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Introduction

• So far we have been working with A = Fq[T ] inside the rational function
field k = Fq(T ).

• In this lecture we extend our considerations to more general function
fields of transcendence degree one over a general constant field.

• The Riemann-Roch theorem is the fundamental result we will need in this
lecture.

• We will focus our attention to function fields over a finite constant field.
(global function fields)

• The other class of global fields are the algebraic number fields.
• All global fields share a great number of common features.
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Introduction

• The main aim is to introduce the zeta function of a global function field
and explore its properties.

• The Riemann hypothesis will be explained in some detail.
• We will derive several consequences of the RH for such zeta functions

(e.g. analogue of prime number theorem for arbitrary global function
fields).

• A sketch of the proof of the RH for function fields will be given in the last
lecture.

• In this lecture we prove a weak version of the RH for curves.
• Before we begin. The treatment we give here is very arithmetic and

analytic. The geometric underpinnings will not be much in evidence. The
whole subject can be dealt with under the aspect of curves over finite
fields.
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Basic on Function Fields

It is not necessary to restrict the constant field F to be finite. In this first part
we make no restriction on F whatsoever.

Definition
A function field in one variable over F is a field K, containing F and at least
one element x, transcendental over F , such that K/F (x) is a finite algebraic
extension.
Such field is said to have transcendence degree one over F .
It is not hard to show that the algebraic closure of F in K is finite over F . One
way to see this is to note that if E is a subfield of K , which is algebraic over F ,
then [E : F ] = [E(x) : F (x)] ≤ [K : F (x)]. So, replacing F with its algebraic
closure in K , if neccessary, we assume that F is algebraically closed in K . In
that case, F is called the constant field of K .
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Remark
1 If F is the constant field of K and y ∈ K is not in F , then y is

transcendental over F .

2 K/F (y) is a finite extension.
To see this, note that y is algebraic over F (x) which shows there is a
non-zero polynomial in two-variables g(X ,Y ) ∈ F [X ,Y ] such that
g(x , y) = 0. Since y is transcendental over F we must have that
g(X ,Y ) /∈ F [Y ]. It follows that x is algebraic over F (y). Since K is
finite over F (x , y) and F (x , y) is finite over F (y), it follows that K is
finite over F (y).
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Definition
A prime in K is a discrete valuation ring R with maximal ideal P such that
F ⊂ R and the quotient field of R equal to K. As a shorthand such a prime is
often referred to as P, the maximal ideal of R.

The ord function associated with R is denoted by ordP(∗).
Definition
The degree of P, degP, is defined to be the dimension of R/P over F .

Proposition
The dimension of R/P over F is finite.

Proof.
Choose an element y ∈ P which is not in F . By the previous discussion K/F (y)
is finite. We claim that [R/P : F ] ≤ [K : F (y)]. To see this let u1, . . . , um ∈ R
be such that the residue classes modulo P, u1, . . . , um, are linearly independent
over F . We claim that u1, . . . , um are linearly independent over F (y). Suppose
not. Then we could find polynomials in y , {f1(y), . . . , fm(y)}, such that

f1(y)u1 + · · ·+ fm(y)um = 0.

It is not loss of generality to assume that not all the polynomials fi(y) are
divisible by y . Now, reducing this relation modulo P gives a non-trivial linear
relation for the elements ui over F , a contradiction. Thus, {u1, . . . , um} is a set
linearly independent over F (y) and it follows that m ≤ [K : F (y)] which proves
the assertion.
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To illustrate these definitions, consider the case of the rational function field
F (x).

Let A = F [x ]. Every non-zero prime ideal in A is generated by a unique
monic irreducible P. The localization of A at P, AP , is a discrete valuation
ring. We continue to use the letter P to denote the unique maximal ideal AP .
It is clear that P is a prime of F (x) in the above sense. This collection of
primes can be shown to almost exhaust the set of primes of F (x). In fact,
there is just one more.
Consider the ring A

′
= F [x−1] and the prime ideal P

′
generated by x−1 in A

′
.

The localization of A
′

at P
′

is a discrete valuation ring which defines a prime
of F (x) called the prime at infinity. This is usually denoted by P∞ or, more
simply, “∞” alone. The corresponding ord-function, ord∞, attaches the value
−deg(f ) to any polynomial f ∈ A and thus the value deg(g)− deg(f ) to any
rational function f /g where f , g ∈ A.

