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Introduction

• The zeta function of a curve over a finite field may be expressed in terms
of the characteristic polynomial of a unitary symplectic matrix Θ, called
the Frobenius class of the curve.

• We will compute the expected value of tr(Θn) for an ensemble of
hyperelliptic curves of genus g over a fixed finite field in the limit of large
genus, and compare the results to the corresponding averages over the
unitary symplectic group USp(2g).

• We are able to compute the averages for powers n almost up to 4g ,
finding agreement with the Random Matrix results except for small n and
for n = 2g .

• As an application we compute the one-level density of zeros of the zeta
function of the curves, including lower-order terms, for test functions
whose Fourier transform is supported in (−2, 2).

• The results confirm in part a conjecture of Katz and Sarnak, that to
leading order the low-lying zeros for this ensemble have symplectic
statistics.



Background Material

Fix a finite field Fq of odd cardinality, and let C be a non singular projective
curve defined over Fq. For each extension field of degree n of Fq, denote by
Nn(C) the number of points of C in Fqn . The zeta function associated to C is
defined as

ZC (u) = exp
∞∑

n=1

Nn(C)
un

n , |u| < 1/q

and is known to be a rational function of u of the form

ZC (u) =
PC (u)

(1− u)(1− qu)
(1.1)

where PC (u) is a polynomial of degree 2g with integer coefficients, satisfying a
functional equation

PC (u) = (qu2)g PC (
1

qu ) .



The Riemann Hypothesis, proved by Weil, is that the zeros of P(u) all lie on
the circle |u| = 1/√q. Thus one may give a spectral interpretation of PC (u) as
the characteristic polynomial of a 2g × 2g unitary matrix ΘC

PC (u) = det(I − u√qΘC )

so that the eigenvalues e iθj of ΘC correspond to zeros q−1/2e−iθj of ZC (u).
The matrix (or rather the conjugacy class) ΘC is called the unitarized
Frobenius class of C .



We would like to study the how the Frobenius classes ΘC change as we vary
the curve over a family of hyperelliptic curves of genus g , in the limit of large
genus and fixed constant field. The particular family H2g+1 we choose is the
family of all curves given in affine form by an equation

CQ : y 2 = Q(x)

where
Q(x) = x2g+1 + a2g + · · ·+ a0 ∈ Fq[x ]

is a squarefree, monic polynomial of degree 2g + 1. The curve CQ is thus
nonsingular and of genus g .
We consider H2g+1 as a probability space (ensemble) with the uniform
probability measure, so that the expected value of any function F on H2g+1 is
defined as

〈F 〉 :=
1

#H2g+1

∑
Q∈H2g+1

F (Q)



Katz and Sarnak showed that as q →∞, the Frobenius classes ΘQ become
equidistributed in the unitary symplectic group USp(2g) (in genus one this is
due to Birch for q prime, and to Deligne). That is for any continuous function
on the space of conjugacy classes of USp(2g),

lim
q→∞

〈F (ΘQ)〉 =

∫
USp(2g)

F (U)dU

This implies that various statistics of the eigenvalues can, in this limit, be
computed by integrating the corresponding quantities over USp(2g).
Our goal is to explore the opposite limit, that of fixed constant field and large
genus (q fixed, g →∞). Since the matrices ΘQ now inhabit different spaces as
g grows, it is not clear how to formulate an equidistribution problem. However
one can still meaningfully discuss various statistics, the most fundamental being
various products of traces of powers of ΘQ , that is

〈∏r
j=1 tr(Θ

nj
Q )
〉

. Here we
study the basic case of the expected values 〈tr Θn

Q〉 where n is of order of the
genus g .



The mean value of traces of powers when averaged over the unitary symplectic
group USp(2g) are known to be

∫
USp(2g)

tr(Un)dU =


2g n = 0
−ηn 1 ≤ |n| ≤ 2g
0 |n| > 2g

(1.2)

where

ηn =

{
1 n even
0 n odd



We will show:

Theorem
For all n > 0 we have

〈tr Θn
Q〉 =


−ηn, 0 < n < 2g

−1− 1
q−1 , n = 2g

0, n > 2g

+ ηn
1

qn/2

∑
deg P| n2

P prime

deg P
|P|+ 1

+ Oq
(
nqn/2−2g + gq−g)

the sum over all irreducible monic polynomials P, and where |P| := qdeg P .
In particular we have

Corollary
If 3 logq g < n < 4g − 5 logq g but n 6= 2g then

〈tr Θn
Q〉 =

∫
USp(2g)

tr UndU + o(
1
g ) .



