Analytic Number Theory in Function Fields (Lecture 6)

Julio Andrade
j.c.andrade.math@gmail.com
http://julioandrade.weebly.com/
University of Oxford
TCC Graduate Course
University of Oxford, Oxford
01 May 2015-11 June 2015

Content

(1) Introduction
(2) Introduction
(3) Application: The one-level density
(4) Quadratic L-functions
(5) The hyperelliptic ensemble $\mathcal{H}_{2 g+1}$

Averaging over $\mathcal{H}_{2 g+1}$
Averaging quadratic characters
A sum of Möbius values
The probability that $P \nmid Q$
(6) Double character sums

Duality
An estimate for $S(\beta ; n)$
(7) Proof of the Main Theorem

The contribution of squares
The contributions of primes
Bounding the contribution of primes
The case $n=2 g$
The case $2 g<n$

Introduction

- The zeta function of a curve over a finite field may be expressed in terms of the characteristic polynomial of a unitary symplectic matrix Θ, called the Frobenius class of the curve.
- We will compute the expected value of $\operatorname{tr}\left(\Theta^{n}\right)$ for an ensemble of hyperelliptic curves of genus g over a fixed finite field in the limit of large genus, and compare the results to the corresponding averages over the unitary symplectic group USp $(2 g)$.
- We are able to compute the averages for powers n almost up to $4 g$, finding agreement with the Random Matrix results except for small n and for $n=2 g$.
- As an application we compute the one-level density of zeros of the zeta function of the curves, including lower-order terms, for test functions whose Fourier transform is supported in ($-2,2$).
- The results confirm in part a conjecture of Katz and Sarnak, that to leading order the low-lying zeros for this ensemble have symplectic statistics.

Background Material

Fix a finite field \mathbb{F}_{q} of odd cardinality, and let C be a non singular projective curve defined over \mathbb{F}_{q}. For each extension field of degree n of \mathbb{F}_{q}, denote by $N_{n}(C)$ the number of points of C in $\mathbb{F}_{q^{n}}$. The zeta function associated to C is defined as

$$
Z_{C}(u)=\exp \sum_{n=1}^{\infty} N_{n}(C) \frac{u^{n}}{n}, \quad|u|<1 / q
$$

and is known to be a rational function of u of the form

$$
\begin{equation*}
Z_{C}(u)=\frac{P_{C}(u)}{(1-u)(1-q u)} \tag{1.1}
\end{equation*}
$$

where $P_{C}(u)$ is a polynomial of degree $2 g$ with integer coefficients, satisfying a functional equation

$$
P_{C}(u)=\left(q u^{2}\right)^{g} P_{C}\left(\frac{1}{q u}\right)
$$

The Riemann Hypothesis, proved by Weil, is that the zeros of $P(u)$ all lie on the circle $|u|=1 / \sqrt{q}$. Thus one may give a spectral interpretation of $P_{C}(u)$ as the characteristic polynomial of a $2 g \times 2 g$ unitary matrix Θ_{c}

$$
P_{C}(u)=\operatorname{det}\left(I-u \sqrt{q} \Theta_{C}\right)
$$

so that the eigenvalues $e^{i \theta_{j}}$ of Θ_{C} correspond to zeros $q^{-1 / 2} e^{-i \theta_{j}}$ of $Z_{C}(u)$.
The matrix (or rather the conjugacy class) Θ_{C} is called the unitarized Frobenius class of C.

We would like to study the how the Frobenius classes Θ_{C} change as we vary the curve over a family of hyperelliptic curves of genus g, in the limit of large genus and fixed constant field. The particular family $\mathcal{H}_{2 g+1}$ we choose is the family of all curves given in affine form by an equation

$$
C_{Q}: y^{2}=Q(x)
$$

where

$$
Q(x)=x^{2 g+1}+a_{2 g}+\cdots+a_{0} \in \mathbb{F}_{q}[x]
$$

is a squarefree, monic polynomial of degree $2 g+1$. The curve C_{Q} is thus nonsingular and of genus g.
We consider $\mathcal{H}_{2 g+1}$ as a probability space (ensemble) with the uniform probability measure, so that the expected value of any function F on $\mathcal{H}_{2 g+1}$ is defined as

$$
\langle F\rangle:=\frac{1}{\# \mathcal{H}_{2 g+1}} \sum_{Q \in \mathcal{H}_{2 g+1}} F(Q)
$$

Katz and Sarnak showed that as $q \rightarrow \infty$, the Frobenius classes Θ_{Q} become equidistributed in the unitary symplectic group $\operatorname{USp}(2 g)$ (in genus one this is due to Birch for q prime, and to Deligne). That is for any continuous function on the space of conjugacy classes of USp $(2 g)$,

$$
\lim _{q \rightarrow \infty}\left\langle F\left(\Theta_{Q}\right)\right\rangle=\int_{U S p(2 g)} F(U) d U
$$

