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Introduction

• In Lecture 2 we touched upon the subject of average value theorems in
A = Fq[T ].

• The technique which we used goes back to Carlitz and it is based on
Dirichlet series.

• The zeta function of A is so simple that it was possible to arrive at very
precise results for the average values in question.

• We consider average values of the generalizations of some elementary
number-theoretic functions in the case of global function fields.

• For global function fields K the zeta function is more complicated and
the mean values also becomes a little more complicated.



Introduction

• In Lecture 2 we touched upon the subject of average value theorems in
A = Fq[T ].

• The technique which we used goes back to Carlitz and it is based on
Dirichlet series.

• The zeta function of A is so simple that it was possible to arrive at very
precise results for the average values in question.

• We consider average values of the generalizations of some elementary
number-theoretic functions in the case of global function fields.

• For global function fields K the zeta function is more complicated and
the mean values also becomes a little more complicated.



Introduction

• In Lecture 2 we touched upon the subject of average value theorems in
A = Fq[T ].

• The technique which we used goes back to Carlitz and it is based on
Dirichlet series.

• The zeta function of A is so simple that it was possible to arrive at very
precise results for the average values in question.

• We consider average values of the generalizations of some elementary
number-theoretic functions in the case of global function fields.

• For global function fields K the zeta function is more complicated and
the mean values also becomes a little more complicated.



Introduction

• In Lecture 2 we touched upon the subject of average value theorems in
A = Fq[T ].

• The technique which we used goes back to Carlitz and it is based on
Dirichlet series.

• The zeta function of A is so simple that it was possible to arrive at very
precise results for the average values in question.

• We consider average values of the generalizations of some elementary
number-theoretic functions in the case of global function fields.

• For global function fields K the zeta function is more complicated and
the mean values also becomes a little more complicated.



Introduction

• In Lecture 2 we touched upon the subject of average value theorems in
A = Fq[T ].

• The technique which we used goes back to Carlitz and it is based on
Dirichlet series.

• The zeta function of A is so simple that it was possible to arrive at very
precise results for the average values in question.

• We consider average values of the generalizations of some elementary
number-theoretic functions in the case of global function fields.

• For global function fields K the zeta function is more complicated and
the mean values also becomes a little more complicated.



Let K/F be an algebraic function field with field of constants F with |F| = q.
We will work with functions on the semigroup of all effective divisors.

Let DK be the group of divisors of K and D+
K be the sub-semigroup of effective

divisors. We explicitly include the zero divisor as an element of D+
K . Let

f : D+
K → C be a function and define

ζf (s) =
∑

D∈D+
K

f (D)

NDs , (1.1)

the Dirichlet series associated to f .

When we use D as a summation variable, it will be assumed that the sum is
over D in D+

K with, perhaps, some other restrictions.
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For N ≥ 0 an integer, define F (N) =
∑

degD=N f (D). The equation from
previous slide can be rewritten

ζf (s) =

∞∑
N=0

F (N)q−Ns .

Finally, define Zf (u) as the function for which Zf (q−s) = ζf (s). Then

Zf (u) =

∞∑
N=0

F (N)uN . (1.2)

In the last lecture we investigated the function bN(K), the number of effective
divisors of K with degree N. We showed that if N > 2g − 2 (where g is the
genus of K)

bN(K) = hK
qN−g+1 − 1

q − 1 .

Definition
Let f : D+

K → C be a function. The average value of f is defined to be

Ave(f ) = lim
N→∞

∑
degD=N f (D)∑

degD=N 1
= lim

N→∞

F (N)

bN(K)
,

provided the limit exists.
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Before we present the main tool that we will be using we have to establish a
convention that will be used through the lecture. The function q−s is easily
seen to be periodic with period 2πi/ log(q). The same therefore applies to all
functions of q−s such as our functions ζf (s). For this reason, nothing is lost by
confining our attention to the region

B =

{
s ∈ C : − πi

log(q)
≤ I(s) <

πi
log(q)

}
.

In what follows, we will always suppose that s is confined to the region B. This
makes life a lot easier. For example, ζK (s) has two simple poles, one at s = 1
and one at s = 0 if s is confined to B, but it has infinitely many poles on the
line R(s) = 1 and R(s) = 0 if s is not so confined.

