Analytic Number Theory in Function Fields (Lecture 4)

Julio Andrade
j.c.andrade.math@gmail.com
http://julioandrade.weebly.com/
University of Oxford
TCC Graduate Course
University of Oxford, Oxford
01 May 2015-11 June 2015

Content

(1) Average Value Theorems in Function Fields
(2) Selberg's Sieve for Function Fields

Introduction

- In Lecture 2 we touched upon the subject of average value theorems in $A=\mathbb{F}_{q}[T]$.

Introduction

- In Lecture 2 we touched upon the subject of average value theorems in $A=\mathbb{F}_{q}[T]$.
- The technique which we used goes back to Carlitz and it is based on Dirichlet series.

Introduction

- In Lecture 2 we touched upon the subject of average value theorems in $A=\mathbb{F}_{q}[T]$.
- The technique which we used goes back to Carlitz and it is based on Dirichlet series.
- The zeta function of A is so simple that it was possible to arrive at very precise results for the average values in question.

Introduction

- In Lecture 2 we touched upon the subject of average value theorems in $A=\mathbb{F}_{q}[T]$.
- The technique which we used goes back to Carlitz and it is based on Dirichlet series.
- The zeta function of A is so simple that it was possible to arrive at very precise results for the average values in question.
- We consider average values of the generalizations of some elementary number-theoretic functions in the case of global function fields.

Introduction

- In Lecture 2 we touched upon the subject of average value theorems in $A=\mathbb{F}_{q}[T]$.
- The technique which we used goes back to Carlitz and it is based on Dirichlet series.
- The zeta function of A is so simple that it was possible to arrive at very precise results for the average values in question.
- We consider average values of the generalizations of some elementary number-theoretic functions in the case of global function fields.
- For global function fields K the zeta function is more complicated and the mean values also becomes a little more complicated.

Let K / \mathbb{F} be an algebraic function field with field of constants \mathbb{F} with $|\mathbb{F}|=q$. We will work with functions on the semigroup of all effective divisors.

Let K / \mathbb{F} be an algebraic function field with field of constants \mathbb{F} with $|\mathbb{F}|=q$. We will work with functions on the semigroup of all effective divisors.

Let \mathcal{D}_{K} be the group of divisors of K and \mathcal{D}_{K}^{+}be the sub-semigroup of effective divisors. We explicitly include the zero divisor as an element of \mathcal{D}_{K}^{+}. Let $f: \mathcal{D}_{K}^{+} \rightarrow \mathbb{C}$ be a function and define

$$
\begin{equation*}
\zeta_{f}(s)=\sum_{D \in \mathcal{D}_{K}^{+}} \frac{f(D)}{N D^{s}} \tag{1.1}
\end{equation*}
$$

the Dirichlet series associated to f.

Let K / \mathbb{F} be an algebraic function field with field of constants \mathbb{F} with $|\mathbb{F}|=q$. We will work with functions on the semigroup of all effective divisors.

Let \mathcal{D}_{K} be the group of divisors of K and \mathcal{D}_{K}^{+}be the sub-semigroup of effective divisors. We explicitly include the zero divisor as an element of \mathcal{D}_{K}^{+}. Let $f: \mathcal{D}_{K}^{+} \rightarrow \mathbb{C}$ be a function and define

$$
\begin{equation*}
\zeta_{f}(s)=\sum_{D \in \mathcal{D}_{K}^{+}} \frac{f(D)}{N D^{s}} \tag{1.1}
\end{equation*}
$$

the Dirichlet series associated to f.

When we use D as a summation variable, it will be assumed that the sum is over D in \mathcal{D}_{K}^{+}with, perhaps, some other restrictions.

For $N \geq 0$ an integer, define $F(N)=\sum_{\operatorname{deg} D=N} f(D)$. The equation from previous slide can be rewritten

$$
\zeta_{f}(s)=\sum_{N=0}^{\infty} F(N) q^{-N s}
$$

For $N \geq 0$ an integer, define $F(N)=\sum_{\operatorname{deg} D=N} f(D)$. The equation from previous slide can be rewritten

$$
\zeta_{f}(s)=\sum_{N=0}^{\infty} F(N) q^{-N s}
$$

Finally, define $Z_{f}(u)$ as the function for which $Z_{f}\left(q^{-s}\right)=\zeta_{f}(s)$. Then

$$
\begin{equation*}
Z_{f}(u)=\sum_{N=0}^{\infty} F(N) u^{N} \tag{1.2}
\end{equation*}
$$

For $N \geq 0$ an integer, define $F(N)=\sum_{\operatorname{deg} D=N} f(D)$. The equation from previous slide can be rewritten

$$
\zeta_{f}(s)=\sum_{N=0}^{\infty} F(N) q^{-N s}
$$

Finally, define $Z_{f}(u)$ as the function for which $Z_{f}\left(q^{-s}\right)=\zeta_{f}(s)$. Then

$$
\begin{equation*}
Z_{f}(u)=\sum_{N=0}^{\infty} F(N) u^{N} \tag{1.2}
\end{equation*}
$$

In the last lecture we investigated the function $b_{N}(K)$, the number of effective divisors of K with degree N. We showed that if $N>2 g-2$ (where g is the genus of K)

$$
b_{N}(K)=h_{K} \frac{q^{N-g+1}-1}{q-1}
$$

For $N \geq 0$ an integer, define $F(N)=\sum_{\operatorname{deg} D=N} f(D)$. The equation from previous slide can be rewritten

$$
\zeta_{f}(s)=\sum_{N=0}^{\infty} F(N) q^{-N s}
$$

Finally, define $Z_{f}(u)$ as the function for which $Z_{f}\left(q^{-s}\right)=\zeta_{f}(s)$. Then

$$
\begin{equation*}
Z_{f}(u)=\sum_{N=0}^{\infty} F(N) u^{N} \tag{1.2}
\end{equation*}
$$

In the last lecture we investigated the function $b_{N}(K)$, the number of effective divisors of K with degree N. We showed that if $N>2 g-2$ (where g is the genus of K)

$$
b_{N}(K)=h_{K} \frac{q^{N-g+1}-1}{q-1}
$$

Definition
Let $f: \mathcal{D}_{K}^{+} \rightarrow \mathbb{C}$ be a function. The average value of f is defined to be

$$
\operatorname{Ave}(f)=\lim _{N \rightarrow \infty} \frac{\sum_{\operatorname{deg} D=N} f(D)}{\sum_{\operatorname{deg} D=N} 1}=\lim _{N \rightarrow \infty} \frac{F(N)}{b_{N}(K)}
$$

provided the limit exists.

Before we present the main tool that we will be using we have to establish a convention that will be used through the lecture. The function q^{-s} is easily seen to be periodic with period $2 \pi i / \log (q)$. The same therefore applies to all functions of q^{-s} such as our functions $\zeta_{f}(s)$. For this reason, nothing is lost by confining our attention to the region

$$
B=\left\{s \in \mathbb{C}:-\frac{\pi i}{\log (q)} \leq \Im(s)<\frac{\pi i}{\log (q)}\right\}
$$

Before we present the main tool that we will be using we have to establish a convention that will be used through the lecture. The function q^{-s} is easily seen to be periodic with period $2 \pi i / \log (q)$. The same therefore applies to all functions of q^{-s} such as our functions $\zeta_{f}(s)$. For this reason, nothing is lost by confining our attention to the region

$$
B=\left\{s \in \mathbb{C}:-\frac{\pi i}{\log (q)} \leq \Im(s)<\frac{\pi i}{\log (q)}\right\}
$$

In what follows, we will always suppose that s is confined to the region B. This makes life a lot easier. For example, $\zeta_{K}(s)$ has two simple poles, one at $s=1$ and one at $s=0$ if s is confined to B, but it has infinitely many poles on the line $\mathfrak{R}(s)=1$ and $\mathfrak{R}(s)=0$ if s is not so confined.

Before we present the main tool that we will be using we have to establish a convention that will be used through the lecture. The function q^{-s} is easily seen to be periodic with period $2 \pi i / \log (q)$. The same therefore applies to all functions of q^{-s} such as our functions $\zeta_{f}(s)$. For this reason, nothing is lost by confining our attention to the region

$$
B=\left\{s \in \mathbb{C}:-\frac{\pi i}{\log (q)} \leq \Im(s)<\frac{\pi i}{\log (q)}\right\} .
$$

In what follows, we will always suppose that s is confined to the region B. This makes life a lot easier. For example, $\zeta_{K}(s)$ has two simple poles, one at $s=1$ and one at $s=0$ if s is confined to B, but it has infinitely many poles on the line $\mathfrak{R}(s)=1$ and $\mathfrak{R}(s)=0$ if s is not so confined.

Theorem

Let $f: \mathcal{D}_{K}^{+} \rightarrow \mathbb{C}$ be given and suppose $\zeta_{f}(s)$ converges absolutely for $\mathfrak{R}(s)>1$ and is holomorphic on $\{s \in B: \mathfrak{R}(s)=1\}$ except for a simple pole at $s=1$ with residue α. Then, there is a $\delta<1$ such that

$$
F(N)=\sum_{\operatorname{deg} D=N} f(D)=\alpha \log (q) q^{N}+O\left(q^{\delta N}\right)
$$

If $\zeta_{f}(s)-\frac{\alpha}{s-1}$ is holomorphic in $\Re(s) \geq \delta^{\prime}$, then the error term can be replaced with $O\left(q^{\delta^{\prime} N}\right)$.

Proof of the Theorem

The hypothesis implies that $Z_{f}(u)$ is holomorphic on the disk $\left\{u \in \mathbb{C}:|u| \leq q^{-1}\right\}$ with the exception of a simple pole at $u=q^{-1}$.

Proof of the Theorem

The hypothesis implies that $Z_{f}(u)$ is holomorphic on the disk $\left\{u \in \mathbb{C}:|u| \leq q^{-1}\right\}$ with the exception of a simple pole at $u=q^{-1}$. What is the residue of $Z_{f}(u)$ at $u=q^{-1}$?

Proof of the Theorem

The hypothesis implies that $Z_{f}(u)$ is holomorphic on the disk $\left\{u \in \mathbb{C}:|u| \leq q^{-1}\right\}$ with the exception of a simple pole at $u=q^{-1}$. What is the residue of $Z_{f}(u)$ at $u=q^{-1}$? The answer is given by

$$
\lim _{u \rightarrow q^{-1}}\left(u-q^{-1}\right) Z_{f}(u)=\lim _{s \rightarrow 1} \frac{q^{-s}-q^{-1}}{s-1}(s-1) \zeta_{f}(s)=-\frac{\log (q)}{q} \alpha
$$

Proof of the Theorem

The hypothesis implies that $Z_{f}(u)$ is holomorphic on the disk $\left\{u \in \mathbb{C}:|u| \leq q^{-1}\right\}$ with the exception of a simple pole at $u=q^{-1}$. What is the residue of $Z_{f}(u)$ at $u=q^{-1}$? The answer is given by

$$
\lim _{u \rightarrow q^{-1}}\left(u-q^{-1}\right) Z_{f}(u)=\lim _{s \rightarrow 1} \frac{q^{-s}-q^{-1}}{s-1}(s-1) \zeta_{f}(s)=-\frac{\log (q)}{q} \alpha
$$

Next, notice that since the circle $\left\{u \in \mathbb{C}:|u|=q^{-1}\right\}$ is compact, there is a $\delta<1$ such that $Z_{f}(u)$ is holomorphic on the disk $\left\{u \in \mathbb{C}:|u| \leq q^{-\delta}\right\}$ except for the simple pole at $u=q^{-1}$.