We do however get deviations from the Random Matrix Theory results (2.2) for
small values of n, for instance〈

tr Θ2
Q
〉
∼
∫

USp(2g)
tr U2dU +

1
q + 1

and for n = 2g where we have〈
tr Θ2g

Q

〉
∼
∫

USp(2g)
tr U2g dU − 1

q − 1 .

Analogous results can be derived for mean values of products, e.g. for
〈tr Θm

Q tr Θn
Q〉, when m + n < 4g .

To prove these results, we cannot use the powerful equidistribution theorem of
Deligne. Rather, we use a variant of the analytic methods developed to deal
with such problems in the number field setting. Extending the range of this
results to cover n > 4g is a challenge.



The traces of powers determine all linear statistics, such as the number of
angles θj lying in a subinterval of R/2πZ, or the one-level density, a smooth
linear statistic. To define the one-level density, we start with an even test
function f , say in the Schwartz space S(R), and for any N ≥ 1 set

F (θ) :=
∑
k∈Z

f (N(
θ

2π − k))

which has period 2π and is localized in an interval of size ≈ 1/N in R/2πZ.
For a unitary N × N matrix U with eigenvalues e iθj , j = 1, . . .N, define

Zf (U) :=

N∑
j=1

F (θj )

which counts the number of “low-lying” eigenphases θj in the smooth interval
of length ≈ 1/N around the origin defined by f .



Katz and Sarnak conjectured that for fixed q, the expected value of Zf over
H2g+1 will converge to

∫
USp(2g) Zf (U)dU as g →∞ for any such test function

f . Theorem 1 implies:

Corollary
If f ∈ S(R) is even, with Fourier transform f̂ supported in (−2, 2) then

〈Zf 〉 =

∫
USp(2g)

Zf (U)dU +
dev(f )

g + o(
1
g )

where
dev(f ) = f̂ (0)

∑
P prime

deg P
|P|2 − 1 − f̂ (1)

1
q − 1

the sum over all irreducible monic polynomials P.



To show corollary 3, one uses a Fourier expansion to see that

Zf (U) =

∫ ∞
−∞

f (x)dx +
1
N
∑
n 6=0

f̂ (
n
N ) tr Un . (2.1)

Averaging Zf (U) over the symplectic group USp(2g), using (2.2), and
assuming f is even, gives∫

USp(2g)
Zf (U)dU = f̂ (0)− 1

g
∑

1≤m≤g

f̂ (
m
g )

and then we use Theorem 1 to deduce Corollary 3.
Note that as g →∞,

∫
USp(2g) Zf (U)dU ∼

∫∞
−∞ f (x)

(
1− sin 2πx

2πx

)
dx

Corollary 3 is completely analogous to what is known in the number field
setting for the corresponding case of zeta functions of quadratic fields, except
for the lower order term which is different: While the coefficient of f̂ (0) is as in
the number field setting, the coefficient of f̂ (1) is special to our function-field
setting.



In this section we give some known background on the zeta function of
hyperelliptic curves.
For a nonzero polynomial f ∈ Fq[x ], we define the norm |f | := qdeg f . A
“prime” polynomial is a monic irreducible polynomial. For a monic polynomial
f , The von Mangoldt function Λ(f ) is defined to be zero unless f = Pk is a
prime power in which case Λ(Pk ) = deg P.
The analogue of Riemann’s zeta function is

ζq(s) :=
∏

P prime
(1− |P|−s)−1

which is shown to equal
ζq(s) =

1
1− q1−s (3.1)



Let πq(n) be the number of prime polynomials of degree n. The Prime
Polynomial Theorem in Fq[x ] asserts that

πq(n) =
qn

n + O(qn/2)

which follows from the identity (equivalent to (4.1))∑
deg(f )=n

Λ(f ) = qn (3.2)

the sum over all monic polynomials of degree n.