Theorem
Let f : D+

K → C be given and suppose ζf (s) converges absolutely for R(s) > 1
and is holomorphic on {s ∈ B : R(s) = 1} except for a simple pole at s = 1
with residue α. Then, there is a δ < 1 such that

F (N) =
∑

degD=N

f (D) = α log(q)qN + O(qδN).

If ζf (s)− α
s−1 is holomorphic in R(s) ≥ δ

′
, then the error term can be replaced

with O(qδ
′
N).



Before we present the main tool that we will be using we have to establish a
convention that will be used through the lecture. The function q−s is easily
seen to be periodic with period 2πi/ log(q). The same therefore applies to all
functions of q−s such as our functions ζf (s). For this reason, nothing is lost by
confining our attention to the region

B =

{
s ∈ C : − πi

log(q)
≤ I(s) <

πi
log(q)

}
.

In what follows, we will always suppose that s is confined to the region B. This
makes life a lot easier. For example, ζK (s) has two simple poles, one at s = 1
and one at s = 0 if s is confined to B, but it has infinitely many poles on the
line R(s) = 1 and R(s) = 0 if s is not so confined.

Theorem
Let f : D+

K → C be given and suppose ζf (s) converges absolutely for R(s) > 1
and is holomorphic on {s ∈ B : R(s) = 1} except for a simple pole at s = 1
with residue α. Then, there is a δ < 1 such that

F (N) =
∑

degD=N

f (D) = α log(q)qN + O(qδN).

If ζf (s)− α
s−1 is holomorphic in R(s) ≥ δ

′
, then the error term can be replaced

with O(qδ
′
N).



Before we present the main tool that we will be using we have to establish a
convention that will be used through the lecture. The function q−s is easily
seen to be periodic with period 2πi/ log(q). The same therefore applies to all
functions of q−s such as our functions ζf (s). For this reason, nothing is lost by
confining our attention to the region

B =

{
s ∈ C : − πi

log(q)
≤ I(s) <

πi
log(q)

}
.

In what follows, we will always suppose that s is confined to the region B. This
makes life a lot easier. For example, ζK (s) has two simple poles, one at s = 1
and one at s = 0 if s is confined to B, but it has infinitely many poles on the
line R(s) = 1 and R(s) = 0 if s is not so confined.

Theorem
Let f : D+

K → C be given and suppose ζf (s) converges absolutely for R(s) > 1
and is holomorphic on {s ∈ B : R(s) = 1} except for a simple pole at s = 1
with residue α. Then, there is a δ < 1 such that

F (N) =
∑

degD=N

f (D) = α log(q)qN + O(qδN).

If ζf (s)− α
s−1 is holomorphic in R(s) ≥ δ

′
, then the error term can be replaced

with O(qδ
′
N).



Proof of the Theorem
The hypothesis implies that Zf (u) is holomorphic on the disk{

u ∈ C : |u| ≤ q−1} with the exception of a simple pole at u = q−1.

What is
the residue of Zf (u) at u = q−1? The answer is given by

lim
u→q−1

(u − q−1)Zf (u) = lim
s→1

q−s − q−1

s − 1 (s − 1)ζf (s) = − log(q)

q α.

Next, notice that since the circle
{

u ∈ C : |u| = q−1} is compact, there is a
δ < 1 such that Zf (u) is holomorphic on the disk

{
u ∈ C : |u| ≤ q−δ

}
except

for the simple pole at u = q−1. Let C be the boundary of this disk oriented
counterclockwise and let Cε be a small disc about the origin of radius ε < q−1.
Orient Cε clockwise, and consider the integral

1
2πi

∮
Cε+C

Zf (u)

uN+1 du.

By the Cauchy integral formula, this equals to sum of the residues of
Zf (u)u−N−1 between the two circles. There is only one pole at u = q−1 and
the residue there is

− log(q)

q αqN+1 = −α log(q)qN .
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Continuation of the Proof
On the other hand, using the power series expansion of Zf (u) about u = 0, we
see

1
2πi

∮
Cε

Zf (u)

uN+1 du = −F (N).

It follows that
F (N) = α log(q)qN +

1
2πi

∮
C

Zf (u)

uN+1 du.