Proof of the Theorem

The hypothesis implies that $Z_{f}(u)$ is holomorphic on the disk $\left\{u \in \mathbb{C}:|u| \leq q^{-1}\right\}$ with the exception of a simple pole at $u=q^{-1}$. What is the residue of $Z_{f}(u)$ at $u=q^{-1}$? The answer is given by

$$
\lim _{u \rightarrow q^{-1}}\left(u-q^{-1}\right) Z_{f}(u)=\lim _{s \rightarrow 1} \frac{q^{-s}-q^{-1}}{s-1}(s-1) \zeta_{f}(s)=-\frac{\log (q)}{q} \alpha
$$

Next, notice that since the circle $\left\{u \in \mathbb{C}:|u|=q^{-1}\right\}$ is compact, there is a $\delta<1$ such that $Z_{f}(u)$ is holomorphic on the disk $\left\{u \in \mathbb{C}:|u| \leq q^{-\delta}\right\}$ except for the simple pole at $u=q^{-1}$. Let C be the boundary of this disk oriented counterclockwise and let C_{ϵ} be a small disc about the origin of radius $\epsilon<q^{-1}$. Orient C_{ϵ} clockwise, and consider the integral

$$
\frac{1}{2 \pi i} \oint_{C_{\epsilon}+C} \frac{Z_{f}(u)}{u^{N+1}} d u
$$

Proof of the Theorem

The hypothesis implies that $Z_{f}(u)$ is holomorphic on the disk $\left\{u \in \mathbb{C}:|u| \leq q^{-1}\right\}$ with the exception of a simple pole at $u=q^{-1}$. What is the residue of $Z_{f}(u)$ at $u=q^{-1}$? The answer is given by

$$
\lim _{u \rightarrow q^{-1}}\left(u-q^{-1}\right) Z_{f}(u)=\lim _{s \rightarrow 1} \frac{q^{-s}-q^{-1}}{s-1}(s-1) \zeta_{f}(s)=-\frac{\log (q)}{q} \alpha
$$

Next, notice that since the circle $\left\{u \in \mathbb{C}:|u|=q^{-1}\right\}$ is compact, there is a $\delta<1$ such that $Z_{f}(u)$ is holomorphic on the disk $\left\{u \in \mathbb{C}:|u| \leq q^{-\delta}\right\}$ except for the simple pole at $u=q^{-1}$. Let C be the boundary of this disk oriented counterclockwise and let C_{ϵ} be a small disc about the origin of radius $\epsilon<q^{-1}$. Orient C_{ϵ} clockwise, and consider the integral

$$
\frac{1}{2 \pi i} \oint_{C_{\epsilon}+C} \frac{Z_{f}(u)}{u^{N+1}} d u
$$

By the Cauchy integral formula, this equals to sum of the residues of $Z_{f}(u) u^{-N-1}$ between the two circles. There is only one pole at $u=q^{-1}$ and the residue there is

$$
-\frac{\log (q)}{q} \alpha q^{N+1}=-\alpha \log (q) q^{N}
$$

Continuation of the Proof

On the other hand, using the power series expansion of $Z_{f}(u)$ about $u=0$, we see

$$
\frac{1}{2 \pi i} \oint_{C_{\epsilon}} \frac{Z_{f}(u)}{u^{N+1}} d u=-F(N)
$$

Continuation of the Proof

On the other hand, using the power series expansion of $Z_{f}(u)$ about $u=0$, we see

$$
\frac{1}{2 \pi i} \oint_{C_{\epsilon}} \frac{Z_{f}(u)}{u^{N+1}} d u=-F(N)
$$

It follows that

$$
F(N)=\alpha \log (q) q^{N}+\frac{1}{2 \pi i} \oint_{C} \frac{Z_{f}(u)}{u^{N+1}} d u
$$

Continuation of the Proof

On the other hand, using the power series expansion of $Z_{f}(u)$ about $u=0$, we see

$$
\frac{1}{2 \pi i} \oint_{C_{\epsilon}} \frac{Z_{f}(u)}{u^{N+1}} d u=-F(N)
$$

It follows that

$$
F(N)=\alpha \log (q) q^{N}+\frac{1}{2 \pi i} \oint_{C} \frac{Z_{f}(u)}{u^{N+1}} d u
$$

Let M be the maximum value of $\left|Z_{f}(u)\right|$ on the circle C. The integral in the last formula is bounded by $M q^{\delta N}$, which completes the proof of the first assertion of the theorem.

Continuation of the Proof

On the other hand, using the power series expansion of $Z_{f}(u)$ about $u=0$, we see

$$
\frac{1}{2 \pi i} \oint_{C_{\epsilon}} \frac{Z_{f}(u)}{u^{N+1}} d u=-F(N)
$$

It follows that

$$
F(N)=\alpha \log (q) q^{N}+\frac{1}{2 \pi i} \oint_{C} \frac{Z_{f}(u)}{u^{N+1}} d u
$$

Let M be the maximum value of $\left|Z_{f}(u)\right|$ on the circle C. The integral in the last formula is bounded by $M q^{\delta N}$, which completes the proof of the first assertion of the theorem.
To prove the last part, we may assume $\delta^{\prime}<1$ since otherwise the error term would be the same size or bigger than the main term. If $\zeta_{f}(s)-\alpha /(s-1)$ is holomorphic for $\mathfrak{R}(s) \geq \delta^{\prime}$, then $Z_{f}(u)$ is holomorphic on the disc $\left\{u \in \mathbb{C}:|u| \leq q^{-\delta^{\prime}}\right\}$ except for a simple pole at $u=q^{-1}$.

Continuation of the Proof

On the other hand, using the power series expansion of $Z_{f}(u)$ about $u=0$, we see

$$
\frac{1}{2 \pi i} \oint_{C_{\epsilon}} \frac{Z_{f}(u)}{u^{N+1}} d u=-F(N)
$$

It follows that

$$
F(N)=\alpha \log (q) q^{N}+\frac{1}{2 \pi i} \oint_{C} \frac{Z_{f}(u)}{u^{N+1}} d u
$$

Let M be the maximum value of $\left|Z_{f}(u)\right|$ on the circle C. The integral in the last formula is bounded by $M q^{\delta N}$, which completes the proof of the first assertion of the theorem.
To prove the last part, we may assume $\delta^{\prime}<1$ since otherwise the error term would be the same size or bigger than the main term. If $\zeta_{f}(s)-\alpha /(s-1)$ is holomorphic for $\mathfrak{R}(s) \geq \delta^{\prime}$, then $Z_{f}(u)$ is holomorphic on the disc $\left\{u \in \mathbb{C}:|u| \leq q^{-\delta^{\prime}}\right\}$ except for a simple pole at $u=q^{-1}$. In that case we can repeat the above proof with the role of the circle C being replaced by the circle $C^{\prime}=\left\{u \in \mathbb{C}:|u|=q^{-\delta^{\prime}}\right\}$. The result follows.

We illustrate the use of this theorem by investigating the generalization of the questions: what is the probability that a polynomial is square-free? In Lecture 1 we showed, after making the question more precise, that the answer is $1 / \zeta_{A}(2)$.

We illustrate the use of this theorem by investigating the generalization of the questions: what is the probability that a polynomial is square-free? In Lecture 1 we showed, after making the question more precise, that the answer is $1 / \zeta_{A}(2)$.

What would it mean for a divisor to be square-free? A moment's reflection shows that the following to be right definition.
Definition
An effective divisor D is square-free if and only if $\operatorname{ord}_{p} D$ is either 0 or 1 for all prime divisors P, i.e., if and only if D is a sum of distinct prime divisors.

We illustrate the use of this theorem by investigating the generalization of the questions: what is the probability that a polynomial is square-free? In Lecture 1 we showed, after making the question more precise, that the answer is $1 / \zeta_{A}(2)$.

What would it mean for a divisor to be square-free? A moment's reflection shows that the following to be right definition.

Definition

An effective divisor D is square-free if and only if $\operatorname{ord}_{p} D$ is either 0 or 1 for all prime divisors P, i.e., if and only if D is a sum of distinct prime divisors.

Proposition

Let $f: \mathcal{D}_{K}^{+} \rightarrow \mathbb{C}$ be the characteristic function of the square-free effective divisors. Then $F(N)=\sum_{\operatorname{deg} D=N} f(D)$ is the number of square-free effective divisors of degree N. Given $\epsilon>0$, we have

$$
F(N)=\frac{1}{\zeta_{K}(2)} \frac{h_{K}}{q^{g-1}(q-1)} q^{N}+O_{\epsilon}\left(q^{\left(\frac{1}{4}+\epsilon\right) N}\right)
$$

Moreover, $\operatorname{Ave}(f)=\frac{1}{\zeta_{K}(2)}$.

Proof of the Proposition

Recall that for divisors C and D we have $N(C+D)=N C N D$. From this we calculate

$$
\zeta_{f}(s)=\sum_{D} \frac{f(D)}{N D^{s}}=\sum_{D \text { square-free }} \frac{1}{N D^{s}}=\prod_{P}\left(1+\frac{1}{N P^{s}}\right)=\frac{\zeta_{K}(s)}{\zeta_{K}(2 s)}
$$

Proof of the Proposition

Recall that for divisors C and D we have $N(C+D)=N C N D$. From this we calculate

$$
\zeta_{f}(s)=\sum_{D} \frac{f(D)}{N D^{s}}=\sum_{D \text { square-free }} \frac{1}{N D^{s}}=\prod_{P}\left(1+\frac{1}{N P^{s}}\right)=\frac{\zeta_{K}(s)}{\zeta_{K}(2 s)}
$$

By the function-field Riemann Hypothesis we know that all the zeros of $\zeta_{K}(s)$ are on the line $\mathfrak{R}(s)=\frac{1}{2}$. Thus $1 / \zeta_{K}(2 s)$ has no poles in the region $\mathfrak{R}(s)>\frac{1}{4}$. On the other hand, we know that in this region $\zeta_{K}(s)$ is holomorphic except for a simple pole at $s=1$.

Proof of the Proposition

Recall that for divisors C and D we have $N(C+D)=N C N D$. From this we calculate

$$
\zeta_{f}(s)=\sum_{D} \frac{f(D)}{N D^{s}}=\sum_{D \text { square-free }} \frac{1}{N D^{s}}=\prod_{P}\left(1+\frac{1}{N P^{s}}\right)=\frac{\zeta_{K}(s)}{\zeta_{K}(2 s)}
$$

By the function-field Riemann Hypothesis we know that all the zeros of $\zeta_{K}(s)$ are on the line $\mathfrak{R}(s)=\frac{1}{2}$. Thus $1 / \zeta_{K}(2 s)$ has no poles in the region $\mathfrak{R}(s)>\frac{1}{4}$. On the other hand, we know that in this region $\zeta_{K}(s)$ is holomorphic except for a simple pole at $s=1$.
Choose $\epsilon>0$ and set $\delta^{\prime}=\frac{1}{4}+\epsilon$. Then all the hypotheses of the Tauberian theorem apply to $\zeta_{f}(s)$ and we find

$$
\begin{equation*}
F(N)=\alpha \log (q) q^{N}+O_{\epsilon}\left(q^{\left(\frac{1}{4}+\epsilon\right) N}\right) \tag{1.3}
\end{equation*}
$$

where α is the residue of $\zeta_{K}(s) / \zeta_{K}(2 s)$ at $s=1$.

Proof of the Proposition

Recall that for divisors C and D we have $N(C+D)=N C N D$. From this we calculate

$$
\zeta_{f}(s)=\sum_{D} \frac{f(D)}{N D^{s}}=\sum_{D \text { square-free }} \frac{1}{N D^{s}}=\prod_{P}\left(1+\frac{1}{N P^{s}}\right)=\frac{\zeta_{K}(s)}{\zeta_{K}(2 s)}
$$

By the function-field Riemann Hypothesis we know that all the zeros of $\zeta_{K}(s)$ are on the line $\mathfrak{R}(s)=\frac{1}{2}$. Thus $1 / \zeta_{K}(2 s)$ has no poles in the region $\mathfrak{R}(s)>\frac{1}{4}$. On the other hand, we know that in this region $\zeta_{K}(s)$ is holomorphic except for a simple pole at $s=1$.
Choose $\epsilon>0$ and set $\delta^{\prime}=\frac{1}{4}+\epsilon$. Then all the hypotheses of the Tauberian theorem apply to $\zeta_{f}(s)$ and we find

$$
\begin{equation*}
F(N)=\alpha \log (q) q^{N}+O_{\epsilon}\left(q^{\left(\frac{1}{4}+\epsilon\right) N}\right) \tag{1.3}
\end{equation*}
$$

where α is the residue of $\zeta_{K}(s) / \zeta_{K}(2 s)$ at $s=1$. We saw in the last lecture that the residue of $\zeta_{K}(s)$ at $s=1$ is

$$
\begin{equation*}
\rho_{K}=\frac{h_{K}}{q^{g-1}(q-1) \log (q)} \tag{1.4}
\end{equation*}
$$

Proof of the Proposition

Recall that for divisors C and D we have $N(C+D)=N C N D$. From this we calculate

$$
\zeta_{f}(s)=\sum_{D} \frac{f(D)}{N D^{s}}=\sum_{D \text { square-free }} \frac{1}{N D^{s}}=\prod_{P}\left(1+\frac{1}{N P^{s}}\right)=\frac{\zeta_{K}(s)}{\zeta_{K}(2 s)}
$$

By the function-field Riemann Hypothesis we know that all the zeros of $\zeta_{K}(s)$ are on the line $\mathfrak{R}(s)=\frac{1}{2}$. Thus $1 / \zeta_{K}(2 s)$ has no poles in the region $\mathfrak{R}(s)>\frac{1}{4}$. On the other hand, we know that in this region $\zeta_{K}(s)$ is holomorphic except for a simple pole at $s=1$.
Choose $\epsilon>0$ and set $\delta^{\prime}=\frac{1}{4}+\epsilon$. Then all the hypotheses of the Tauberian theorem apply to $\zeta_{f}(s)$ and we find

$$
\begin{equation*}
F(N)=\alpha \log (q) q^{N}+O_{\epsilon}\left(q^{\left(\frac{1}{4}+\epsilon\right) N}\right) \tag{1.3}
\end{equation*}
$$

where α is the residue of $\zeta_{K}(s) / \zeta_{K}(2 s)$ at $s=1$. We saw in the last lecture that the residue of $\zeta_{K}(s)$ at $s=1$ is

$$
\begin{equation*}
\rho_{K}=\frac{h_{K}}{q^{g-1}(q-1) \log (q)} \tag{1.4}
\end{equation*}
$$

It follows that $\alpha=\rho_{K} / \zeta_{K}(2)$. Substituting this information into equation above completes the proof of the first assertion of the proposition.

