to do a number of
estimates. One of these estimates will involve invoking a deep result of A. Weil.
The others are more elementary.
We begin by writing down an identity which will be used repeatedly. Namely,

u d
du (log(1− αu)−1) =

∞∑
k=1

αk uk . (3.2)

Here α is a complex number. The sum converges for all u such that
|u| < |α|−1. The proof of this identity is a simple exercise using geometric
series.
For each character χ modulo m define the numbers cN(χ) by

u d
du log(L∗(u, χ)) =

∞∑
N=1

cN(χ)uN .

We claim that

cN(χ0) = qN + O(1) and that cN(χ) = O(qN/2) if χ 6= χ0. (3.3)
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The easy case is when χ = χ0.

Recall that

L(s, χ0) =
∏
P|m

(1− |P|−s)ζA(s).

Thus,
L∗(u, χ0) =

∏
P|m

(1− udeg(P))
1

1− qu .

It now follows immediately, using Equation (3.2) and the additivity of the
logarithmic derivative, that cN(χ0) = qN + O(1). For χ 6= χ0, by combining
Equation (3.1) with Equation (3.2) we find

cN(χ) = −
M−1∑
k=1

αk (χ)N .

It follows from the analogue of the Riemann hypothesis for function fields over
a finite field that each of the roots αk (χ) has absolute value either 1 or √q.
This is the deepest part of the proof and is due to A. Weil. We will discuss it in
some detail in the next lectures. Assuming it for now, we see immediately from
the last equation that cN(χ) = O(qN/2).
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Thus, we have verified both assertions of Equation (3.3) from the
previous slide.

It should be remarked that one can prove much
more easily, a weaker result than the Riemann hypothesis which
has the effect of replacing the error term in the theorem with
O(qθN) where θ is some real number less than 1. This still gives
the corollary that the set SN(a,m) is non-empty for all large N.
We will indicate how to prove this in the next lecture.
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We now continue with the proof of the theorem.

Consider the Euler product
expansion of L∗(u, χ) given previously. Take the logarithmic derivative of both
sides and multiply both sides of the resulting equation by u. Again using
Equation (3.2) we find

cN(χ) =
∑
k,P

kdeg(P)=N

deg(P)χ(P)k .

In the sum on the right-hand side separate out the terms corresponding to
k = 1. The result is N

∑
deg(P)=N χ(P). The rest of the terms can be written

as follows: ∑
d|N

d≤N/2

d
∑

deg(P)=d

χ(P)N/d .

The inner sum in absolute value is less than or equal to
# {P ∈ A|deg(P) = d} = qd/d + O(qd/2/d) by the Prime Number Theorem
for Polynomials. Thus the double sum is bounded by

1 + q + q2 + · · ·+ q[N/2] + O(1 + q + q2 + · · ·+ q[N/4]) = O(qN/2).

We have proven
cN(χ) = N

∑
deg(P)=N

χ(P) + O(qN/2). (3.4)
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Finally we compute the expression
∑
χ χ(a)cN(χ) in two ways.

First we use Equation (3.4) and then we use Equation (3.3). From
the orthogonality relations and Equation (3.4) we find

1
Φ(m)

∑
χ

χ(a)cN(χ) = N#SN(a,m) + O(qN/2).

Next, from Equation (3.3) we see∑
χ

χ(a)cN(χ) = qN + O(qN/2).

So, we finally arrive at the main result:

#SN(a,m) =
1

Φ(m)

qN

N + O(qN/2/N).
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