Proposition
The only primes of F (x) are the ones attached to the monic irreducibles, called
the finite primes, together with the prime at infinity.

Remark
1 The degree of any finite prime is equal to the degree of the monic

irreducible to which it corresponds.
2 The degree of the prime at infinity is 1.
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Divisors

Definition
Let K be a function field over F . The group of divisors of K, DK , is the free
abelian group generated by the primes.

We write these additively so that a typical divisor looks like

D =
∑

P

a(P)P.

The coefficients, a(P), are uniquely determined by D and we will sometimes
denote them as ordP(D). The degree of such a divisor is defined as
deg(D) =

∑
P a(P)degP. This gives a homomorphism from DK to Z whose

kernel is denoted by D0
K , the group of divisors of degree zero.

Let a ∈ K∗. The divisor of a, (a), is defined to be
∑

P ordP(a)P. It is not hard
to see that (a) is actually a divisor, i.e., that ordP(a) is zero for all but finitely
many P. The idea of the proof will be included in the proof of the next
proposition. The map a→ (a) is a homomorphism from K∗ to DK . The image
of this map is denoted by PK and is called the group of principal divisors.
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If P is a prime such that ordP(a) = m > 0, we say that P is a zero of a of
order m.

If ordP(a) = −n < 0 we say that P is a pole of a of order n. Let

(a)0 =
∑

P
ordP (a)>0

ordP(a)P and (a)∞ = −
∑

P
ordP (a)<0

ordP(a)P.

The divisor (a)0 is called the divisor of zeros of a and the divisor (a)∞ is called
the divisor of poles of a. Note that (a) = (a)0 − (a)∞.
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Proposition
Let a ∈ K∗. Then, ordP(a) = 0 for all but finitely many primes P.

Secondly,
(a) = 0, the zero divisor, if and only if a ∈ F ∗, i.e., a is a non-zero constant.
Finally, deg(a)0 = deg(a)∞ = [K : F (a)]. It follows that deg(a) = 0, i.e., the
degree of a principal divisor is zero.

Proof. (Sketch).
If a ∈ F ∗, it is easy from the definition that (a) = 0. So, suppose a ∈ K∗ − F ∗.
Then, as we have seen, K is finite over F (a). Let R be the integral closure of
F [a] in K . R is a Dedekind domain (see the book by Samuel and Zariski,
Chapter V). Let Ra = Pe1

1 · · ·P
eg
g be the prime decomposition of the principal

ideal Ra in R. The localization of R at the prime ideals Pi are primes of the
field K . If we denote by Pi the maximal ideals of these discrete valuation rings
we find that ordPi (a) = ei . It is now not hard to show that the finite set
{P1,P2, . . . ,Pg} is the set of zeros of a. Applying the same reasoning to a−1

we see that the set of poles of a is also finite. This proves the first assertion. It
also proves the second assertion since if a is not in F ∗ we see that the set of P
such that ordP(a) > 0 is not empty. To show [K : F (a)] = deg(a)0 = deg(a)∞
we use the results given by Deuring and Chevalley.
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For emphasis we point out that implicit in the previous sketch is
the fact that every non-constant element of K has at least one
zero and at least one pole.

Definition
Two divisors, D1 and D2, are said to be linearly equivalent,
D1 ∼ D2 if their difference is principal, i.e., D1 − D2 = (a) for
some a ∈ K ∗.
We define ClK = DK /PK to be the group of divisor classes.
Since the degree of a principal divisor is zero, the degree function
gives rise to a homomorphism from ClK to Z. The kernel of this
map is denoted by Cl0

K , the group of divisor classes of degree
zero.
We are almost ready to state the Riemann-Roch theorem. Just
two more definitions are needed.

Definition
A divisor, D =

∑
P a(P)P, is said to be an effective divisor if for

all P, a(P) ≥ 0. We denote this by D ≥ 0.
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Definition
Let D be a divisor. Define L(D) = {x ∈ K∗ : (x) + D ≥ 0} ∪ {0}.

It is easy to
see that L(D) has the structure of a vector space over F and it can be proved
that it is finite dimensional over F (Exercises in the problem sheet). The
dimension of L(D) over F is denoted by l(D). The number l(D) is sometimes
referred to as the dimension of D.

Lema (5.2)
If A and B are linearly equivalent divisors, then L(A) and L(B) are isomorphic.
In particular, l(A) = l(B).