For a monic polynomial D ∈ Fq[x ] of positive degree, which is not a perfect
square, we define the quadratic character χD in terms of the quadratic residue
symbol for Fq[x ] by

χD(f ) =
(D

f

)
and the corresponding L-function

L(u, χD) :=
∏

P

(1− χD(P)udeg P)−1, |u| < 1
q

the product over all monic irreducible (prime) polynomials P. Expanding in
additive form using unique factorization, we write

L(u, χD) =
∑
β≥0

AD(β)uβ

with
AD(β) :=

∑
deg B=β

B monic

χD(B) .

If D is non-square of positive degree, then AD(β) = 0 for β ≥ deg D and hence
the L-function is in fact a polynomial of degree at most deg D − 1.



To proceed further, assume that D is square-free (and monic of positive
degree). Then L(u, χD) has a “trivial” zero at u = 1 if and only if deg D is
even. Thus

L(u, χD) = (1− u)λL∗(u, χD), λ =

{
1 deg D even
0 deg(D) odd

where L∗(u, χD) is a polynomial of even degree

2δ = deg D − 1− λ

satisfying the functional equation

L∗(u, χD) = (qu2)δL∗( 1
qu , χD) .



In fact L∗(u, χD) is the Artin L-function associated to the unique nontrivial
quadratic character of Fq(x)(

√
D(x)). We write

L∗(u, χD) =

2δ∑
β=0

A∗D(β)uβ

where A∗D(0) = 1, and the coefficients A∗D(β) satisfy

A∗D(β) = qβ−δA∗D(2δ − β) . (3.3)

In particular the leading coefficient is A∗D(2δ) = qδ.



For D monic, square-free, and of positive degree, the zeta function (2.1) of the
hyperelliptic curve y 2 = D(x) is

ZD(u) =
L∗(u, χD)

(1− u)(1− qu)
.

The Riemann Hypothesis, proved by Weil, asserts that all zeros of ZC (u), hence
of L∗(u, χD), lie on the circle |u| = 1/√q. Thus we may write

L∗(u, χD) = det(I − u√qΘD)

for a unitary 2δ × 2δ matrix ΘD .



By taking a logarithmic derivative of the identity

det(I − u√qΘD) = (1− u)−λ
∏

P

(1− χD(P)udeg P)−1

which comes from writing L∗(u, χD) = (1− u)−λL(u, χD), we find

− tr Θn
D =

λ

qn/2 +
1

qn/2

∑
deg f =n

Λ(f )χD(f ) (3.4)



Assume now that B is monic, of positive degree and not a perfect square.
Then we have a bound for the character sum over primes:∣∣∣∣∣∣∣∣

∑
deg P=n

P prime

(B
P

)∣∣∣∣∣∣∣∣�
deg B

n qn/2 (3.5)

This is deduced by writing B = DC2 with D square-free, of positive degree, and
then using the explicit formula (4.4) and the unitarity of ΘD (which is the
Riemann Hypothesis).



We denote by Hd the set of square-free monic polynomials of degree d in
Fq[x ]. The cardinality of Hd is

#Hd =

{
(1− 1

q )qd , d ≥ 2
q, d = 1

as is seen by writing∑
d≥0

#Hd

qds =
∑

f monic squarefree
|f |−s =

ζq(s)

ζq(2s)

and using (4.1). In particular for g ≥ 1,

#H2g+1 = (q − 1)q2g .



We consider H2g+1 as a probability space (ensemble) with the uniform
probability measure, so that the expected value of any function F on H2g+1 is
defined as

〈F 〉 :=
1

#H2g+1

∑
Q∈H2g+1

F (Q) (4.1)

We can pick out square-free polynomials by using the Möbius function µ of
Fq[x ] (as is done over the integers) via∑

A2|Q

µ(A) =

{
1 Q square-free
0 otherwise

Thus we may write expected values as

〈F (Q)〉 =
1

(q − 1)q2g

∑
2α+β=2g+1

∑
deg B=β

∑
deg A=α

µ(A)F (A2B) (4.2)

the sum over all monic A, B.