Continuation of the Proof

To prove the second assertion recall that $\operatorname{Ave}(f)=\lim _{N \rightarrow \infty} F(N) / b_{N}(K)$ and that for all $N>2 g-2, b_{N}(K)=h_{K}\left(q^{N-g+1}-1\right) /(q-1)$.

Continuation of the Proof

To prove the second assertion recall that $\operatorname{Ave}(f)=\lim _{N \rightarrow \infty} F(N) / b_{N}(K)$ and that for all $N>2 g-2, b_{N}(K)=h_{K}\left(q^{N-g+1}-1\right) /(q-1)$.

By the first part of the proposition we find, for N in this range,

$$
\frac{F(N)}{b_{N}(K)}=\frac{1}{\zeta_{K}(2)} \frac{q^{N-g+1}}{q^{N-g+1}-1}+O_{\epsilon}\left(q^{\left(-\frac{3}{4}+\epsilon\right) N}\right)
$$

Continuation of the Proof

To prove the second assertion recall that $\operatorname{Ave}(f)=\lim _{N \rightarrow \infty} F(N) / b_{N}(K)$ and that for all $N>2 g-2, b_{N}(K)=h_{K}\left(q^{N-g+1}-1\right) /(q-1)$.

By the first part of the proposition we find, for N in this range,

$$
\frac{F(N)}{b_{N}(K)}=\frac{1}{\zeta_{K}(2)} \frac{q^{N-g+1}}{q^{N-g+1}-1}+O_{\epsilon}\left(q^{\left(-\frac{3}{4}+\epsilon\right) N}\right)
$$

Now, simply pass to the limit as N tends to ∞.

As a final application of these methods we want to investigate the function $d(D)$, the number of effective divisors of D. More precisely, $d(D)=\#\left\{C \in \mathcal{D}_{K}^{+}: 0 \leq C \leq D\right\}$.

As a final application of these methods we want to investigate the function $d(D)$, the number of effective divisors of D. More precisely, $d(D)=\#\left\{C \in \mathcal{D}_{K}^{+}: 0 \leq C \leq D\right\}$. It is relatively easy to check that $\zeta_{d}(s)=\zeta_{K}(s)^{2}$. This function has a double pole at $s=1$ so the Tauberian theorem doens't immediately apply. Moreover, it is hard to imagine any simple trick reducing us to the condition of that theorem. What is needed is a generalization.

As a final application of these methods we want to investigate the function $d(D)$, the number of effective divisors of D. More precisely, $d(D)=\#\left\{C \in \mathcal{D}_{K}^{+}: 0 \leq C \leq D\right\}$.
It is relatively easy to check that $\zeta_{d}(s)=\zeta_{K}(s)^{2}$. This function has a double pole at $s=1$ so the Tauberian theorem doens't immediately apply. Moreover, it is hard to imagine any simple trick reducing us to the condition of that theorem. What is needed is a generalization.

Theorem

Let $f: \mathcal{D}_{K}^{+} \rightarrow \mathbb{C}$ and let $\zeta_{f}(s)$ be the corresponding Dirichlet series. Suppose this series converges absolutely in the region $\mathfrak{R}(s)>1$ and is holomorphic in the region $\{s \in B: \mathfrak{R}(s)=1\}$ except for a pole of order r at $s=1$. Let $\alpha=\lim _{s \rightarrow 1}(s-1)^{r} \zeta_{f}(s)$. Then, there is a $\delta<1$ and constants c_{-i} with $1 \leq i \leq r$ such that

$$
F(N)=\sum_{\operatorname{deg} D=N} f(D)=q^{N}\left(\sum_{i=1}^{r} c_{-i}\binom{N+i-1}{i-1}(-q)^{i}\right)+O\left(q^{\delta N}\right)
$$

The sum in parenthesis is a polynomial in N of degree $r-1$ with leading term

$$
\frac{\log (q)^{r}}{(r-1)!} \alpha N^{r-1}
$$

Proof of the Theorem

As in the proof of the Tauberian theorem, we can find a $\delta<1$ such that $Z_{f}(u)$ is holomorphic on the disc $\left\{u \in \mathbb{C}:|u| \leq q^{-\delta}\right\}$. We again let C be the boundary of this disc oriented conterclockwise and C_{ϵ} a small circle about $s=0$ oriented clockwise.

Proof of the Theorem

As in the proof of the Tauberian theorem, we can find a $\delta<1$ such that $Z_{f}(u)$ is holomorphic on the disc $\left\{u \in \mathbb{C}:|u| \leq q^{-\delta}\right\}$. We again let C be the boundary of this disc oriented conterclockwise and C_{ϵ} a small circle about $s=0$ oriented clockwise. By the Cauchy integral theorem, the integral

$$
\frac{1}{2 \pi i} \oint_{C+C_{\epsilon}} \frac{Z_{f}(u)}{u^{N+1}} d u
$$

is equal to the sum of the residues of the function $Z_{f}(u) u-N-1$ in the region between the two circles.

Proof of the Theorem

As in the proof of the Tauberian theorem, we can find a $\delta<1$ such that $Z_{f}(u)$ is holomorphic on the disc $\left\{u \in \mathbb{C}:|u| \leq q^{-\delta}\right\}$. We again let C be the boundary of this disc oriented conterclockwise and C_{ϵ} a small circle about $s=0$ oriented clockwise. By the Cauchy integral theorem, the integral

$$
\frac{1}{2 \pi i} \oint_{C+C_{\epsilon}} \frac{Z_{f}(u)}{u^{N+1}} d u
$$

is equal to the sum of the residues of the function $Z_{f}(u) u-N-1$ in the region between the two circles. There is only one pole in this region. It is located at $u=q^{-1}$. To find the residue there, we expand both $Z_{f}(u)$ and u^{-N-1} in Laurent series about $u=q^{-1}$, multiply the results together, and pick out the coefficient of $\left(u-q^{-1}\right)^{-1}$.

Proof of the Theorem

As in the proof of the Tauberian theorem, we can find a $\delta<1$ such that $Z_{f}(u)$ is holomorphic on the disc $\left\{u \in \mathbb{C}:|u| \leq q^{-\delta}\right\}$. We again let C be the boundary of this disc oriented conterclockwise and C_{ϵ} a small circle about $s=0$ oriented clockwise. By the Cauchy integral theorem, the integral

$$
\frac{1}{2 \pi i} \oint_{C+C_{\epsilon}} \frac{Z_{f}(u)}{u^{N+1}} d u
$$

is equal to the sum of the residues of the function $Z_{f}(u) u-N-1$ in the region between the two circles. There is only one pole in this region. It is located at $u=q^{-1}$. To find the residue there, we expand both $Z_{f}(u)$ and u^{-N-1} in Laurent series about $u=q^{-1}$, multiply the results together, and pick out the coefficient of $\left(u-q^{-1}\right)^{-1}$. By using the Taylor series formula or the general binomial expansion theorem we find

$$
u^{-N-1}=q^{N+1} \sum_{j=0}^{\infty}\binom{-N-1}{j} q^{j}\left(u-q^{-1}\right)^{j}
$$

Proof of the Theorem

As in the proof of the Tauberian theorem, we can find a $\delta<1$ such that $Z_{f}(u)$ is holomorphic on the disc $\left\{u \in \mathbb{C}:|u| \leq q^{-\delta}\right\}$. We again let C be the boundary of this disc oriented conterclockwise and C_{ϵ} a small circle about $s=0$ oriented clockwise. By the Cauchy integral theorem, the integral

$$
\frac{1}{2 \pi i} \oint_{C+C_{\epsilon}} \frac{Z_{f}(u)}{u^{N+1}} d u
$$

is equal to the sum of the residues of the function $Z_{f}(u) u-N-1$ in the region between the two circles. There is only one pole in this region. It is located at $u=q^{-1}$. To find the residue there, we expand both $Z_{f}(u)$ and u^{-N-1} in Laurent series about $u=q^{-1}$, multiply the results together, and pick out the coefficient of $\left(u-q^{-1}\right)^{-1}$. By using the Taylor series formula or the general binomial expansion theorem we find

$$
u^{-N-1}=q^{N+1} \sum_{j=0}^{\infty}\binom{-N-1}{j} q^{j}\left(u-q^{-1}\right)^{j}
$$

The Laurent series for $Z_{f}(u)$ has the form

$$
Z_{f}(u)=\sum_{i=-r}^{\infty} c_{i}\left(u-q^{-1}\right)^{i}, \quad \text { with } c_{-r} \neq 0
$$

Continuation of the Proof

Multiplying these two series together and isolating the coefficient of $\left(u-q^{-1}\right)^{-1}$ in the result yields

$$
\operatorname{Res}_{u=q^{-1}} Z_{f}(u) u^{-N-1}=q^{N+1} \sum_{i=-r}^{-1} c_{i}\binom{-N-1}{-i-1} q^{-i-1}
$$

Continuation of the Proof

Multiplying these two series together and isolating the coefficient of $\left(u-q^{-1}\right)^{-1}$ in the result yields

$$
\begin{aligned}
\operatorname{Res}_{u=q^{-1}} Z_{f}(u) u^{-N-1} & =q^{N+1} \sum_{i=-r}^{-1} c_{i}\binom{-N-1}{-i-1} q^{-i-1} \\
& =q^{N} \sum_{i=1}^{r} c_{-i}\binom{-N-1}{i-1} q^{i}
\end{aligned}
$$

Continuation of the Proof

Multiplying these two series together and isolating the coefficient of $\left(u-q^{-1}\right)^{-1}$ in the result yields

$$
\begin{aligned}
\operatorname{Res}_{u=q^{-1}} Z_{f}(u) u^{-N-1} & =q^{N+1} \sum_{i=-r}^{-1} c_{i}\binom{-N-1}{-i-1} q^{-i-1} \\
& =q^{N} \sum_{i=1}^{r} c_{-i}\binom{-N-1}{i-1} q^{i}
\end{aligned}
$$

To get the last equality we simply transformed i to $-i$ and redistributed one factor of q.