Proof.
Suppose A = B + (h). Then a short calculation shows that x → xh is an
isomorphism from L(A) with L(B).

Lema (5.3)
If deg(A) ≤ 0 then l(A) = 0 unless A ∼ 0 in which case l(A) = 1.
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Riemann-Roch

Theorem (Riemann-Roch)
There is an integer g ≥ 0 and a divisor class C such that for C ∈ C and
A ∈ DK we have

l(A) = deg(A)− g + 1 + l(C − A).

The proof can be found for example in “Algebraic Curves over Finite Fields” by
Carlos Moreno.
The integer g is uniquely determined by K , as we shall see, and is called the
genus of K . The genus of a function field is a key invariant. The divisor class
C is also uniquely determined and is called the canonical class. It is related to
differentials of K . We give now a series of corollaries to the Riemann-Roch
theorem.
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Corollary (Riemann’s inequality)
For all divisors A, we have l(A) ≥ deg(A)− g + 1.

Corollary (2)
For C ∈ C we have l(C) = g.

Proof.
Set A = 0 in the theorem.

Corollary (3)
For C ∈ C we have deg(C) = 2g − 2.

Proof.
Set A = C in the theorem, and use Corollary 2.

Corollary (4)
If deg(A) ≥ 2g − 2, then l(A) = deg(A)− g + 1 except in the case
deg(A) = 2g − 2 and A ∈ C.

Proof.
If deg(A) ≥ 2g − 2, then deg(C − A) ≤ 0. Now we use Lemma 5.3.
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Corollary (5)
Suppose that g

′
and C

′
have the same properties as those of g and C stated in

the theorem. Then, g = g
′

and C ∼ C
′
.

Proof.
Find a divisor A whose degree is larger than max(2g − 2, 2g

′
− 2) (a large

positive multiple of a prime will do). By Corollary 4,
l(A) = deg(A)− g + 1 = deg(A)− g

′
+ 1. Thus, g = g

′
. Now set A = C

′
in

the statement of the theorem. Using Corollaries 2 and 3, applied to C
′
, we see

that l(C − C
′
) = 1. There is an x ∈ K∗ such that (x) + C − C

′
≥ 0. On the

other hand, (x) + C − C
′

has degree zero by Corollary 3. Thus, it is the zero
divisor, and C ∼ C

′
.
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As an example of these results, consider the rational function field F (x).

Let
(R∞,P∞) be the prime which is, as we have seen, the localization of the ring
F [1/x ] at the prime ideal generated by 1/x . The corresponding ord function is
ord∞(f ) = −deg(f ). By Corollary 4, for n large and positive we must have
l(nP∞) = n− g + 1. On the other hand, one can prove that f ∈ L(nP∞) if and
only if f is a polynomial in T of degree ≤ n. Thus, l(nP∞) = n + 1. It follows
that g = 0. From this and Corollary 3 one sees that C has degree −2. It can be
shown that Cl0

K = (1) so there is only one class of degree −2 and we can
choose any divisor of degree −2 for C . A conventional choice is C = −2P∞.
We can characterize the rational function field intrinsically as follows.

Proposition
K/F is a rational function field if and only if there exists a prime P of K of
degree 1 and the genus of K is 0.

Proof.
We have seen that rational function fields have this property. Now, assume
these conditions and consider l(P). Since g = 0 we have
l(D) = deg(D)− g + 1 = deg(D) + 1 for deg(D) > 2g − 2 = −2. Thus,
l(P) = 2 and we can find a non-constant function x such that (x) + P ≥ 0.
Since deg((x) + P) = 1, it follows that (x) + P = Q, a prime of degree 1.
Thus, (x) = Q − P and it follows that [K : F (x)] = 1. Thus, K = F (x) as
asserted.
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For the rest of the lecture we assume F = Fq is a finite field with q elements.

Definition
A function field in one variable over a finite constant field is called a global
function field.
Our next goal is to define the zeta function of a global function field K/Fq and
to investigate its properties.
It was proven by F.K. Schmidt that a function field over a finite field always
has divisors of degree 1. Using Schmidt’s theorem, we have an exact sequence

(0)→ Cl0
K → ClK → Z→ (0).

We will prove that the group Cl0
K is finite. Denote its order by hK . The number

hK is called the class number of the field K . This number is an important
invariant of K . The above exact sequence shows that for any integer n there
are exactly hK classes of degree n.
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invariant of K . The above exact sequence shows that for any integer n there
are exactly hK classes of degree n.
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Lema (5.5)
For any integer n ≥ 0 the number of effective divisors of degree n is finite.