Suppose now that we are given a polynomial f ∈ Fq[x ] and apply (5.2) to the
quadratic character χQ(f ) =

(Q
f

)
. Then

χA2B(f ) =
(B

f

)(A
f

)2
=

{(B
f

)
gcd(A, f ) = 1

0 otherwise

Hence
〈χQ(f )〉 =

1
(q − 1)q2g

∑
2α+β=2g+1

σ(f ;α)
∑

deg B=β

(B
f

)
where

σ(f ;α) :=
∑

deg A=α
gcd(A,f )=1

µ(A) .



Suppose P is a prime of degree n, k ≥ 1 and α ≥ 0. Set

σn(α) := σ(Pk ;α) =
∑

deg A=α

gcd(A,Pk )=1

µ(A) .

Since the conditions gcd(A,Pk ) = 1 and gcd(A,P) = 1 are equivalent for a
prime P and any k ≥ 1, this quantity is independent of k; the notation
anticipates that it depends only on the degree n of P, as is shown in:

Lemma
i) For n = 1,

σ1(0) = 1, σ1(α) = 1− q for all α ≥ 1 .
ii) If n ≥ 2 then

σn(α) =


1 α = 0 mod n
−q α = 1 mod n
0 otherwise

.



Proof.
Since P is prime,

σn(α) =
∑

deg A=α

µ(A)−
∑

deg A=α
P|A

µ(A) =
∑

deg A=α

µ(A)−
∑

deg A1=α−n

µ(PA1) .

Now µ(PA1) 6= 0 only when A1 is coprime to P, in which case
µ(PA1) = µ(P)µ(A1) = −µ(A1). Hence

σn(α) =
∑

deg A=α

µ(A) +
∑

deg A1=α−n
(P,A1)=1

µ(A1) ,

that is

σn(α)− σn(α− n) =
∑

deg A=α

µ(A) =


1 α = 0
−q α = 1
0 α ≥ 2

on using ∑
A monic

µ(A)

|A|s =
1

ζq(s)
= 1− q1−s

and (4.1). For n ≥ 2 we get (ii) while for n = 1 we find that σ1(0) = 1 and for
α ≥ 1,

σ1(α) = σ1(α− 1) = · · · = σ1(1) = −q.



Lemma
Let P be a prime. Then〈

χQ(P2)
〉

=
|P|
|P|+ 1 + O(q−2g ) .



Proof of Lemma

Since P is prime, χQ(P2) = 1 unless P divides Q, that is setting

ιP(f ) :=

{
1, P - f
0, P | f

we have χQ(P2) = ιP(Q) and thus by (5.2)〈
χQ(P2)

〉
= 〈ιP〉 =

1
(q − 1)q2g

∑
deg A2B=2g+1

µ(A)ιP(A2B) .

Since P is prime, P - A2B if and only if P - A and P - B. Hence〈
χQ(P2)

〉
=

1
(q − 1)q2g

∑
0≤α≤g

∑
deg A=α,P-A

µ(A)
∑

deg B=2g+1−2α,P-B

1 .



Continuation of the Proof

Writing m := deg P,

#{B : deg B = β P - B} = qβ ·

{
1, if m > β

1− 1
|P| , if m ≤ β

and ∑
deg A=α,P-A

µ(A) = σm(α)

is computed in Lemma 4. Hence

〈
χQ(P2)

〉
=

1
(q − 1)q2g

∑
0≤α≤g

σm(α)q2g+1−2α ·

{
1− 1

|P| , 0 ≤ α ≤ g − m−1
2

1, g − m−1
2 < α ≤ g

= (1− 1
|P| )

1
1− 1

q

(
∞∑
α=0

σm(α)

q2α + O(q−2g )

)
.



Continuation of the Proof

Moreover, inserting the values of σm(α) given by Lemma 4 gives
∞∑
α=0

σm(α)

q2α =
1− 1

q

1− 1
|P|2

(this is valid both for m = 1 and m ≥ 2 !) and hence

〈
χQ(P2)

〉
= (1− 1

|P| )
1

1− 1
q

1− 1
q

1− 1
|P|2

+ O(q−2g ) =
|P|
|P|+ 1 + O(q−2g )

as claimed.



We consider the double character sum

S(β; n) :=
∑

deg P=n
P prime

∑
deg B=β

B monic

(B
P

)
.