Continuation of the Proof

Multiplying these two series together and isolating the coefficient of $\left(u-q^{-1}\right)^{-1}$ in the result yields

$$
\begin{aligned}
\operatorname{Res}_{u=q^{-1}} Z_{f}(u) u^{-N-1} & =q^{N+1} \sum_{i=-r}^{-1} c_{i}\binom{-N-1}{-i-1} q^{-i-1} \\
& =q^{N} \sum_{i=1}^{r} c_{-i}\binom{-N-1}{i-1} q^{i}
\end{aligned}
$$

To get the last equality we simply transformed i to $-i$ and redistributed one factor of q.
It is easy to see that $\binom{-N-1}{k}=(-1)^{k}\binom{N+k}{k}$, so the residue can be rewritten as

$$
-q^{N} \sum_{i=1}^{r} c_{-i}\binom{N+i-1}{i-1}(-q)^{i}
$$

Continuation of the Proof

Multiplying these two series together and isolating the coefficient of $\left(u-q^{-1}\right)^{-1}$ in the result yields

$$
\begin{aligned}
\operatorname{Res}_{u=q^{-1}} Z_{f}(u) u^{-N-1} & =q^{N+1} \sum_{i=-r}^{-1} c_{i}\binom{-N-1}{-i-1} q^{-i-1} \\
& =q^{N} \sum_{i=1}^{r} c_{-i}\binom{-N-1}{i-1} q^{i} .
\end{aligned}
$$

To get the last equality we simply transformed i to $-i$ and redistributed one factor of q.
It is easy to see that $\binom{-N-1}{k}=(-1)^{k}\binom{N+k}{k}$, so the residue can be rewritten as

$$
-q^{N} \sum_{i=1}^{r} c_{-i}\binom{N+i-1}{i-1}(-q)^{i}
$$

As in the proof of the previous Tauberian theorem, it now follows that

$$
F(N)=q^{N}\left(\sum_{i=1}^{r} c_{-i}\binom{N+i-1}{i-1}(-q)^{i}\right)+O\left(q^{\delta N}\right)
$$

Continuation of the Proof

Finally, we must prove the assertion about the term in parenthesis. First of all, it is clear that when $k \geq 0,\binom{N+k}{k}$ is a polynomial in N of degree k, and that its leading term is $k!^{-1} N^{k}$. Thus the sum in parenthesis is a polynomial in N of degree $r-1$ and its leading term is

$$
\frac{c_{-r}}{(r-1)!}(-q)^{r} N^{r-1}
$$

Continuation of the Proof

Finally, we must prove the assertion about the term in parenthesis. First of all, it is clear that when $k \geq 0,\binom{N+k}{k}$ is a polynomial in N of degree k, and that its leading term is $k!^{-1} N^{k}$. Thus the sum in parenthesis is a polynomial in N of degree $r-1$ and its leading term is

$$
\frac{c_{-r}}{(r-1)!}(-q)^{r} N^{r-1}
$$

It remains to relate $\alpha=\lim _{s \rightarrow 1}(s-1)^{r} \zeta_{f}(s)$ to c_{-r}.

Continuation of the Proof

Finally, we must prove the assertion about the term in parenthesis. First of all, it is clear that when $k \geq 0,\binom{N+k}{k}$ is a polynomial in N of degree k, and that its leading term is $k!^{-1} N^{k}$. Thus the sum in parenthesis is a polynomial in N of degree $r-1$ and its leading term is

$$
\frac{c_{-r}}{(r-1)!}(-q)^{r} N^{r-1}
$$

It remains to relate $\alpha=\lim _{s \rightarrow 1}(s-1)^{r} \zeta_{f}(s)$ to c_{-r}. This relationship follows from the calculation

$$
c_{-r}=\lim _{u \rightarrow q^{-1}}\left(u-q^{-1}\right)^{r} Z_{f}(u)
$$

Continuation of the Proof

Finally, we must prove the assertion about the term in parenthesis. First of all, it is clear that when $k \geq 0,\binom{N+k}{k}$ is a polynomial in N of degree k, and that its leading term is $k!^{-1} N^{k}$. Thus the sum in parenthesis is a polynomial in N of degree $r-1$ and its leading term is

$$
\frac{c_{-r}}{(r-1)!}(-q)^{r} N^{r-1}
$$

It remains to relate $\alpha=\lim _{s \rightarrow 1}(s-1)^{r} \zeta_{f}(s)$ to c_{-r}. This relationship follows from the calculation

$$
\begin{align*}
c_{-r} & =\lim _{u \rightarrow q^{-1}}\left(u-q^{-1}\right)^{r} Z_{f}(u) \\
& =\lim _{s \rightarrow 1}\left(\frac{q^{-s}-q^{-1}}{s-1}\right)^{r}(s-1)^{r} \zeta_{f}(s)=\left(-\frac{\log (q)}{q}\right)^{r} \alpha \tag{1.5}
\end{align*}
$$

Continuation of the Proof

Finally, we must prove the assertion about the term in parenthesis. First of all, it is clear that when $k \geq 0,\binom{N+k}{k}$ is a polynomial in N of degree k, and that its leading term is $k!^{-1} N^{k}$. Thus the sum in parenthesis is a polynomial in N of degree $r-1$ and its leading term is

$$
\frac{c_{-r}}{(r-1)!}(-q)^{r} N^{r-1}
$$

It remains to relate $\alpha=\lim _{s \rightarrow 1}(s-1)^{r} \zeta_{f}(s)$ to c_{-r}. This relationship follows from the calculation

$$
\begin{align*}
c_{-r} & =\lim _{u \rightarrow q^{-1}}\left(u-q^{-1}\right)^{r} Z_{f}(u) \\
& =\lim _{s \rightarrow 1}\left(\frac{q^{-s}-q^{-1}}{s-1}\right)^{r}(s-1)^{r} \zeta_{f}(s)=\left(-\frac{\log (q)}{q}\right)^{r} \alpha \tag{1.5}
\end{align*}
$$

Substitute this expression for c_{-r} into the previous expression for the leading term of the sum in parentheses and we arrive at

$$
\frac{\log (q)^{r}}{(r-1)!} \alpha N^{r-1}
$$

for the leading term. This completes the proof.

Corollary

With the assumptions and notation of the theorem, we have, as $N \rightarrow \infty$,

$$
F(N) \sim \frac{\log (q)^{r}}{(r-1)!} \alpha q^{N} N^{r-1}
$$

Corollary

With the assumptions and notation of the theorem, we have, as $N \rightarrow \infty$,

$$
F(N) \sim \frac{\log (q)^{r}}{(r-1)!} \alpha q^{N} N^{r-1}
$$

Proof.

This is immediate from the theorem.

We now want to apply the previous theorem to the divisor function $d(D)$ on \mathcal{D}_{K}^{+}.

We now want to apply the previous theorem to the divisor function $d(D)$ on \mathcal{D}_{K}^{+}.

Proposition

Let K / \mathbb{F} be a global function field and $d(D)$ the divisor function on the effective divisors. Then, there exist constants μ_{K} and λ_{K} such that for fixed $\epsilon>0$ we have

$$
\sum_{\operatorname{deg} D=N} d(D)=q^{N}\left(\lambda_{K} N+\mu_{K}\right)+O_{\epsilon}\left(q^{\epsilon N}\right)
$$

More explicitly, $\lambda_{K}=h_{K}^{2} q^{2-2 g}(q-1)^{-2}$.

Proof of the Proposition

We have already seen that $\zeta_{d}(s)=\zeta_{K}(s)^{2}$, a function which has a double pole at $s=1$ and is otherwise holomorphic for $\mathfrak{R}(s)>0$.

Proof of the Proposition

We have already seen that $\zeta_{d}(s)=\zeta_{K}(s)^{2}$, a function which has a double pole at $s=1$ and is otherwise holomorphic for $\mathfrak{R}(s)>0$. Choose $\epsilon>0$. Notice that $\lim _{s \rightarrow 1}(s-1)^{2} \zeta_{K}(s)^{2}=\rho_{K}^{2}$.

Proof of the Proposition

We have already seen that $\zeta_{d}(s)=\zeta_{K}(s)^{2}$, a function which has a double pole at $s=1$ and is otherwise holomorphic for $\mathfrak{R}(s)>0$. Choose $\epsilon>0$. Notice that $\lim _{s \rightarrow 1}(s-1)^{2} \zeta_{K}(s)^{2}=\rho_{K}^{2}$. Applying the previous theorem we find there are constants λ_{K} and μ_{K} such that

$$
\sum_{\operatorname{deg} D=N} d(D)=q^{N}\left(\lambda_{K} N+\mu_{K}\right)+O_{\epsilon}\left(q^{\epsilon N}\right)
$$

Proof of the Proposition

We have already seen that $\zeta_{d}(s)=\zeta_{K}(s)^{2}$, a function which has a double pole at $s=1$ and is otherwise holomorphic for $\mathfrak{R}(s)>0$. Choose $\epsilon>0$. Notice that $\lim _{s \rightarrow 1}(s-1)^{2} \zeta_{K}(s)^{2}=\rho_{K}^{2}$. Applying the previous theorem we find there are constants λ_{K} and μ_{K} such that

$$
\sum_{\operatorname{deg} D=N} d(D)=q^{N}\left(\lambda_{K} N+\mu_{K}\right)+O_{\epsilon}\left(q^{\epsilon N}\right)
$$

Applying the formula for the leading term of the polynomial in the parenthesis given in the statement of the previous theorem, we find

$$
\lambda_{K}=\frac{\log (q)^{r}}{(r-1)!} \alpha=\frac{\log (q)^{2}}{1!} \rho_{K}^{2}=\frac{h_{K}^{2}}{q^{2 g-2}(q-1)^{2}}
$$

Proof of the Proposition

We have already seen that $\zeta_{d}(s)=\zeta_{K}(s)^{2}$, a function which has a double pole at $s=1$ and is otherwise holomorphic for $\mathfrak{R}(s)>0$. Choose $\epsilon>0$. Notice that $\lim _{s \rightarrow 1}(s-1)^{2} \zeta_{K}(s)^{2}=\rho_{K}^{2}$. Applying the previous theorem we find there are constants λ_{K} and μ_{K} such that

$$
\sum_{\operatorname{deg} D=N} d(D)=q^{N}\left(\lambda_{K} N+\mu_{K}\right)+O_{\epsilon}\left(q^{\epsilon N}\right)
$$

Applying the formula for the leading term of the polynomial in the parenthesis given in the statement of the previous theorem, we find

$$
\lambda_{K}=\frac{\log (q)^{r}}{(r-1)!} \alpha=\frac{\log (q)^{2}}{1!} \rho_{K}^{2}=\frac{h_{K}^{2}}{q^{2 g-2}(q-1)^{2}}
$$

This finishes the proof.

Introduction

- In this part I will present function-field version of sieve methods.

Introduction

- In this part I will present function-field version of sieve methods.
- Due to lack of time we will only present one sieve method for function fields.

Introduction

- In this part I will present function-field version of sieve methods.
- Due to lack of time we will only present one sieve method for function fields.
- We will present a function-field version of the classical Selberg's sieve.

Introduction

- In this part I will present function-field version of sieve methods.
- Due to lack of time we will only present one sieve method for function fields.
- We will present a function-field version of the classical Selberg's sieve.
- Would be interesting to work out all the other sieve methods (as those presented in the book of A. Cojocaru and R. Murty and/or the book of Friedlander and Iwaniec) in the $\mathbb{F}_{q}[x]$ setting or even for more general global function fields K / \mathbb{F}. But we don't do this here.

Introduction

- In this part I will present function-field version of sieve methods.
- Due to lack of time we will only present one sieve method for function fields.
- We will present a function-field version of the classical Selberg's sieve.
- Would be interesting to work out all the other sieve methods (as those presented in the book of A. Cojocaru and R. Murty and/or the book of Friedlander and Iwaniec) in the $\mathbb{F}_{q}[x]$ setting or even for more general global function fields K / \mathbb{F}. But we don't do this here.
- Let us start by remembering the classical Selberg sieve.

The Classical Selberg's Sieve

Let \mathcal{A} be any finite set of elements and \mathcal{P} be a set of primes.

The Classical Selberg's Sieve

Let \mathcal{A} be any finite set of elements and \mathcal{P} be a set of primes. For each prime $p \in \mathcal{P}$, let \mathcal{A}_{p} be a subset of \mathcal{A}.

The Classical Selberg's Sieve

Let \mathcal{A} be any finite set of elements and \mathcal{P} be a set of primes. For each prime $p \in \mathcal{P}$, let \mathcal{A}_{p} be a subset of \mathcal{A}. We denote by d squarefree numbers composed of primes of \mathcal{P}.

The Classical Selberg's Sieve

Let \mathcal{A} be any finite set of elements and \mathcal{P} be a set of primes. For each prime $p \in \mathcal{P}$, let \mathcal{A}_{p} be a subset of \mathcal{A}. We denote by d squarefree numbers composed of primes of \mathcal{P}. Let $\mathcal{A}_{1}:=\mathcal{A}$ and for squarefree integers d composed of primes of \mathcal{P}, let $\mathcal{A}_{d}:=\cap_{p \mid d} \mathcal{A}_{p}$.