Proof. (Sketch).
Choose an x ∈ K such that x is transcendental over F. K/F(x) is finite. The
primes of F(x) are in one to one correspondence with the monic irreducibles
polynomials in F[x ] with the one exception of the prime at infinity. Thus, there
are only finitely many primes of F(x) of any fixed degree. By standard
theorems on extensions of primes one sees that there are only finitely many
primes of K of fixed degree. If

∑
P a(P)P is an effective divisor of degree n

then each prime that occurs with positive coefficient must have degree ≤ n.
There are only finitely many such primes. Moreover the coefficients must be
≤ n, so there are at most finitely many such effective divisors.

We define an to be the number of primes of degree n and bn to be the
number of effective divisors of degree n. Both these numbers are of
considerable interest.
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Lema (5.6)
The number of divisors classes of degree zero, hK , is finite.

This lemma proves that the class number hK = |Cl0
K | is finite. Later we will

give estimates for the size of hK derived from the Riemann hypothesis for
function fields.

Lema (5.7)
For any divisor A, the number of effective divisors in A is ql(A)−1

q−1 .
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Zeta Functions for Function Fields
For A ∈ DK define the norm of A, NA = qdeg(A).

Note that NA is a positive
integer and that for any two divisors A and B we have N(A + B) = NANB.

Definition
The zeta function of K, ζK (s), is defined by

ζK (s) =
∑
A≥0

NA−s .

Over the rational function field k = F(T ) we did not have discussed the zeta
function of k but rather the zeta function associated to the ring A = F[T ].
These are closely related. In fact, it is not hard to prove that
ζA(s) = ζk(s)(1− q−s) (exercise), so ζk(s) = (1− q1−s)−1(1− q−s)−1.
The term NA−s in the definition of the zeta function is equal to q−ns where n
is the degree of A. Thus the zeta function can be rewritten in the form

ζK (s) =
∞∑

n=1

bn

qns .
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Using the multiplicativity of the norm and the fact that DK is a free abelian
group on the set of primes we see, at least formally, that

ζK (s) =
∏

P

(
1− 1

NPs

)−1
.

Recalling that an is the number of primes of degree n, we observe that this
expression can be rewritten as follows:

ζK (s) =
∞∏

n=1

(
1− 1

qns

)−an

.

We shall soon see that all these expressions converge absolutely for R(s) > 1
and define analytic functions in this region.

Lema (5.8)
Let h = hK . For every integer n, there are h divisor classes of degree n.
Suppose n ≥ 0 and that

{
A1,A2, . . . ,Ah

}
are the divisors classes of degree n.

Then the number of effective divisors of degree n, bn, is given by
∑h

i=1
ql(Ai )−1

q−1 .

Proof.
The first assertion follows directly from Lemma 5.6 and the remarks preceding
Lemma 5.5. The second follows just as directly from Lemmas 5.6 and 5.7.
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By Lemma 5.7 and Corollary 4 to Riemann-Roch Theorem we see that if
n > 2g − 2, then bn = hK

qn−g+1−1
q−1 .

It follows that bn = O(qn). From this fact,
and the expression ζK (s) =

∑∞
n=0 bnq−ns , it follows that ζK (s) converges

absolutely for all s with R(s) > 1.

In the same way we can prove the product expression for ζK (s) converges
absolutely for R(s) > 1. To do this it suffices, by the theory of infinite
products, to show that

∑∞
n=1 an|q−ns | converges in this region. This follows

immediately since an ≤ bn = O(qn).

The next thing to do is to investigate wheter ζK (s) can be analytically
continued to all of C and wheter it satisfies a functional equation, etc. The
next theorem shows that the answer to both these questions is yes, and that a
lot more is true as well.
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continued to all of C and wheter it satisfies a functional equation, etc. The
next theorem shows that the answer to both these questions is yes, and that a
lot more is true as well.



Theorem (5.9)
Let K be a function field in one variable with a finite constant field F with q
elements. Suppose that the genus of K is g.

Then there is a polynomial
LK (u) ∈ Z[u] of degree 2g such that

ζK (s) =
LK (q−s)

(1− q−s)(1− q1−s)
.