Let M be the maximum value of |Zf (u)| on the circle C . The integral in the
last formula is bounded by MqδN , which completes the proof of the first
assertion of the theorem.
To prove the last part, we may assume δ

′
< 1 since otherwise the error term

would be the same size or bigger than the main term. If ζf (s)− α/(s − 1) is
holomorphic for R(s) ≥ δ

′
, then Zf (u) is holomorphic on the disc{

u ∈ C : |u| ≤ q−δ
′}

except for a simple pole at u = q−1. In that case we can
repeat the above proof with the role of the circle C being replaced by the circle
C
′

=
{

u ∈ C : |u| = q−δ
′}

. The result follows.
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We illustrate the use of this theorem by investigating the generalization of the
questions: what is the probability that a polynomial is square-free? In Lecture 1
we showed, after making the question more precise, that the answer is 1/ζA(2).

What would it mean for a divisor to be square-free? A moment’s reflection
shows that the following to be right definition.

Definition
An effective divisor D is square-free if and only if ordPD is either 0 or 1 for all
prime divisors P, i.e., if and only if D is a sum of distinct prime divisors.

Proposition
Let f : D+

K → C be the characteristic function of the square-free effective
divisors. Then F (N) =

∑
degD=N f (D) is the number of square-free effective

divisors of degree N. Given ε > 0, we have

F (N) =
1

ζK (2)

hK

qg−1(q − 1)
qN + Oε(q(

1
4 +ε)N).

Moreover, Ave(f ) = 1
ζK (2) .
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questions: what is the probability that a polynomial is square-free? In Lecture 1
we showed, after making the question more precise, that the answer is 1/ζA(2).

What would it mean for a divisor to be square-free? A moment’s reflection
shows that the following to be right definition.

Definition
An effective divisor D is square-free if and only if ordPD is either 0 or 1 for all
prime divisors P, i.e., if and only if D is a sum of distinct prime divisors.
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Proof of the Proposition
Recall that for divisors C and D we have N(C + D) = NCND. From this we
calculate

ζf (s) =
∑

D

f (D)

NDs =
∑

D square-free

1
NDs =

∏
P

(
1 +

1
NPs

)
=

ζK (s)

ζK (2s)
.

By the function-field Riemann Hypothesis we know that all the zeros of ζK (s)
are on the line R(s) = 1

2 . Thus 1/ζK (2s) has no poles in the region R(s) > 1
4 .

On the other hand, we know that in this region ζK (s) is holomorphic except for
a simple pole at s = 1.
Choose ε > 0 and set δ

′
= 1

4 + ε. Then all the hypotheses of the Tauberian
theorem apply to ζf (s) and we find

F (N) = α log(q)qN + Oε(q(
1
4 +ε)N), (1.3)

where α is the residue of ζK (s)/ζK (2s) at s = 1. We saw in the last lecture
that the residue of ζK (s) at s = 1 is

ρK =
hK

qg−1(q − 1) log(q)
. (1.4)

It follows that α = ρK/ζK (2). Substituting this information into equation
above completes the proof of the first assertion of the proposition.
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Continuation of the Proof

To prove the second assertion recall that Ave(f ) = limN→∞ F (N)/bN(K) and
that for all N > 2g − 2, bN(K) = hK (qN−g+1 − 1)/(q − 1).

By the first part of the proposition we find, for N in this range,

F (N)

bN(K)
=

1
ζK (2)

qN−g+1

qN−g+1 − 1 + Oε(q(− 3
4 +ε)N).

Now, simply pass to the limit as N tends to ∞.



Continuation of the Proof

To prove the second assertion recall that Ave(f ) = limN→∞ F (N)/bN(K) and
that for all N > 2g − 2, bN(K) = hK (qN−g+1 − 1)/(q − 1).

By the first part of the proposition we find, for N in this range,

F (N)

bN(K)
=

1
ζK (2)

qN−g+1

qN−g+1 − 1 + Oε(q(− 3
4 +ε)N).

Now, simply pass to the limit as N tends to ∞.



Continuation of the Proof

To prove the second assertion recall that Ave(f ) = limN→∞ F (N)/bN(K) and
that for all N > 2g − 2, bN(K) = hK (qN−g+1 − 1)/(q − 1).

By the first part of the proposition we find, for N in this range,

F (N)

bN(K)
=

1
ζK (2)

qN−g+1

qN−g+1 − 1 + Oε(q(− 3
4 +ε)N).