We may express S(β, n) in terms of the coefficients AP(β) =
∑

deg B=β
χP(B)

of the L-function L(u, χP) =
∑

β
AP(β)uβ :

S(β; n) = (−1)
q−1

2 βn
∑

deg P=n

AP(β) ,

which follows from the law of quadratic reciprocity: If A, B are monic then(B
P

)
= (−1)

q−1
2 deg P deg B

(P
B

)
= (−1)

q−1
2 deg P deg BχP(B) .

Since AP(β) = 0 for β ≥ deg P, we find:



Lemma
For n ≤ β we have

S(β; n) = 0 .



Proposition
i) If n is odd and 0 ≤ β ≤ n − 1 then

S(β; n) = qβ−
n−1

2 S(n − 1− β; n) (5.1)

and
S(n − 1; n) = πq(n)q

n−1
2 , n odd . (5.2)

ii) If n is even and 1 ≤ β ≤ n − 2 then

S(β; n) = qβ−
n
2

(
−S(n − 1− β; n) + (q − 1)

n−β−2∑
j=0

S(j; n)

)
(5.3)

and
S(n − 1; n) = −πq(n)q

n−2
2 , n even . (5.4)



Proof of Proposition

Assume that n = deg P is odd. Then L(u, χP) = L∗(u, χP), and so the
coefficients AP(β) = A∗P(β) coincide. Therefore the functional equation in the
form (4.3) implies

AP(β) = AP(n − 1− β)qβ−
n−1

2 , n odd, 0 ≤ β ≤ n − 1 .

Consequently we find that for n odd,

S(β; n) = qβ−
n−1

2 S(n − 1− β; n), n odd, 0 ≤ β ≤ n − 1 .

In particular we have

S(n − 1; n) = q
n−1

2 S(0, n) = q
n−1

2 πq(n), n odd .



Continuation of the Proof

Next, assume that n = deg P is even. Then L(u, χP) = (1− u)L∗(u, χP),
which implies that the coefficients of L(u, χP) and L∗(u, χP) satisfy

AP(β) = A∗P(β)− A∗P(β − 1), β ≥ 1

and
A∗P(β) = AP(β) + AP(β − 1) + · · ·+ AP(0) . (5.5)

Moreover
AP(0) = A∗P(0), AP(n − 1) = −A∗P(n − 2) .

In particular, since
A∗P(0) = 1, A∗P(n − 2) = q

n−2
2

(see (4.3)) we get

AP(n − 1) = −A∗P(n − 2) = −q
n−2

2 , n even

so that
S(n − 1; n) = −πq(n)q

n−2
2 , n even .



Continuation of the Proof
The functional equation (4.3) implies

A∗P(β) = A∗P(n − 2− β)qβ−
n−2

2 , 0 ≤ β ≤ n − 2

and hence for 1 ≤ β ≤ n − 2

AP(β) = A∗P(β)− A∗P(β − 1) = A∗P(n − 2− β)qβ−
n−2

2 − A∗P(n − 1− β)qβ−
n
2

and inserting (6.5) gives

AP(β) = qβ−
n
2

(
−AP(n − 1− β) + (q − 1)

n−β−2∑
j=0

AP(j)

)
.

Summing over all primes P of degree n gives

S(β; n) = qβ−
n
2

(
−S(n − 1− β; n) + (q − 1)

n−β−2∑
j=0

S(j; n)

)
as claimed.



Lemma
Suppose β < n. Then

S(β; n) = ηβπq(n)q
β
2 + O(

β

n q
n
2 +β) (5.6)

where ηβ = 1 for β even, and ηβ = 0 for β odd.



Proof of Lemma

We write
S(β; n) =

∑
B=�

deg B=β

∑
deg P=n

(B
P

)
+
∑
B 6=�

deg B=β

∑
deg P=n

(B
P

)
where the squares only occur when β is even.
For B not a perfect square, we use the Riemann Hypothesis for curves in the
form (4.5): ∑

deg P=n

(B
P

)
� deg B

n qn/2 .



Continuation of the Proof

Hence summing over all nonsquare B of degree β, of which there are at most
qβ , gives ∑

B 6=�
deg B=β

∑
deg P=n

(B
P

)
� β

n qβ+
n
2 .