This holds for all s such that R(s) > 1 and the right-hand side provides an
analytic continuation of ζK (s) to all of C. ζk(s) has simple poles at s = 0 and
s = 1. One has LK (0) = 1, L

′
K (0) = a1 − 1− q, and LK (1) = hK . Finally, set

ξK (s) = q(g−1)sζK (s). Then for all s one has ξK (1− s) = ξK (s) (this
relationship is referred to as the functional equation for ζK (s)).
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Proof of Theorem 5.9
We work with the variable u = q−s .

Then

ζK (s) = ZK (u) =
∞∑

n=0

bnun.

We noted earlier that for n > 2g − 2 we have bn = hK
qn−g+1−1

q−1 . Substituting
this into the above formula and summing the geometric series, yields

ZK (u) =
2g−2∑
n=0

bnun +
hK

q − 1

(
qg

1− qu −
1

1− u

)
u2g−1. (3.1)

From this, simple algebraic manipulation shows

ZK (u) =
LK (u)

(1− u)(1− qu) with LK (u) ∈ Z[u]. (3.2)

From (3.2), we see the expression for ζk(s) given in the theorem is correct. We
will show that LK (1) and LK (q−1) are both non-zero. Thus, ζK (s) has a pole
at 0 and 1. The fact that degLK (u) ≤ 2g also follows from this calculation.
Substituting u = 0 yields LK (0) = 1. Comparing the coefficients of u on both
sides yields b1 = L

′
K (0) + 1 + q. It is easy to see that b1 = a1 = the number of

primes of K of degree one.
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Continuation of the Proof
From Equation (3.1), we see that limu→1(u − 1)ZK (u) = hK/(q − 1).

From
Equation (3.2) we see

lim
u→1

(u − 1)ZK (u) = −
LK (1)
1− q .

Thus, LK (1) = hK , as asserted.
As for the functional equation, recall that bn =

∑
degA=n(q

l(A) − 1)/(q − 1).
Then,

(q − 1)ZK (u) =

∞∑
n=0
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degA=n

ql(A) − 1

 un =
∑

degA≥0

ql(A)udegA − hK
1

1− u

=
∑

0≤degA≤2g−2

ql(A)udegA − hK
1

1− u +
∑

2g−2≤degA<∞

ql(A)udegA

=
∑

0≤degA≤2g−2

ql(A)udegA − hK
1

1− u + hK
qg u2g−1

1− qu .
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Continuation of the Proof
Multiplying both sides by u1−g we have (q− 1)u1−g ZK (u) = R(u)+S(u) where

R(u) =
∑

0≤degA≤2g−2

ql(A)udegA−g+1 and S(u) = −hK
u1−g

1− u + hK
qg ug

1− qu .

A direct calculation shows that R(u) and S(u) are invariant under
u → q−1u−1. To see this, first note that

R(q−1u−1) =
∑

degA≤2g−2
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Continuation of the Proof

Since A→ C − A is a permutation of the divisor classes of degree d with
0 ≤ d ≤ 2g − 2 it follows that R(q−1u−1) = R(u) as asserted. We have now
completed the proof that u1−g ZK (u) is invariant under the transformation
u → q−1u−1.
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q−g u−2g LK (u) = LK (q−1u−1). Letting u →∞ we see that degLK (u) = 2g and
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Finally, recalling that u = q−s , we see that u1−g = q(g−1)s and the
transformation u → q−1u−1 is the same as the transformation s → 1− s. So
passing from the u language to the s language we see we have shown ξK (s) is
invariant under s → 1− s, as asserted. This completes the proof of the
theorem.
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The polynomial LK (u) defined in the theorem carries a lot of information.

Since the coefficients are in Z we can factor this polynomial over the complex
numbers,

LK (u) =
2g∏
i=1

(1− πi u).

It is worth pointing out that the relation LK (q−1u−1) = q−g u−2g LK (u) implies
that the set {π1, π2, . . . , π2g} is permuted by the transformation π → q/π.
This is easily seen to be equivalent to the functional equation for ζK (s).
Since ζK (s) has a convergent Euler product whose factors have no zeros in the
region R(s) > 1, it follows that ζK (s) has no zeros there. Consequently, LK (u)
has no zeros in the region