Now, simply pass to the limit as N tends to ∞.



As a final application of these methods we want to investigate the function
d(D), the number of effective divisors of D. More precisely,
d(D) = #

{
C ∈ D+

K : 0 ≤ C ≤ D
}

.

It is relatively easy to check that ζd (s) = ζK (s)2. This function has a double
pole at s = 1 so the Tauberian theorem doens’t immediately apply. Moreover,
it is hard to imagine any simple trick reducing us to the condition of that
theorem. What is needed is a generalization.

Theorem
Let f : D+

K → C and let ζf (s) be the corresponding Dirichlet series. Suppose
this series converges absolutely in the region R(s) > 1 and is holomorphic in
the region {s ∈ B : R(s) = 1} except for a pole of order r at s = 1. Let
α = lims→1(s − 1)rζf (s). Then, there is a δ < 1 and constants c−i with
1 ≤ i ≤ r such that

F (N) =
∑

degD=N

f (D) = qN

(
r∑

i=1

c−i

(
N + i − 1

i − 1

)
(−q)i

)
+ O(qδN).

The sum in parenthesis is a polynomial in N of degree r − 1 with leading term

log(q)r

(r − 1)!
αN r−1.
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Proof of the Theorem
As in the proof of the Tauberian theorem, we can find a δ < 1 such that Zf (u)
is holomorphic on the disc

{
u ∈ C : |u| ≤ q−δ

}
. We again let C be the

boundary of this disc oriented conterclockwise and Cε a small circle about
s = 0 oriented clockwise.

By the Cauchy integral theorem, the integral
1

2πi

∮
C+Cε

Zf (u)

uN+1 du

is equal to the sum of the residues of the function Zf (u)u−N − 1 in the region
between the two circles. There is only one pole in this region. It is located at
u = q−1. To find the residue there, we expand both Zf (u) and u−N−1 in
Laurent series about u = q−1, multiply the results together, and pick out the
coefficient of (u − q−1)−1. By using the Taylor series formula or the general
binomial expansion theorem we find

u−N−1 = qN+1
∞∑
j=0

(
−N − 1

j

)
qj (u − q−1)j .

The Laurent series for Zf (u) has the form

Zf (u) =

∞∑
i=−r

ci (u − q−1)i , with c−r 6= 0.
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Continuation of the Proof
Multiplying these two series together and isolating the coefficient of
(u − q−1)−1 in the result yields

Resu=q−1 Zf (u)u−N−1 = qN+1
−1∑

i=−r

ci

(
−N − 1
−i − 1

)
q−i−1

= qN
r∑

i=1

c−i

(
−N − 1

i − 1

)
qi .

To get the last equality we simply transformed i to −i and redistributed one
factor of q.
It is easy to see that

(−N−1
k

)
= (−1)k(N+k

k

)
, so the residue can be rewritten as

−qN
r∑

i=1

c−i

(
N + i − 1

i − 1

)
(−q)i .

As in the proof of the previous Tauberian theorem , it now follows that

F (N) = qN

(
r∑

i=1

c−i

(
N + i − 1

i − 1

)
(−q)i

)
+ O(qδN).
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Continuation of the Proof
Finally, we must prove the assertion about the term in parenthesis. First of all,
it is clear that when k ≥ 0,

(N+k
k

)
is a polynomial in N of degree k, and that its

leading term is k!−1Nk . Thus the sum in parenthesis is a polynomial in N of
degree r − 1 and its leading term is

c−r

(r − 1)!
(−q)r N r−1.

It remains to relate α = lims→1(s − 1)rζf (s) to c−r . This relationship follows
from the calculation

c−r = lim
u→q−1

(u − q−1)r Zf (u)

= lim
s→1

(
q−s − q−1

s − 1

)r

(s − 1)rζf (s) =

(
− log(q)

q

)r

α. (1.5)

Substitute this expression for c−r into the previous expression for the leading
term of the sum in parentheses and we arrive at

log(q)r

(r − 1)!
αN r−1

for the leading term. This completes the proof.
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degree r − 1 and its leading term is

c−r

(r − 1)!
(−q)r N r−1.