Assume now that β is even. For B = C2, we have P and B are coprime since
deg C = β/2 < n = deg P, and hence

(B
P

)
=
(

C2

P

)
= +1 and so the squares,

of which there are qβ/2, contribute πq(n)qβ/2. This proves (6.6).



By using duality, (6.6) can be bootstrapped into an improved estimate when β
is odd:

Proposition
If β is odd and β < n then

S(β; n) = −ηnπq(n)qβ−
n
2 + O(qn) . (5.7)



Proof of Proposition

Assume n odd with β < n. Then by (6.1) for odd n,

S(β; n) = qβ−
n−1

2 S(n − 1− β; n)

and inserting the inequality (6.6) with β replaced by n− 1− β (which is odd in
this case) we get

S(n − 1− β; n)� q
n
2 +(n−1−β)

hence
S(β; n)� qβ−

n−1
2 q

n
2 +(n−1−β) � qn

as claimed.



Proof of Proposition

Assume n even, with β < n. Using (6.3) and the bound (6.6) gives

S(β; n) = qβ−
n
2

(
−S(n − 1− β; n) + (q − 1)

n−β−2∑
j=0

S(j; n)

)

= qβ−
n
2

(
−ηn−1−βπq(n)q

n−1−β
2 + (q − 1)

n−β−2∑
j=0

ηjπq(n)q
j
2

)

+ O

(
qβ−

n
2

n−1−β∑
j=0

j
n q

n
2 +j

)
.



Continuation of the Proof

The remainder term is O(qn). For the main term, we note that n− 1− β = 2L
is even since β is odd and n is even, and then we can write the sum as

qβ−
n
2 πq(n)

(
−qL + (q − 1)

L−1∑
l=0

ql

)
= −qβ−

n
2 πq(n)

which is our claim.



The explicit formula (4.4) says that for n > 0,

tr Θn
Q = − 1

qn/2

∑
deg f =n

Λ(f )χQ(f )

the sum over all monic primes powers. We will separately treat the
contributions Pn of primes, �n of squares and Hn of higher odd powers of
primes:

tr Θn
Q = Pn + �n + Hn . (6.1)



When n is even, we have a contribution to tr Θn
Q coming from squares of prime

powers (for odd n this term does not appear), which give

�n = − 1
qn/2

∑
deg h= n

2

Λ(h)χQ(h2) .

Since χQ(h2) = 0 or 1, we clearly have �n ≤ 0 and

�n ≥ −
1

qn/2

∑
deg h= n

2

Λ(h) = −1 .

by (4.2). Hence the contribution of squares is certainly bounded.



Now for h = Pk a prime power,〈
χQ(h2)

〉
=
〈
χQ(P2)

〉
= 1− 1

|P|+ 1 + O(q−2g ) . (6.2)

by Lemma 5. Thus, recalling that
∑

deg h=m Λ(h) = qm (4.2), the contribution
of squares to the average is

〈�n〉 = −1 +
1

qn/2

∑
deg P| n2

(
deg(P)

1
|P|+ 1 + O(q−2g )

)
= −1 +

1
qn/2

∑
deg P| n2

deg(P)

|P|+ 1 + O(q−2g ) .

(6.3)



In particular, we find that the contribution of squares to the average is

〈�n〉 = −1 + O(
n

qn/2 ) + O(q−2g )

and thus if n� 3 logq g we get

〈�n〉 = −ηn(1 + o(
1
g )) .



The contribution to tr Θn
Q of primes is

Pn = − n
qn/2

∑
deg P=n

χQ(P) .

Proposition

〈Pn〉 = − n
(q − 1)q2g+n/2

∑
β+2α=2g+1
α,β≥0

σn(α)S(β; n) . (6.4)

Moreover, if n > g then

〈Pn〉 = − n
(q − 1)q2g+n/2 (S(2g + 1; n)− qS(2g − 1; n)) . (6.5)



Proof.
Using (5.2) we have

〈Pn〉 = − n
(q − 1)q2g+n/2

∑
deg P=n

∑
β+2α=2g+1
α,β≥0

σn(α)
∑

deg B=β

(B
P

)
= − n

(q − 1)q2g+n/2

∑
β+2α=2g+1
α,β≥0

σn(α)S(β; n)

which gives the first assertion.
Now assume that n > g . Then σn(α) 6= 0 forces α = 0, 1 mod n by Lemma
4(ii) and together with α ≤ g < n we must have α = 0, 1. Hence in (7.4) the
only nonzero terms are those with α = 0, 1 which gives (7.5).