The Classical Selberg's Sieve

Let \mathcal{A} be any finite set of elements and \mathcal{P} be a set of primes. For each prime $p \in \mathcal{P}$, let \mathcal{A}_{p} be a subset of \mathcal{A}. We denote by d squarefree numbers composed of primes of \mathcal{P}. Let $\mathcal{A}_{1}:=\mathcal{A}$ and for squarefree integers d composed of primes of \mathcal{P}, let $\mathcal{A}_{d}:=\cap_{p \mid d} \mathcal{A}_{p}$. Let z be a positive real number and set

$$
P(z):=\prod_{\substack{p \in \mathcal{P} \\ p<z}} p
$$

The Classical Selberg's Sieve

Let \mathcal{A} be any finite set of elements and \mathcal{P} be a set of primes. For each prime $p \in \mathcal{P}$, let \mathcal{A}_{p} be a subset of \mathcal{A}. We denote by d squarefree numbers composed of primes of \mathcal{P}. Let $\mathcal{A}_{1}:=\mathcal{A}$ and for squarefree integers d composed of primes of \mathcal{P}, let $\mathcal{A}_{d}:=\cap_{p \mid d} \mathcal{A}_{p}$. Let z be a positive real number and set

$$
P(z):=\prod_{\substack{p \in \mathcal{P} \\ p<z}} p
$$

Denote by $S(\mathcal{A}, \mathcal{P}, z)$ the number of elements of

$$
A \backslash \cup_{p \mid P(z)} \mathcal{A}_{p}
$$

The Classical Selberg's Sieve

Let \mathcal{A} be any finite set of elements and \mathcal{P} be a set of primes. For each prime $p \in \mathcal{P}$, let \mathcal{A}_{p} be a subset of \mathcal{A}. We denote by d squarefree numbers composed of primes of \mathcal{P}. Let $\mathcal{A}_{1}:=\mathcal{A}$ and for squarefree integers d composed of primes of \mathcal{P}, let $\mathcal{A}_{d}:=\cap_{p \mid d} \mathcal{A}_{p}$. Let z be a positive real number and set

$$
P(z):=\prod_{\substack{p \in \mathcal{P} \\ p<z}} p
$$

Denote by $S(\mathcal{A}, \mathcal{P}, z)$ the number of elements of

$$
A \backslash \cup_{p \mid P(z)} \mathcal{A}_{p}
$$

Theorem (Selberg's sieve, 1947)
We keep the above setting and assume that there exist $X>0$ and a multiplicative function $f(\cdot)$ satisfying $f(p)>1$ for any prime $p \in \mathcal{P}$, such that for any squarefree integer d composed of primes of \mathcal{P} we have

$$
\begin{equation*}
\# \mathcal{A}_{d}=\frac{X}{f(d)}+R_{d} \tag{2.1}
\end{equation*}
$$

for some real number R_{d}.

Continuation Selberg's sieve

We write

$$
\begin{equation*}
f(n)=\sum_{d \mid n} f_{1}(d) \tag{2.2}
\end{equation*}
$$

for some multiplicative function $f_{1}(\cdot)$ that is uniquely determined by f by using the Möbius inversion formula; that is,

$$
f_{1}(n)=\sum_{d \mid n} \mu(d) f(n / d)
$$

Continuation Selberg's sieve

We write

$$
\begin{equation*}
f(n)=\sum_{d \mid n} f_{1}(d) \tag{2.2}
\end{equation*}
$$

for some multiplicative function $f_{1}(\cdot)$ that is uniquely determined by f by using the Möbius inversion formula; that is,

$$
f_{1}(n)=\sum_{d \mid n} \mu(d) f(n / d)
$$

Also, we set

$$
V(z):=\sum_{\substack{d \leq z \\ d \mid \vec{P}(z)}} \frac{\mu^{2}(d)}{f_{1}(d)}
$$

Continuation Selberg's sieve

We write

$$
\begin{equation*}
f(n)=\sum_{d \mid n} f_{1}(d) \tag{2.2}
\end{equation*}
$$

for some multiplicative function $f_{1}(\cdot)$ that is uniquely determined by f by using the Möbius inversion formula; that is,

$$
f_{1}(n)=\sum_{d \mid n} \mu(d) f(n / d)
$$

Also, we set

$$
V(z):=\sum_{\substack{d \leq z \\ d \mid \vec{P}(z)}} \frac{\mu^{2}(d)}{f_{1}(d)}
$$

Then

$$
S(\mathcal{A}, \mathcal{P}, z) \leq \frac{X}{V(z)}+O\left(\sum_{\substack{d_{1}, d_{2} \leq z \\ d_{1}, d_{2} \mid P(z)}} \mid R_{\left[d_{1}, d_{2}\right]}\right)
$$

Some Notation

Let $\mathbb{F}_{q}[x]$ be the polynomial ring over \mathbb{F}_{q}.

Some Notation

Let $\mathbb{F}_{q}[x]$ be the polynomial ring over \mathbb{F}_{q}.
Let A, B, \ldots denote monic polynomials in $\mathbb{F}_{q}[x]$. And P a monic irreducible polynomal.

Some Notation

Let $\mathbb{F}_{q}[x]$ be the polynomial ring over \mathbb{F}_{q}.
Let A, B, \ldots denote monic polynomials in $\mathbb{F}_{q}[x]$. And P a monic irreducible polynomal.

We will prove a fairly general k-residue form of Selberg's sieve for $\mathbb{F}_{q}[x]$ similar to that found in Halberstam and Roth.

Some Notation

Let $\mathbb{F}_{q}[x]$ be the polynomial ring over \mathbb{F}_{q}.
Let A, B, \ldots denote monic polynomials in $\mathbb{F}_{q}[x]$. And P a monic irreducible polynomal.

We will prove a fairly general k-residue form of Selberg's sieve for $\mathbb{F}_{q}[x]$ similar to that found in Halberstam and Roth.

Let

$$
\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}
$$

Some Notation

Let $\mathbb{F}_{q}[x]$ be the polynomial ring over \mathbb{F}_{q}.
Let A, B, \ldots denote monic polynomials in $\mathbb{F}_{q}[x]$. And P a monic irreducible polynomal.

We will prove a fairly general k-residue form of Selberg's sieve for $\mathbb{F}_{q}[x]$ similar to that found in Halberstam and Roth.

Let

$$
\begin{gathered}
\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}, \\
\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{r}\right\} ; \quad P_{i} \neq P_{j},
\end{gathered}
$$

Some Notation

Let $\mathbb{F}_{q}[x]$ be the polynomial ring over \mathbb{F}_{q}.
Let A, B, \ldots denote monic polynomials in $\mathbb{F}_{q}[x]$. And P a monic irreducible polynomal.

We will prove a fairly general k-residue form of Selberg's sieve for $\mathbb{F}_{q}[x]$ similar to that found in Halberstam and Roth.

Let

$$
\begin{gathered}
\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}, \\
\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{r}\right\} ; \quad P_{i} \neq P_{j}, \\
\prod(\mathcal{P})=\prod_{i=1}^{r} P_{i} .
\end{gathered}
$$

Let also \mathcal{D} denotes a subset of the divisors of $\prod(\mathcal{P})$.

Let also \mathcal{D} denotes a subset of the divisors of $\prod(\mathcal{P}) . \mathcal{D}$ is divisor closed if $D \in \mathcal{D}$ implies every divisor of D is also in \mathcal{D}.

Let also \mathcal{D} denotes a subset of the divisors of $\prod(\mathcal{P})$. \mathcal{D} is divisor closed if $D \in \mathcal{D}$ implies every divisor of D is also in \mathcal{D}.

With each P_{i} we associate k_{i} residue class $\mathcal{R}_{i 1}, \ldots, \mathcal{R}_{i k_{i}}$ modulo P_{i}. Let $\mathcal{S}=\left\{A_{j} \in \mathcal{A}: A_{j}\right.$ is in none of the classes $\left.\mathcal{R}_{i k}\right\}$ and $|\mathcal{S}|$ be the number of elements in \mathcal{S}.

Let also \mathcal{D} denotes a subset of the divisors of $\prod(\mathcal{P})$. \mathcal{D} is divisor closed if $D \in \mathcal{D}$ implies every divisor of D is also in \mathcal{D}.

With each P_{i} we associate k_{i} residue class $\mathcal{R}_{i 1}, \ldots, \mathcal{R}_{i k_{i}}$ modulo P_{i}. Let $\mathcal{S}=\left\{A_{j} \in \mathcal{A}: A_{j}\right.$ is in none of the classes $\left.\mathcal{R}_{i k}\right\}$ and $|\mathcal{S}|$ be the number of elements in \mathcal{S}.

Let $\sigma(A)=\prod P_{i}$ where the product is over those P_{i} for which A is in one of the residue classes $\mathcal{R}_{i k}$, the empty product being 1 .

Let also \mathcal{D} denotes a subset of the divisors of $\prod(\mathcal{P})$. \mathcal{D} is divisor closed if $D \in \mathcal{D}$ implies every divisor of D is also in \mathcal{D}.

With each P_{i} we associate k_{i} residue class $\mathcal{R}_{i 1}, \ldots, \mathcal{R}_{i k_{i}}$ modulo P_{i}. Let $\mathcal{S}=\left\{A_{j} \in \mathcal{A}: A_{j}\right.$ is in none of the classes $\left.\mathcal{R}_{i k}\right\}$ and $|\mathcal{S}|$ be the number of elements in \mathcal{S}.

Let $\sigma(A)=\prod P_{i}$ where the product is over those P_{i} for which A is in one of the residue classes $\mathcal{R}_{i k}$, the empty product being 1 .

Now let f be a multiplicative function defined on the divisors of $\prod(\mathcal{P})$ satisfying

$$
\begin{equation*}
1<f(P) \leq|P|=q^{\operatorname{deg}(P)} \tag{2.3}
\end{equation*}
$$

Let also \mathcal{D} denotes a subset of the divisors of $\prod(\mathcal{P}) . \mathcal{D}$ is divisor closed if $D \in \mathcal{D}$ implies every divisor of D is also in \mathcal{D}.

With each P_{i} we associate k_{i} residue class $\mathcal{R}_{i 1}, \ldots, \mathcal{R}_{i k_{i}}$ modulo P_{i}. Let $\mathcal{S}=\left\{A_{j} \in \mathcal{A}: A_{j}\right.$ is in none of the classes $\left.\mathcal{R}_{i k}\right\}$ and $|\mathcal{S}|$ be the number of elements in \mathcal{S}.

Let $\sigma(A)=\prod P_{i}$ where the product is over those P_{i} for which A is in one of the residue classes $\mathcal{R}_{i k}$, the empty product being 1 .

Now let f be a multiplicative function defined on the divisors of $\prod(\mathcal{P})$ satisfying

$$
\begin{align*}
1<f(P) & \leq|P|=q^{\operatorname{deg}(P)} \tag{2.3}\\
\sum_{\substack{j \\
D \mid \sigma\left(A_{j}\right)}} 1 & =\frac{n}{f(D)}+R_{D} \tag{2.4}
\end{align*}
$$

Let \mathcal{C} denote the class of all functions s representable in the form

$$
\begin{equation*}
s(A)=\sum_{D \mid \sigma(A)} \lambda(D) \tag{2.5}
\end{equation*}
$$

where λ is a real valued function.