It remains to relate α = lims→1(s − 1)rζf (s) to c−r . This relationship follows
from the calculation

c−r = lim
u→q−1

(u − q−1)r Zf (u)

= lim
s→1

(
q−s − q−1

s − 1

)r

(s − 1)rζf (s) =

(
− log(q)

q

)r

α. (1.5)

Substitute this expression for c−r into the previous expression for the leading
term of the sum in parentheses and we arrive at

log(q)r

(r − 1)!
αN r−1

for the leading term. This completes the proof.
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Corollary
With the assumptions and notation of the theorem, we have, as N →∞,

F (N) ∼ log(q)r

(r − 1)!
αqNN r−1.

Proof.
This is immediate from the theorem.
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We now want to apply the previous theorem to the divisor function d(D) on
D+

K .

Proposition
Let K/F be a global function field and d(D) the divisor function on the
effective divisors. Then, there exist constants µK and λK such that for fixed
ε > 0 we have ∑

degD=N

d(D) = qN(λK N + µK ) + Oε(qεN).

More explicitly, λK = h2
K q2−2g (q − 1)−2.



We now want to apply the previous theorem to the divisor function d(D) on
D+

K .

Proposition
Let K/F be a global function field and d(D) the divisor function on the
effective divisors. Then, there exist constants µK and λK such that for fixed
ε > 0 we have ∑

degD=N

d(D) = qN(λK N + µK ) + Oε(qεN).

More explicitly, λK = h2
K q2−2g (q − 1)−2.



Proof of the Proposition

We have already seen that ζd (s) = ζK (s)2, a function which has a double pole
at s = 1 and is otherwise holomorphic for R(s) > 0.

Choose ε > 0. Notice that
lims→1(s − 1)2ζK (s)2 = ρ2

K . Applying the previous theorem we find there are
constants λK and µK such that∑

degD=N

d(D) = qN(λK N + µK ) + Oε(qεN).

Applying the formula for the leading term of the polynomial in the parenthesis
given in the statement of the previous theorem, we find

λK =
log(q)r

(r − 1)!
α =

log(q)2

1!
ρ2

K =
h2

K
q2g−2(q − 1)2 .

This finishes the proof.
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Introduction

• In this part I will present function-field version of sieve
methods.

• Due to lack of time we will only present one sieve method for
function fields.

• We will present a function-field version of the classical
Selberg’s sieve.

• Would be interesting to work out all the other sieve methods
(as those presented in the book of A. Cojocaru and R. Murty
and/or the book of Friedlander and Iwaniec) in the Fq[x ]
setting or even for more general global function fields K/F.
But we don’t do this here.

• Let us start by remembering the classical Selberg sieve.
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The Classical Selberg’s Sieve
Let A be any finite set of elements and P be a set of primes.

For each prime
p ∈ P, let Ap be a subset of A. We denote by d squarefree numbers composed
of primes of P. Let A1 := A and for squarefree integers d composed of primes
of P, let Ad := ∩p|dAp . Let z be a positive real number and set

P(z) :=
∏
p∈P
p<z

p.

Denote by S(A,P, z) the number of elements of

A \ ∪p|P(z)Ap .

Theorem (Selberg’s sieve, 1947)
We keep the above setting and assume that there exist X > 0 and a
multiplicative function f (·) satisfying f (p) > 1 for any prime p ∈ P, such that
for any squarefree integer d composed of primes of P we have

#Ad =
X

f (d)
+ Rd (2.1)

for some real number Rd .
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Continuation Selberg’s sieve
We write

f (n) =
∑
d|n

f1(d) (2.2)

for some multiplicative function f1(·) that is uniquely determined by f by using
the Möbius inversion formula; that is,

f1(n) =
∑
d|n

µ(d)f (n/d).

Also, we set

V (z) :=
∑
d≤z

d|P(z)

µ2(d)

f1(d)
.

Then

S(A,P, z) ≤ X
V (z)

+ O

 ∑
d1,d2≤z

d1,d2|P(z)

|R[d1,d2]|

 .
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Some Notation

Let Fq[x ] be the polynomial ring over Fq.

Let A,B, . . . denote monic polynomials in Fq[x ]. And P a monic irreducible
polynomal.

We will prove a fairly general k-residue form of Selberg’s sieve for Fq[x ] similar
to that found in Halberstam and Roth.