{
u ∈ C : |u| < q−1}. For the inverse roots, πi , the

consequence is that |πi | ≤ q. We will prove later that |πi | < q for all i and this
will have a number of important applications.
However, much more is true about the πi . The classical generalized Riemann
hypothesis states that the zeros of ζK (s), the Dedekind zeta function of a
number field K , has all its non-trivial zeros on the line R(s) = 1/2. Riemann
conjectured this for ζ(s), the Riemann zeta function. Neither Riemann’s
conjecture nor its generalizations are known to be true. In fact, these are
among the most important unsolved problems in all of mathematics. However,
the analogous statement over global function fields was proved by A. Weil in
the 1940s.
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The Riemann Hypothesis for Function
Fields

Theorem (The Riemann Hypothesis for Function Fields)
Let K be a global function field whose constant field F has q elements. All the
roots of ζK (s) lie on the line R(s) = 1/2. Equivalently, the inverse roots of
LK (u) all have absolute value √q.

1 The case g = 1 was proved by H. Hasse.
2 Weil gave two proofs: (i) geometry of algebraic surfaces and theory of

correspondences; (ii) theory of abelian varieties.
3 Stepanov and Bombieri gave more elementary proofs.
4 No analytic proof is known. (A. Connes)
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Consequences of R.H.
Proposition (5.11)
The number of prime divisors of degree 1 of K, a1, satisfies the inequality
|a1 − q − 1| ≤ 2g√q. Also, (√q − 1)2g ≤ hK ≤ (

√q + 1)2g .

Proof.
By Theorem 5.9, L

′
K (0) = a1 − q − 1. From the above factorization of LK (u)

we see −L
′
K (0) = π1 + π2 + · · ·+ π2g . The first assertion is immediate from

this and the R.H. for function fields.
And for the second assertion, we have hK = LK (1) =

∏2g
i=1(1− πi), by

Theorem 5.9. Now use the R.H for function fields.

Remark
1 If q is big compared to the genus, then there must exist primes of degree

one.
2 a1/q → 1 if we fix g and let q grow.
3 If q > 4 we must have hK > 1.
4 If we fix g and let q →∞ then hK/qg → 1.
5 If we fix q > 4 and let g →∞ then hK →∞.
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Prime Number Theorem for Function
Fields

We now present a generalization of the prime number theorem, i.e, the prime
number theorem for general function fields.

Theorem (5.12)

aN = # {P : deg(P) = N} = qN

N + O

(
q

N
2

N

)
.
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Proof of Prime Number Theorem for
Function Fields

Using Euler products decomposition and Theorem 5.9, we see

ZK (u) =
∏2g

i=1(1− πi u)
(1− u)(1− qu) =

∞∏
d=1

(i − ud)−ad .

Take the logarithmic derivative of both sides, multiply the result by u, and
equate the coefficients of uN on both sides. We find

qN + 1−
2g∑
i=1

πN
i =

∑
d|N

dad .

Using the Möbius inversion formula, yields

NaN =
∑
d|N

µ(d)q
N
d + 0 +

∑
d|N

µ(d)

(
2g∑
i=1

π
N
d

i

)
.

Let e(N) be −1 if N is even and 0 if N is odd. Then, as we saw in the proof of
the PNT in Fq[T ],∑

d|N

µ(d)q
N
d = qN − e(N)qN/2 + O(NqN/3).
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Continuation of the Proof

Similarly, using the R.H., we see∣∣∣∣∣∑
d|N

µ(d)

(
2g∑
i=1

π
N/d
i

)∣∣∣∣∣ ≤ 2gqN/2 + 2gNqN/4.

Putting the last three equations together, we find

NaN = qN + O(qN/2).

This completes the proof.
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We derive now another expression for the zeta function. To this end consider
once more the equation

ZK (u) =
∞∏

d=1

(1− ud)−ad .

Take the logarithm of both sides and write the result as power series in u.

log ZK (u) =
∞∑

m=1

Nm

m um,

where the number Nm =
∑

d|m dad .
These numbers have a very appealing geometric interpretation. Roughly
speaking, what is going on is that the function field K/F is associated to a
complete, non-singular curve X defined over F. The number Nm is the number
of rational points on X over the unique field extension Fm of F of degree m. In
any case, using these numbers, the zeta function of the curve X is given by

ZK (u) = exp

(
∞∑

m=1

Nm

m um

)
.
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We have showed that

Nm = qm + 1−
2g∑
i=1

πm
i .

This equality plays an important role in the proof of the R.H. for function
fields. If we assume the R.H., another consequence is

|Nm − qm − 1| ≤ 2gqm/2.
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