Let \mathcal{C} denote the class of all functions s representable in the form

$$
\begin{equation*}
s(A)=\sum_{D \mid \sigma(A)} \lambda(D) \tag{2.5}
\end{equation*}
$$

where λ is a real valued function. The characteristic function of $\mathcal{S}, s^{(0)}$, is in \mathcal{C} taking λ to be the Möbius function. Hence,

$$
|\mathcal{S}|=\sum_{j=1}^{n} s^{(0)}\left(A_{j}\right)=\sum_{j=1}^{n} \sum_{D \mid \sigma\left(A_{j}\right)} \mu(D)
$$

Let \mathcal{C} denote the class of all functions s representable in the form

$$
\begin{equation*}
s(A)=\sum_{D \mid \sigma(A)} \lambda(D) \tag{2.5}
\end{equation*}
$$

where λ is a real valued function. The characteristic function of $\mathcal{S}, s^{(0)}$, is in \mathcal{C} taking λ to be the Möbius function. Hence,

$$
|\mathcal{S}|=\sum_{j=1}^{n} s^{(0)}\left(A_{j}\right)=\sum_{j=1}^{n} \sum_{D \mid \sigma\left(A_{j}\right)} \mu(D)
$$

Let $\mathcal{C}^{(+)}$and $\mathcal{C}^{(-)}$denote the subclasses of \mathcal{C} whose elements satisfy respectively,

$$
\begin{equation*}
s^{(+)}(A) \geq s^{(0)}(A) \quad \text { with equality if } \sigma(A)=1 \tag{2.6}
\end{equation*}
$$

Let \mathcal{C} denote the class of all functions s representable in the form

$$
\begin{equation*}
s(A)=\sum_{D \mid \sigma(A)} \lambda(D) \tag{2.5}
\end{equation*}
$$

where λ is a real valued function. The characteristic function of $\mathcal{S}, s^{(0)}$, is in \mathcal{C} taking λ to be the Möbius function. Hence,

$$
|\mathcal{S}|=\sum_{j=1}^{n} s^{(0)}\left(A_{j}\right)=\sum_{j=1}^{n} \sum_{D \mid \sigma\left(A_{j}\right)} \mu(D)
$$

Let $\mathcal{C}^{(+)}$and $\mathcal{C}^{(-)}$denote the subclasses of \mathcal{C} whose elements satisfy respectively,

$$
\begin{align*}
& s^{(+)}(A) \geq s^{(0)}(A) \quad \text { with equality if } \sigma(A)=1 \tag{2.6}\\
& s^{(-)}(A) \leq s^{(0)}(A) \quad \text { with equality if } \sigma(A)=1 \tag{2.7}
\end{align*}
$$

Let \mathcal{C} denote the class of all functions s representable in the form

$$
\begin{equation*}
s(A)=\sum_{D \mid \sigma(A)} \lambda(D) \tag{2.5}
\end{equation*}
$$

where λ is a real valued function. The characteristic function of \mathcal{S}, $s^{(0)}$, is in \mathcal{C} taking λ to be the Möbius function. Hence,

$$
|\mathcal{S}|=\sum_{j=1}^{n} s^{(0)}\left(A_{j}\right)=\sum_{j=1}^{n} \sum_{D \mid \sigma\left(A_{j}\right)} \mu(D)
$$

Let $\mathcal{C}^{(+)}$and $\mathcal{C}^{(-)}$denote the subclasses of \mathcal{C} whose elements satisfy respectively,

$$
\begin{align*}
& s^{(+)}(A) \geq s^{(0)}(A) \quad \text { with equality if } \sigma(A)=1 \tag{2.6}\\
& s^{(-)}(A) \leq s^{(0)}(A) \quad \text { with equality if } \sigma(A)=1 \tag{2.7}
\end{align*}
$$

\mathcal{C} and $\mathcal{C}^{(+)}$are closed with respect to multiplication, and $\mathcal{C}^{(-)}$is not.

Let \mathcal{C} denote the class of all functions s representable in the form

$$
\begin{equation*}
s(A)=\sum_{D \mid \sigma(A)} \lambda(D) \tag{2.5}
\end{equation*}
$$

where λ is a real valued function. The characteristic function of $\mathcal{S}, s^{(0)}$, is in \mathcal{C} taking λ to be the Möbius function. Hence,

$$
|\mathcal{S}|=\sum_{j=1}^{n} s^{(0)}\left(A_{j}\right)=\sum_{j=1}^{n} \sum_{D \mid \sigma\left(A_{j}\right)} \mu(D)
$$

Let $\mathcal{C}^{(+)}$and $\mathcal{C}^{(-)}$denote the subclasses of \mathcal{C} whose elements satisfy respectively,

$$
\begin{align*}
& s^{(+)}(A) \geq s^{(0)}(A) \quad \text { with equality if } \sigma(A)=1 \tag{2.6}\\
& s^{(-)}(A) \leq s^{(0)}(A) \quad \text { with equality if } \sigma(A)=1 \tag{2.7}
\end{align*}
$$

\mathcal{C} and $\mathcal{C}^{(+)}$are closed with respect to multiplication, and $\mathcal{C}^{(-)}$is not. If $s_{1} \in \mathcal{C}^{(+)}$and $s_{2} \mathcal{C}^{(-)}$then we clearly have

$$
\begin{equation*}
\sum_{j=1}^{n} s_{2}\left(A_{j}\right) \leq \mathcal{C} \leq \sum_{j=1}^{n} s_{1}\left(A_{j}\right) \tag{2.8}
\end{equation*}
$$

Let \mathcal{D} be a divisor closed subset of $\Pi(\mathcal{P})$, and with each $D \in \mathcal{D}$ associate the real variable X_{D}.

Let \mathcal{D} be a divisor closed subset of $\Pi(\mathcal{P})$, and with each $D \in \mathcal{D}$ associate the real variable X_{D}. Consider all sets of values of

$$
X=\left\{X_{D}: D \in \mathcal{D}, X_{1}=1\right\}
$$

Let \mathcal{D} be a divisor closed subset of $\Pi(\mathcal{P})$, and with each $D \in \mathcal{D}$ associate the real variable X_{D}. Consider all sets of values of

$$
X=\left\{X_{D}: D \in \mathcal{D}, X_{1}=1\right\}
$$

To each set of values X there corresponds a function

$$
\begin{equation*}
s_{1}(A)=\left(\sum_{\substack{D \in \mathcal{D} \\ D \mid \sigma(A)}} X_{D}\right)^{2} \tag{2.9}
\end{equation*}
$$

Let \mathcal{D} be a divisor closed subset of $\prod(\mathcal{P})$, and with each $D \in \mathcal{D}$ associate the real variable X_{D}. Consider all sets of values of

$$
X=\left\{X_{D}: D \in \mathcal{D}, X_{1}=1\right\}
$$

To each set of values X there corresponds a function

$$
\begin{equation*}
s_{1}(A)=\left(\sum_{\substack{D \in \mathcal{D} \\ D \mid \sigma(A)}} X_{D}\right)^{2} \tag{2.9}
\end{equation*}
$$

Then $s_{1} \in \mathcal{C}^{+}$with

$$
\lambda_{1}(D)=\sum_{\substack{D_{1}, D_{2} \in \mathcal{D} \\ \operatorname{Icm}\left(D_{1}, D_{2}\right)=D}} X_{D_{1}} X_{D_{2}}
$$

and $\lambda(D)=0$ outside the set

$$
\begin{equation*}
\mathcal{D}^{*}=\left\{D: D=\operatorname{lcm}\left(D_{1}, D_{2}\right) ; D_{1}, D_{2} \in \mathcal{D}\right\} \tag{2.10}
\end{equation*}
$$

Let \mathcal{D} be a divisor closed subset of $\Pi(\mathcal{P})$, and with each $D \in \mathcal{D}$ associate the real variable X_{D}. Consider all sets of values of

$$
X=\left\{X_{D}: D \in \mathcal{D}, X_{1}=1\right\}
$$

To each set of values X there corresponds a function

$$
\begin{equation*}
s_{1}(A)=\left(\sum_{\substack{D \in \mathcal{D} \\ D \mid \sigma(A)}} X_{D}\right)^{2} \tag{2.9}
\end{equation*}
$$

Then $s_{1} \in \mathcal{C}^{+}$with

$$
\lambda_{1}(D)=\sum_{\substack{D_{1}, D_{2} \in \mathcal{D} \\ \operatorname{Icm}\left(D_{1}, D_{2}\right)=D}} X_{D_{1}} X_{D_{2}},
$$

and $\lambda(D)=0$ outside the set

$$
\begin{equation*}
\mathcal{D}^{*}=\left\{D: D=\operatorname{lcm}\left(D_{1}, D_{2}\right) ; D_{1}, D_{2} \in \mathcal{D}\right\} \tag{2.10}
\end{equation*}
$$

Now

$$
\begin{align*}
|\mathcal{S}| & \leq \sum_{j=1}^{n} s_{1}\left(A_{j}\right)=\sum_{D \mid \prod(\mathcal{P})} \lambda_{1}(D) \sum_{\substack{j \\
D \mid \sigma\left(A_{j}\right)}} 1 \tag{2.11}\\
& \leq n \sum_{D \in \mathcal{D}^{*}} \frac{\lambda_{1}(D)}{f(D)}+E
\end{align*}
$$

where

$$
\begin{equation*}
E=\sum_{D \in \mathcal{D}^{*}}\left|\lambda_{1}(D) R_{D}\right| \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
E=\sum_{D \in \mathcal{D}^{*}}\left|\lambda_{1}(D) R_{D}\right| \tag{2.12}
\end{equation*}
$$

Define the function g by

$$
\begin{equation*}
g(D)=f(D) \prod_{P \mid D}\left(1-\frac{1}{f(P)}\right) \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
E=\sum_{D \in \mathcal{D}^{*}}\left|\lambda_{1}(D) R_{D}\right| \tag{2.12}
\end{equation*}
$$

Define the function g by

$$
\begin{equation*}
g(D)=f(D) \prod_{P \mid D}\left(1-\frac{1}{f(P)}\right) \tag{2.13}
\end{equation*}
$$

We are now ready to estimate $\sum_{D \in \mathcal{D}^{*}} \lambda_{1}(D) / f(D)$.
where

$$
\begin{equation*}
E=\sum_{D \in \mathcal{D}^{*}}\left|\lambda_{1}(D) R_{D}\right| \tag{2.12}
\end{equation*}
$$

Define the function g by

$$
\begin{equation*}
g(D)=f(D) \prod_{P \mid D}\left(1-\frac{1}{f(P)}\right) \tag{2.13}
\end{equation*}
$$

We are now ready to estimate $\sum_{D \in \mathcal{D}^{*}} \lambda_{1}(D) / f(D)$.
Lema (1)

$$
\begin{equation*}
\inf _{X} \sum_{D \in \mathcal{D}^{*}} \frac{\lambda_{1}(D)}{f(D)}=\left(\sum_{D \in \mathcal{D}} \frac{1}{g(D)}\right)^{-1}=Q^{-1} \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
E=\sum_{D \in \mathcal{D}^{*}}\left|\lambda_{1}(D) R_{D}\right| \tag{2.12}
\end{equation*}
$$

Define the function g by

$$
\begin{equation*}
g(D)=f(D) \prod_{P \mid D}\left(1-\frac{1}{f(P)}\right) \tag{2.13}
\end{equation*}
$$

We are now ready to estimate $\sum_{D \in \mathcal{D}^{*}} \lambda_{1}(D) / f(D)$.
Lema (1)

$$
\begin{equation*}
\inf _{X} \sum_{D \in \mathcal{D}^{*}} \frac{\lambda_{1}(D)}{f(D)}=\left(\sum_{D \in \mathcal{D}} \frac{1}{g(D)}\right)^{-1}=Q^{-1} \tag{2.14}
\end{equation*}
$$

and this lower bound is attained when

$$
\begin{equation*}
X_{D}=\frac{\mu(D) f(D)}{Q} \sum_{\substack{C \in \mathcal{D} \\ D \mid C}} \frac{1}{g(C)} \tag{2.15}
\end{equation*}
$$

Proof of the Lemma

Let

$$
Y_{C}=\sum_{C \mid D} \frac{X_{D}}{f(D)}
$$

then

$$
\sum_{D \in \mathcal{D}^{*}} \frac{\lambda_{1}(D)}{f(D)}=\sum_{D \in \mathcal{D}^{*}} \frac{1}{f(D)} \sum_{\substack{D_{1}, D_{2} \in \mathcal{D} \\ \operatorname{lcm}\left(D_{1}, D_{2}\right)=D}} x_{D_{1}} X_{D_{2}}
$$

Proof of the Lemma

Let

$$
Y_{C}=\sum_{C \mid D} \frac{X_{D}}{f(D)}
$$

then

$$
\begin{aligned}
\sum_{D \in \mathcal{D}^{*}} \frac{\lambda_{1}(D)}{f(D)} & =\sum_{D \in \mathcal{D}^{*}} \frac{1}{f(D)} \sum_{\substack{D_{1}, D_{2} \in \mathcal{D} \\
\operatorname{lcm}\left(D_{1}, D_{2}\right)=D}} X_{D_{1}} X_{D_{2}} \\
& =\sum_{D_{1}, D_{2} \in \mathcal{D}} \frac{X_{D_{1}} X_{D_{2}}}{f\left(D_{1}\right) f\left(D_{2}\right)} \sum_{C \mid\left(D_{1}, D_{2}\right)} g(C)
\end{aligned}
$$