Let
A = {A1,A2, . . . ,An} ,

P = {P1,P2, . . . ,Pr} ; Pi 6= Pj ,

∏
(P) =

r∏
i=1

Pi .
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Let also D denotes a subset of the divisors of
∏

(P).

D is divisor closed if
D ∈ D implies every divisor of D is also in D.

With each Pi we associate ki residue class Ri1, . . . ,Riki modulo Pi . Let
S = {Aj ∈ A : Aj is in none of the classes Rik} and |S| be the number of
elements in S.

Let σ(A) =
∏

Pi where the product is over those Pi for which A is in one of
the residue classes Rik , the empty product being 1.

Now let f be a multiplicative function defined on the divisors of
∏

(P)
satisfying

1 < f (P) ≤ |P| = qdeg(P), (2.3)∑
j

D|σ(Aj )

1 =
n

f (D)
+ RD . (2.4)
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Let C denote the class of all functions s representable in the form

s(A) =
∑

D|σ(A)

λ(D), (2.5)

where λ is a real valued function.

The characteristic function of S, s(0), is in C
taking λ to be the Möbius function. Hence,

|S| =

n∑
j=1

s(0)(Aj ) =

n∑
j=1

∑
D|σ(Aj )

µ(D).

Let C(+) and C(−) denote the subclasses of C whose elements satisfy
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Let D be a divisor closed subset of
∏

(P), and with each D ∈ D associate the
real variable XD .

Consider all sets of values of
X = {XD : D ∈ D,X1 = 1} .

To each set of values X there corresponds a function

s1(A) =

( ∑
D∈D

D|σ(A)

XD

)2

. (2.9)

Then s1 ∈ C+ with
λ1(D) =

∑
D1,D2∈D

lcm(D1,D2)=D

XD1 XD2 ,

and λ(D) = 0 outside the set
D∗ = {D : D = lcm(D1,D2); D1,D2 ∈ D} . (2.10)

Now

|S| ≤
n∑

j=1

s1(Aj ) =
∑

D|
∏

(P)

λ1(D)
∑

j
D|σ(Aj )

1 (2.11)

≤ n
∑

D∈D∗

λ1(D)

f (D)
+ E ,
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where
E =

∑
D∈D∗

|λ1(D)RD |. (2.12)

Define the function g by

g(D) = f (D)
∏
P|D

(
1− 1

f (P)

)
. (2.13)

We are now ready to estimate
∑

D∈D∗ λ1(D)/f (D).

Lema (1)

inf
X

∑
D∈D∗

λ1(D)

f (D)
=

(∑
D∈D

1
g(D)

)−1

= Q−1 (2.14)

and this lower bound is attained when

XD =
µ(D)f (D)

Q
∑
C∈D
D|C

1
g(C)

. (2.15)
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Proof of the Lemma
Let

YC =
∑
C|D

XD

f (D)
,

then ∑
D∈D∗

λ1(D)

f (D)
=

∑
D∈D∗

1
f (D)

∑
D1,D2∈D

lcm(D1,D2)=D

XD1 XD2

=
∑

D1,D2∈D

XD1 XD2

f (D1)f (D2)

∑
C|(D1,D2)

g(C)

=
∑
C∈D

g(C)

(∑
C|D

D∈D

XD/f (D)

)2

=
∑
C∈D

g(C)Y 2
C

=
∑
C∈D

1
g(C)

{
g(C)YC − µ(C)Q−1}2

+ Q−1.

The result follows by setting the quantity in braces equal to zero.
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We now assume that X is defined as in Equation (2.15), i.e., X = XD . We then
have the following form of the function-field Selberg’s sieve.

Theorem (Selberg’s sieve)

|S| ≤ n
Q +

∑
D1,D2∈D

|XD1 XD2 R[D1,D2]|, (2.16)

where [] denotes the lcm.

Proof.
By Lemma 1 and the previous estimate on |S| (2.11) we have

|S| ≤ n
Q + E ,

where

E =
∑

D∈D∗
|λ1(D)RD | =

∑
D∈D∗

∣∣∣∣∣ ∑
D1,D2∈D
[D1,D2]=D

XD1 XD2 RD

∣∣∣∣∣
≤

∑
D1,D2∈D

|XD1 XD2 R[D1,D2]|

which proves the theorem.
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Similarly we can prove the following version of Selberg’s lower bound sieve.