Assume first that n ≤ g . In (7.4), if S(β; n) 6= 0 then β < n by Lemma 6. For
those, we use the bound |S(β; n)| � β

n qβ+n/2 of Lemma 8 and hence

〈Pn〉 �
n

q2g+ n
2

∑
β<n

β

n qn/2+β � nqn−2g ≤ gq−g (6.6)

since n ≤ g , which vanishes as g →∞.
For g < n < 2g , use (7.5), and note that S(2g ± 1; n) = 0 by Lemma 6. Hence

〈Pn〉 = 0, g < n < 2g .



We have S(2g + 1; 2g) = 0 by Lemma 6, and S(2g − 1; 2g) = −π(2g)q
2g−2

2 by
(6.4). Hence

〈Pn〉 = − 2g
(q − 1)q2g+g (S(2g + 1, 2g)− qS(2g − 1, 2g))

= − 2g
(q − 1)q2g+g qπ(2g)q

2g−2
2

= − 1
q − 1 + O(gq−g ) .



Here we use (6.7) to find

〈Pn〉 = − n
(q − 1)q2g+ n

2
(S(2g + 1; n)− qS(2g − 1; n))

= − n
(q − 1)q2g+ n

2

(
−ηnπq(n)q2g+1− n

2 + qηnπq(n)q2g−1− n
2
)

+ O
(

n
q2g+ n

2
qn
)

= ηn
nπq(n)

qn + O
(
nq

n
2−2g)

= ηn
(

1 + O(gq−g )
)

+ O(nq
n
2−2g ) .

The main term is asymptotic to ηn, and the remainder is o(1/g) provided

2g < n < 4g − 5 logq g .



The contribution of odd powers of primes Pd , d > 1 odd, deg Pd = n, is

Hn = − 1
q n

2

∑
d|n

3≤d odd

∑
deg P= n

d

n
d χQ(Pd ) .

Since χQ(Pd ) = χQ(P) for d odd, the average is

〈Hn〉 = − 1
(q − 1)q2g+ n

2

∑
d|n

3≤d odd

n
d
∑

deg P= n
d

∑
2α+β=2g+1

σn/d (α)
∑

deg B=β

(B
P

)

= − 1
(q − 1)q2g+ n

2

∑
d|n

3≤d odd

n
d

∑
2α+β=2g+1

σn/d (α)S(β;
n
d ) .



In order that S(β; n
d ) 6= 0 we need β < n/d . Thus using the bound

S(β; n
d )� qβ+ n

2d of (6.6) (recall that β ≤ 2g + 1 is odd here) gives

〈Hn〉 �
1

q2g+ n
2

∑
d|n

3≤d odd

n
d

∑
β≤min(n/d,2g+1)

q
n

2d +β

� n
q2g+ n

2

∑
d|n

3≤d odd

q
n

2d +min(2g, n
d ) .

Treating separately the cases n/3 < 2g and n/3 ≥ 2g we see that we have in
either case

〈Hn〉 � gq−2g . (6.7)



We saw that
〈tr Θn

Q〉 = 〈Pn〉+ 〈�n〉+ 〈Hn〉
with the individual terms giving

〈Pn〉 =


O(gq−g ), 0 < n < 2g
− 1

q−1 + O(gq−g ), n = 2g
ηn + O(nqn/2−2g ), 2g < n

,

〈�n〉 = −ηn + ηn
1

qn/2

∑
deg P| n2

deg P
|P|+ 1 + O(q−2g ) ,

and
〈Hn〉 = O(gq−2g ) .



Putting these together gives Theorem 1. In particular

〈tr Θn
Q〉 =


−ηn, 3 logq g < n < 2g

−1− 1
q−1 , n = 2g

0, 2g < n < 4g − 8 logq g

+ o(
1
g ) .
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