Proof of the Lemma

Let

$$
Y_{C}=\sum_{C \mid D} \frac{X_{D}}{f(D)}
$$

then

$$
\begin{aligned}
\sum_{D \in \mathcal{D}^{*}} \frac{\lambda_{1}(D)}{f(D)} & =\sum_{D \in \mathcal{D}^{*}} \frac{1}{f(D)} \sum_{\substack{D_{1}, D_{2} \in \mathcal{D} \\
\operatorname{lcm}\left(D_{1}, D_{2}\right)=D}} X_{D_{1}} X_{D_{2}} \\
& =\sum_{D_{1}, D_{2} \in \mathcal{D}} \frac{X_{D_{1}} X_{D_{2}}}{f\left(D_{1}\right) f\left(D_{2}\right)} \sum_{C \mid\left(D_{1}, D_{2}\right)} g(C) \\
& =\sum_{C \in \mathcal{D}} g(C)\left(\sum_{\substack{C \mid D \\
D \in \mathcal{D}}} X_{D} / f(D)\right)^{2}=\sum_{C \in \mathcal{D}} g(C) Y_{C}^{2}
\end{aligned}
$$

Proof of the Lemma

Let

$$
Y_{C}=\sum_{C \mid D} \frac{X_{D}}{f(D)}
$$

then

$$
\begin{aligned}
\sum_{D \in \mathcal{D}^{*}} \frac{\lambda_{1}(D)}{f(D)} & =\sum_{D \in \mathcal{D}^{*}} \frac{1}{f(D)} \sum_{\substack{D_{1}, D_{2} \in \mathcal{D} \\
\operatorname{lcm}\left(D_{1}, D_{2}\right)=D}} X_{D_{1}} X_{D_{2}} \\
& =\sum_{D_{1}, D_{2} \in \mathcal{D}} \frac{X_{D_{1}} X_{D_{2}}}{f\left(D_{1}\right) f\left(D_{2}\right)} \sum_{C \mid\left(D_{1}, D_{2}\right)} g(C) \\
& =\sum_{C \in \mathcal{D}} g(C)\left(\sum_{\substack{C \mid D \\
D \in \mathcal{D}}} X_{D} / f(D)\right)^{2}=\sum_{C \in \mathcal{D}} g(C) Y_{C}^{2} \\
& =\sum_{C \in \mathcal{D}} \frac{1}{g(C)}\left\{g(C) Y_{C}-\mu(C) Q^{-1}\right\}^{2}+Q^{-1}
\end{aligned}
$$

Proof of the Lemma

Let

$$
Y_{C}=\sum_{C \mid D} \frac{X_{D}}{f(D)}
$$

then

$$
\begin{aligned}
\sum_{D \in \mathcal{D}^{*}} \frac{\lambda_{1}(D)}{f(D)} & =\sum_{D \in \mathcal{D}^{*}} \frac{1}{f(D)} \sum_{\substack{D_{1}, D_{2} \in \mathcal{D} \\
\operatorname{lcm}\left(D_{1}, D_{2}\right)=D}} X_{D_{1}} X_{D_{2}} \\
& =\sum_{D_{1}, D_{2} \in \mathcal{D}} \frac{X_{D_{1}} X_{D_{2}}}{f\left(D_{1}\right) f\left(D_{2}\right)} \sum_{C \mid\left(D_{1}, D_{2}\right)} g(C) \\
& =\sum_{C \in \mathcal{D}} g(C)\left(\sum_{\substack{C \mid D \\
D \in \mathcal{D}}} X_{D} / f(D)\right)^{2}=\sum_{C \in \mathcal{D}} g(C) Y_{C}^{2} \\
& =\sum_{C \in \mathcal{D}} \frac{1}{g(C)}\left\{g(C) Y_{C}-\mu(C) Q^{-1}\right\}^{2}+Q^{-1}
\end{aligned}
$$

The result follows by setting the quantity in braces equal to zero.

We now assume that X is defined as in Equation (2.15), i.e., $X=X_{D}$. We then have the following form of the function-field Selberg's sieve.

We now assume that X is defined as in Equation (2.15), i.e., $X=X_{D}$. We then have the following form of the function-field Selberg's sieve.
Theorem (Selberg's sieve)

$$
\begin{equation*}
|\mathcal{S}| \leq \frac{n}{Q}+\sum_{D_{1}, D_{2} \in \mathcal{D}}\left|X_{D_{1}} X_{D_{2}} R_{\left[D_{1}, D_{2}\right]}\right| \tag{2.16}
\end{equation*}
$$

where [] denotes the Icm.

We now assume that X is defined as in Equation (2.15), i.e., $X=X_{D}$. We then have the following form of the function-field Selberg's sieve.
Theorem (Selberg's sieve)

$$
\begin{equation*}
|\mathcal{S}| \leq \frac{n}{Q}+\sum_{D_{1}, D_{2} \in \mathcal{D}}\left|X_{D_{1}} X_{D_{2}} R_{\left[D_{1}, D_{2}\right]}\right| \tag{2.16}
\end{equation*}
$$

where [] denotes the Icm.

Proof.

By Lemma 1 and the previous estimate on $|\mathcal{S}|$ (2.11) we have

$$
|\mathcal{S}| \leq \frac{n}{Q}+E
$$

where

$$
E=\sum_{D \in \mathcal{D}^{*}}\left|\lambda_{1}(D) R_{D}\right|=\sum_{D \in \mathcal{D}^{*}}\left|\sum_{\substack{D_{1}, D_{2} \in \mathcal{D} \\\left[D_{1}, D_{2}\right]=D}} x_{D_{1}} X_{D_{2}} R_{D}\right|
$$

We now assume that X is defined as in Equation (2.15), i.e., $X=X_{D}$. We then have the following form of the function-field Selberg's sieve.
Theorem (Selberg's sieve)

$$
\begin{equation*}
|\mathcal{S}| \leq \frac{n}{Q}+\sum_{D_{1}, D_{2} \in \mathcal{D}}\left|X_{D_{1}} X_{D_{2}} R_{\left[D_{1}, D_{2}\right]}\right| \tag{2.16}
\end{equation*}
$$

where [] denotes the Icm.

Proof.

By Lemma 1 and the previous estimate on $|\mathcal{S}|$ (2.11) we have

$$
|\mathcal{S}| \leq \frac{n}{Q}+E
$$

where

$$
\begin{aligned}
E & =\sum_{D \in \mathcal{D}^{*}}\left|\lambda_{1}(D) R_{D}\right|=\sum_{D \in \mathcal{D}^{*}}\left|\sum_{\substack{D_{1}, D_{2} \in \mathcal{D} \\
\left[D_{1}, D_{2}\right]=D}} X_{D_{1}} X_{D_{2}} R_{D}\right| \\
& \leq \sum_{D_{1}, D_{2} \in \mathcal{D}}\left|X_{D_{1}} X_{D_{2}} R_{\left[D_{1}, D_{2}\right]}\right|
\end{aligned}
$$

which proves the theorem.

Similarly we can prove the following version of Selberg's lower bound sieve.

Similarly we can prove the following version of Selberg's lower bound sieve.
Let \mathcal{D}_{i} denote a divisor closed subset of $\prod_{j=1}^{i-1} P_{i}$.

Similarly we can prove the following version of Selberg's lower bound sieve.
Let \mathcal{D}_{i} denote a divisor closed subset of $\prod_{j=1}^{i-1} P_{i}$.
Now define Q_{i} and $X^{(i)}$ by (2.14) and (2.15) using \mathcal{D}_{i} instead of \mathcal{D}. We then have

Similarly we can prove the following version of Selberg's lower bound sieve.
Let \mathcal{D}_{i} denote a divisor closed subset of $\prod_{j=1}^{i-1} P_{i}$.
Now define Q_{i} and $X^{(i)}$ by (2.14) and (2.15) using \mathcal{D}_{i} instead of \mathcal{D}. We then have
Theorem

$$
\begin{equation*}
|\mathcal{S}| \geq n\left(1-\sum_{i=1}^{r} \frac{1}{f\left(P_{i}\right) Q_{i}}\right)-\sum_{i=1}^{r} \sum_{D_{1}, D_{2} \in \mathcal{D}_{i}}\left|X_{D_{1}}^{(i)} X_{D_{2}}^{(i)} R_{P_{i}\left[D_{1}, D_{2}\right]}\right| . \tag{2.17}
\end{equation*}
$$

Applications of Selberg's Sieve

Let $\pi(m, K, L)$ denote the number of monic irreducible polynomials in $\mathbb{F}_{q}[x]$ of degree m which are congruent to L modulo K. We assume $(L, K)=1$, $\operatorname{deg} K=k<m$ and $\operatorname{deg} L<k$. L need not be monic.

Applications of Selberg's Sieve

Let $\pi(m, K, L)$ denote the number of monic irreducible polynomials in $\mathbb{F}_{q}[x]$ of degree m which are congruent to L modulo K. We assume $(L, K)=1$, $\operatorname{deg} K=k<m$ and $\operatorname{deg} L<k$. L need not be monic.

We take

$$
\mathcal{A}=\{L+A K: \operatorname{deg} A=m-k\}
$$

Applications of Selberg's Sieve

Let $\pi(m, K, L)$ denote the number of monic irreducible polynomials in $\mathbb{F}_{q}[x]$ of degree m which are congruent to L modulo K. We assume $(L, K)=1$, $\operatorname{deg} K=k<m$ and $\operatorname{deg} L<k$. L need not be monic.

We take

$$
\mathcal{A}=\{L+A K: \operatorname{deg} A=m-k\}
$$

and

$$
\mathcal{P}=\left\{P: \operatorname{deg} P \leq\left[\frac{m}{2}\right], P \nmid K\right\}
$$

so \mathcal{P} contains only irreducible polynomials.

Applications of Selberg's Sieve

Let $\pi(m, K, L)$ denote the number of monic irreducible polynomials in $\mathbb{F}_{q}[x]$ of degree m which are congruent to L modulo K. We assume $(L, K)=1$, $\operatorname{deg} K=k<m$ and $\operatorname{deg} L<k$. L need not be monic.

We take

$$
\mathcal{A}=\{L+A K: \operatorname{deg} A=m-k\}
$$

and

$$
\mathcal{P}=\left\{P: \operatorname{deg} P \leq\left[\frac{m}{2}\right], P \nmid K\right\}
$$

so \mathcal{P} contains only irreducible polynomials. Also, take $f(D)=|D|$. It is easily checked that $\left|R_{D}\right| \leq 1$.

Applications of Selberg's Sieve

Let $\pi(m, K, L)$ denote the number of monic irreducible polynomials in $\mathbb{F}_{q}[x]$ of degree m which are congruent to L modulo K. We assume $(L, K)=1$, $\operatorname{deg} K=k<m$ and $\operatorname{deg} L<k$. L need not be monic.

We take

$$
\mathcal{A}=\{L+A K: \operatorname{deg} A=m-k\}
$$

and

$$
\mathcal{P}=\left\{P: \operatorname{deg} P \leq\left[\frac{m}{2}\right], P \nmid K\right\}
$$

so \mathcal{P} contains only irreducible polynomials. Also, take $f(D)=|D|$. It is easily checked that $\left|R_{D}\right| \leq 1$.

The set \mathcal{D} is defined by

$$
\mathcal{D}=\left\{D: D \mid \prod(\mathcal{P}) \text { and }|D| \leq q^{(m-k) / 4}\right\}
$$

With \mathcal{D} thus defined,

$$
Q=\sum_{D \in \mathcal{D}} \frac{1}{g(D)}>\sum_{D \in \mathcal{D}} \frac{1}{|D|} \geq c_{1} \prod_{\substack{P \in \mathcal{P} \\ \operatorname{deg} P \leq(m-k) / 4}}\left(1-\frac{1}{|P|}\right)^{-1}
$$

With \mathcal{D} thus defined,

$$
\begin{aligned}
Q & =\sum_{D \in \mathcal{D}} \frac{1}{g(D)}>\sum_{D \in \mathcal{D}} \frac{1}{|D|} \geq c_{1} \prod_{\substack{P \in \mathcal{P} \\
\operatorname{deg} P \leq(m-k) / 4}}\left(1-\frac{1}{|P|}\right)^{-1} \\
& \geq c_{2} \prod_{\operatorname{deg} P \leq(m-k) / 4}\left(1-\frac{1}{|P|}\right)^{-1} \frac{\Phi(K)}{|K|} \geq c_{3} \frac{\Phi(K)}{|K|}(m-k)
\end{aligned}
$$

where c_{i} are constants, and $\Phi(K)$ is Euler's Φ function defined for $\mathbb{F}_{q}[x]$.