Let Di denote a divisor closed subset of
∏i−1

j=1 Pi .

Now define Qi and X (i) by (2.14) and (2.15) using Di instead of D. We then
have

Theorem

|S| ≥ n

(
1−

r∑
i=1

1
f (Pi )Qi

)
−

r∑
i=1

∑
D1,D2∈Di

|X (i)
D1

X (i)
D2

RPi [D1,D2]|. (2.17)
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Applications of Selberg’s Sieve

Let π(m,K , L) denote the number of monic irreducible polynomials in Fq[x ] of
degree m which are congruent to L modulo K . We assume (L,K) = 1,
degK = k < m and degL < k. L need not be monic.

We take
A = {L + AK : degA = m − k}

and
P =

{
P : degP ≤

[m
2

]
,P - K

}
so P contains only irreducible polynomials. Also, take f (D) = |D|. It is easily
checked that |RD | ≤ 1.

The set D is defined by

D =
{

D : D |
∏

(P) and |D| ≤ q(m−k)/4
}
.
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,P - K

}
so P contains only irreducible polynomials. Also, take f (D) = |D|. It is easily
checked that |RD | ≤ 1.

The set D is defined by

D =
{

D : D |
∏

(P) and |D| ≤ q(m−k)/4
}
.
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With D thus defined,

Q =
∑
D∈D

1
g(D)

>
∑
D∈D

1
|D| ≥ c1

∏
P∈P

degP≤(m−k)/4

(
1− 1
|P|

)−1

≥ c2
∏

degP≤(m−k)/4

(
1− 1
|P|

)−1
Φ(K)

|K | ≥ c3
Φ(K)

|K | (m − k),

where ci are constants, and Φ(K) is Euler’s Φ function defined for Fq[x ].

Also the error term is quite small, E = O(m2q(m−k)/2).

The previous estimates are obtained by using variations of the standard
techniques used on similar expressions involving the rational integers.
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Thus by Selberg’s sieve theorem we have

Theorem

π(m,K , L) = |S| ≤ c qm−k |K |
Φ(K)(m − k)

= c qm

Φ(K)(m − k)
.

This result is not as powerful as the “prime number theorem” for Fq[x ] when
degree of K is small. This is particularly true since the Riemann hypothesis is
known to be true. But the above theorem is still effective when k is almost as
large as m, and of course is essentially elementary.
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Brun’s theorem
Let K be a fixed polynomial, not necessarily monic and let N (n,K) be the
number of monic irreducibles polynomials P of degree ≤ n, such that P + K is
also irreducibe.

We take n > degK . Letting

A = {A(A + K) : degA ≤ n} ,

P =
{

P : degP ≤ n
2 ,P - K

}
and f (D) = |D|/α(D) where α(D) is the number of solutions of
A(A + K) ≡ 0(mod D). Clearly α(D) = 2ω(D), where ω(D) denotes the
number of distinct irreducibles dividing D, for D |

∏
(P). We find by routine

calculation that
|RD | ≤

|D|
f (D)

.

Letting D =
{

D : D |
∏

(P) and |D| ≤ N1/4} where
N = |A| = (qn+1 − q)/(q − 1), and applying the Selberg’s sieve theorem we
have

|S| ≤ N
Q + N1/2

∏
P∈P

(
1− 1

f (P)

)−2

. (2.18)
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where c2 depends on K . Since
∏

P∈P(1− 1/f (P))−2 ≤ log4 N, from (2.18) we
obtain

|S| ≤ c3
N

log2 N
. (2.19)
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Now S contains irreducibles P such that P + K is also irreducible and
n/2 < degP ≤ n.

Thus

N (n,K) = |S|+ # {P irreducible : P + K irreducible, degP ≤ n/2}
.
Hence by (2.19) we have

N (n,K) ≤ c3
N

log2 N
+ c4qn/2 ≤ c5

N
log2 N

.

Thus we have proved

Theorem
If N (n,K) is the number of monic irreducibles polynomials P of degree ≤ n
such that P + K is also irreducible, then

N (n,K) ≤ c qn

n2 . (2.20)

Corollary∑
1/|P| converges, where the summation is over all monic irreducibles P such

that P + K is also irreducible.
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