With \mathcal{D} thus defined,

$$
\begin{aligned}
Q & =\sum_{D \in \mathcal{D}} \frac{1}{g(D)}>\sum_{D \in \mathcal{D}} \frac{1}{|D|} \geq c_{1} \prod_{\substack{P \in \mathcal{P} \\
\operatorname{deg} P \leq(m-k) / 4}}\left(1-\frac{1}{|P|}\right)^{-1} \\
& \geq c_{2} \prod_{\operatorname{deg} P \leq(m-k) / 4}\left(1-\frac{1}{|P|}\right)^{-1} \frac{\Phi(K)}{|K|} \geq c_{3} \frac{\Phi(K)}{|K|}(m-k)
\end{aligned}
$$

where c_{i} are constants, and $\Phi(K)$ is Euler's Φ function defined for $\mathbb{F}_{q}[x]$.
Also the error term is quite small, $E=O\left(m^{2} q^{(m-k) / 2}\right)$.

With \mathcal{D} thus defined,

$$
\begin{aligned}
Q & =\sum_{D \in \mathcal{D}} \frac{1}{g(D)}>\sum_{D \in \mathcal{D}} \frac{1}{|D|} \geq c_{1} \prod_{\substack{P \in \mathcal{P} \\
\operatorname{deg} P \leq(m-k) / 4}}\left(1-\frac{1}{|P|}\right)^{-1} \\
& \geq c_{2} \prod_{\operatorname{deg} P \leq(m-k) / 4}\left(1-\frac{1}{|P|}\right)^{-1} \frac{\Phi(K)}{|K|} \geq c_{3} \frac{\Phi(K)}{|K|}(m-k),
\end{aligned}
$$

where c_{i} are constants, and $\Phi(K)$ is Euler's Φ function defined for $\mathbb{F}_{q}[x]$.
Also the error term is quite small, $E=O\left(m^{2} q^{(m-k) / 2}\right)$.
The previous estimates are obtained by using variations of the standard techniques used on similar expressions involving the rational integers.

Thus by Selberg's sieve theorem we have
Theorem

$$
\pi(m, K, L)=|\mathcal{S}| \leq c \frac{q^{m-k}|K|}{\Phi(K)(m-k)}=c \frac{q^{m}}{\Phi(K)(m-k)}
$$

Thus by Selberg's sieve theorem we have
Theorem

$$
\pi(m, K, L)=|\mathcal{S}| \leq c \frac{q^{m-k}|K|}{\Phi(K)(m-k)}=c \frac{q^{m}}{\Phi(K)(m-k)}
$$

This result is not as powerful as the "prime number theorem" for $\mathbb{F}_{q}[x]$ when degree of K is small. This is particularly true since the Riemann hypothesis is known to be true. But the above theorem is still effective when k is almost as large as m, and of course is essentially elementary.

Brun's theorem

Let K be a fixed polynomial, not necessarily monic and let $\mathcal{N}(n, K)$ be the number of monic irreducibles polynomials P of degree $\leq n$, such that $P+K$ is also irreducibe.

Brun's theorem

Let K be a fixed polynomial, not necessarily monic and let $\mathcal{N}(n, K)$ be the number of monic irreducibles polynomials P of degree $\leq n$, such that $P+K$ is also irreducibe.
We take $n>\operatorname{deg} K$. Letting

$$
\begin{aligned}
& \mathcal{A}=\{A(A+K): \operatorname{deg} A \leq n\}, \\
& \mathcal{P}=\left\{P: \operatorname{deg} P \leq \frac{n}{2}, P \nmid K\right\}
\end{aligned}
$$

and $f(D)=|D| / \alpha(D)$ where $\alpha(D)$ is the number of solutions of $A(A+K) \equiv 0(\bmod D)$.

Brun's theorem

Let K be a fixed polynomial, not necessarily monic and let $\mathcal{N}(n, K)$ be the number of monic irreducibles polynomials P of degree $\leq n$, such that $P+K$ is also irreducibe.
We take $n>\operatorname{deg} K$. Letting

$$
\begin{aligned}
& \mathcal{A}=\{A(A+K): \operatorname{deg} A \leq n\}, \\
& \mathcal{P}=\left\{P: \operatorname{deg} P \leq \frac{n}{2}, P \nmid K\right\}
\end{aligned}
$$

and $f(D)=|D| / \alpha(D)$ where $\alpha(D)$ is the number of solutions of $A(A+K) \equiv 0(\bmod D)$. Clearly $\alpha(D)=2^{\omega(D)}$, where $\omega(D)$ denotes the number of distinct irreducibles dividing D, for $D \mid \prod(\mathcal{P})$.

Brun's theorem

Let K be a fixed polynomial, not necessarily monic and let $\mathcal{N}(n, K)$ be the number of monic irreducibles polynomials P of degree $\leq n$, such that $P+K$ is also irreducibe.
We take $n>\operatorname{deg} K$. Letting

$$
\begin{aligned}
& \mathcal{A}=\{A(A+K): \operatorname{deg} A \leq n\}, \\
& \mathcal{P}=\left\{P: \operatorname{deg} P \leq \frac{n}{2}, P \nmid K\right\}
\end{aligned}
$$

and $f(D)=|D| / \alpha(D)$ where $\alpha(D)$ is the number of solutions of $A(A+K) \equiv 0(\bmod D)$. Clearly $\alpha(D)=2^{\omega(D)}$, where $\omega(D)$ denotes the number of distinct irreducibles dividing D, for $D \mid \prod(\mathcal{P})$. We find by routine calculation that

$$
\left|R_{D}\right| \leq \frac{|D|}{f(D)}
$$

Brun's theorem

Let K be a fixed polynomial, not necessarily monic and let $\mathcal{N}(n, K)$ be the number of monic irreducibles polynomials P of degree $\leq n$, such that $P+K$ is also irreducibe.
We take $n>\operatorname{deg} K$. Letting

$$
\begin{aligned}
& \mathcal{A}=\{A(A+K): \operatorname{deg} A \leq n\}, \\
& \mathcal{P}=\left\{P: \operatorname{deg} P \leq \frac{n}{2}, P \nmid K\right\}
\end{aligned}
$$

and $f(D)=|D| / \alpha(D)$ where $\alpha(D)$ is the number of solutions of $A(A+K) \equiv 0(\bmod D)$. Clearly $\alpha(D)=2^{\omega(D)}$, where $\omega(D)$ denotes the number of distinct irreducibles dividing D, for $D \mid \prod(\mathcal{P})$. We find by routine calculation that

$$
\left|R_{D}\right| \leq \frac{|D|}{f(D)}
$$

Letting $\mathcal{D}=\left\{D: D \mid \prod(\mathcal{P})\right.$ and $\left.|D| \leq N^{1 / 4}\right\}$ where $N=|\mathcal{A}|=\left(q^{n+1}-q\right) /(q-1)$, and applying the Selberg's sieve theorem we have

$$
\begin{equation*}
|\mathcal{S}| \leq \frac{N}{Q}+N^{1 / 2} \prod_{P \in \mathcal{P}}\left(1-\frac{1}{f(P)}\right)^{-2} \tag{2.18}
\end{equation*}
$$

Now

$$
Q=\sum_{D \in \mathcal{D}} \frac{1}{g(D)} \geq \sum_{D \in \mathcal{D}} \frac{\alpha(D)}{|D|}=\sum_{\substack{|D| \leq N^{1 / 4} \\(D, K)=1}} \frac{2^{\omega(D)}}{|D|}
$$

Now

$$
\begin{aligned}
Q & =\sum_{D \in \mathcal{D}} \frac{1}{g(D)} \geq \sum_{D \in \mathcal{D}} \frac{\alpha(D)}{|D|}=\sum_{\substack{|D| \leq N^{1 / 4} \\
(D, K)=1}} \frac{2^{\omega(D)}}{|D|} \\
& \geq c_{1} \sum_{\substack{|P| \leq N^{1 / 4} \\
P \nmid K}}\left(1-\frac{2}{|P|}\right)^{-1} \geq c_{2} \log ^{2} N
\end{aligned}
$$

where c_{2} depends on K.

Now

$$
\begin{aligned}
Q & =\sum_{D \in \mathcal{D}} \frac{1}{g(D)} \geq \sum_{D \in \mathcal{D}} \frac{\alpha(D)}{|D|}=\sum_{\substack{|D| \leq N^{1 / 4} \\
(D, K)=1}} \frac{2^{\omega(D)}}{|D|} \\
& \geq c_{1} \sum_{\substack{|P| \leq N^{1 / 4} \\
P \nmid K}}\left(1-\frac{2}{|P|}\right)^{-1} \geq c_{2} \log ^{2} N
\end{aligned}
$$

where c_{2} depends on K. Since $\prod_{P \in \mathcal{P}}(1-1 / f(P))^{-2} \leq \log ^{4} N$, from (2.18) we obtain

$$
\begin{equation*}
|\mathcal{S}| \leq c_{3} \frac{N}{\log ^{2} N} \tag{2.19}
\end{equation*}
$$

Now \mathcal{S} contains irreducibles P such that $P+K$ is also irreducible and $n / 2<\operatorname{deg} P \leq n$.

Now \mathcal{S} contains irreducibles P such that $P+K$ is also irreducible and $n / 2<\operatorname{deg} P \leq n$. Thus

$$
\mathcal{N}(n, K)=|\mathcal{S}|+\#\{P \text { irreducible : } P+K \text { irreducible, } \operatorname{deg} P \leq n / 2\}
$$

Now \mathcal{S} contains irreducibles P such that $P+K$ is also irreducible and $n / 2<\operatorname{deg} P \leq n$. Thus

$$
\mathcal{N}(n, K)=|\mathcal{S}|+\#\{P \text { irreducible : } P+K \text { irreducible, } \operatorname{deg} P \leq n / 2\}
$$

Hence by (2.19) we have

$$
\mathcal{N}(n, K) \leq c_{3} \frac{N}{\log ^{2} N}+c_{4} q^{n / 2} \leq c_{5} \frac{N}{\log ^{2} N}
$$

Now \mathcal{S} contains irreducibles P such that $P+K$ is also irreducible and $n / 2<\operatorname{deg} P \leq n$. Thus

$$
\mathcal{N}(n, K)=|\mathcal{S}|+\#\{P \text { irreducible : } P+K \text { irreducible, } \operatorname{deg} P \leq n / 2\}
$$

Hence by (2.19) we have

$$
\mathcal{N}(n, K) \leq c_{3} \frac{N}{\log ^{2} N}+c_{4} q^{n / 2} \leq c_{5} \frac{N}{\log ^{2} N}
$$

Thus we have proved
Theorem
If $\mathcal{N}(n, K)$ is the number of monic irreducibles polynomials P of degree $\leq n$ such that $P+K$ is also irreducible, then

$$
\begin{equation*}
\mathcal{N}(n, K) \leq c \frac{q^{n}}{n^{2}} \tag{2.20}
\end{equation*}
$$

Now \mathcal{S} contains irreducibles P such that $P+K$ is also irreducible and $n / 2<\operatorname{deg} P \leq n$. Thus

$$
\mathcal{N}(n, K)=|\mathcal{S}|+\#\{P \text { irreducible : } P+K \text { irreducible, } \operatorname{deg} P \leq n / 2\}
$$

Hence by (2.19) we have

$$
\mathcal{N}(n, K) \leq c_{3} \frac{N}{\log ^{2} N}+c_{4} q^{n / 2} \leq c_{5} \frac{N}{\log ^{2} N}
$$

Thus we have proved
Theorem
If $\mathcal{N}(n, K)$ is the number of monic irreducibles polynomials P of degree $\leq n$ such that $P+K$ is also irreducible, then

$$
\begin{equation*}
\mathcal{N}(n, K) \leq c \frac{q^{n}}{n^{2}} \tag{2.20}
\end{equation*}
$$

Corollary
$\sum 1 /|P|$ converges, where the summation is over all monic irreducibles P such that $P+K$ is also irreducible.