This implies that various statistics of the eigenvalues can, in this limit, be computed by integrating the corresponding quantities over USp $(2 g)$.
Our goal is to explore the opposite limit, that of fixed constant field and large genus (q fixed, $g \rightarrow \infty$). Since the matrices Θ_{Q} now inhabit different spaces as g grows, it is not clear how to formulate an equidistribution problem. However one can still meaningfully discuss various statistics, the most fundamental being various products of traces of powers of Θ_{Q}, that is $\left\langle\prod_{j=1}^{r} \operatorname{tr}\left(\Theta_{Q}^{n_{j}}\right)\right\rangle$. Here we study the basic case of the expected values $\left\langle\operatorname{tr} \Theta_{Q}^{n}\right\rangle$ where n is of order of the genus g.

The mean value of traces of powers when averaged over the unitary symplectic group $\operatorname{USp}(2 g)$ are known to be

$$
\int_{U S p(2 g)} \operatorname{tr}\left(U^{n}\right) d U= \begin{cases}2 g & n=0 \tag{1.2}\\ -\eta_{n} & 1 \leq|n| \leq 2 g \\ 0 & |n|>2 g\end{cases}
$$

where

$$
\eta_{n}= \begin{cases}1 & n \text { even } \\ 0 & n \text { odd }\end{cases}
$$

We will show:

Theorem

For all $n>0$ we have

$$
\begin{aligned}
\left\langle\operatorname{tr} \Theta_{Q}^{n}\right\rangle & =\left\{\begin{array}{cc}
-\eta_{n}, & 0<n<2 g \\
-1-\frac{1}{q-1}, & n=2 g \\
0, & n>2 g
\end{array}\right\}+\eta_{n} \frac{1}{q^{n / 2}} \sum_{\substack{\operatorname{deg} P \left\lvert\, \frac{n}{2} \\
P\right.}} \frac{\operatorname{deg} P}{|P|+1} \\
& +O_{q}\left(n q^{n / 2-2 g}+g q^{-g}\right)
\end{aligned}
$$

the sum over all irreducible monic polynomials P, and where $|P|:=q^{\operatorname{deg} P}$. In particular we have
Corollary
If $3 \log _{q} g<n<4 g-5 \log _{q} g$ but $n \neq 2 g$ then

$$
\left\langle\operatorname{tr} \Theta_{Q}^{n}\right\rangle=\int_{U S p(2 g)} \operatorname{tr} U^{n} d U+o\left(\frac{1}{g}\right)
$$

We do however get deviations from the Random Matrix Theory results (2.2) for small values of n, for instance

$$
\left\langle\operatorname{tr} \Theta_{Q}^{2}\right\rangle \sim \int_{U S p(2 g)} \operatorname{tr} U^{2} d U+\frac{1}{q+1}
$$

and for $n=2 g$ where we have

$$
\left\langle\operatorname{tr} \Theta_{Q}^{2 g}\right\rangle \sim \int_{U S p(2 g)} \operatorname{tr} U^{2 g} d U-\frac{1}{q-1}
$$

Analogous results can be derived for mean values of products, e.g. for $\left\langle\operatorname{tr} \Theta_{Q}^{m} \operatorname{tr} \Theta_{Q}^{n}\right\rangle$, when $m+n<4 g$.
To prove these results, we cannot use the powerful equidistribution theorem of Deligne. Rather, we use a variant of the analytic methods developed to deal with such problems in the number field setting. Extending the range of this results to cover $n>4 g$ is a challenge.

The traces of powers determine all linear statistics, such as the number of angles θ_{j} lying in a subinterval of $\mathbb{R} / 2 \pi \mathbb{Z}$, or the one-level density, a smooth linear statistic. To define the one-level density, we start with an even test function f, say in the Schwartz space $\mathcal{S}(\mathbb{R})$, and for any $N \geq 1$ set

$$
F(\theta):=\sum_{k \in \mathbb{Z}} f\left(N\left(\frac{\theta}{2 \pi}-k\right)\right)
$$

which has period 2π and is localized in an interval of size $\approx 1 / N$ in $\mathbb{R} / 2 \pi \mathbb{Z}$. For a unitary $N \times N$ matrix U with eigenvalues $e^{i \theta_{j}}, j=1, \ldots N$, define

$$
Z_{f}(U):=\sum_{j=1}^{N} F\left(\theta_{j}\right)
$$

which counts the number of "low-lying" eigenphases θ_{j} in the smooth interval of length $\approx 1 / N$ around the origin defined by f.

Katz and Sarnak conjectured that for fixed q, the expected value of Z_{f} over $\mathcal{H}_{2 g+1}$ will converge to $\int_{U S p(2 g)} Z_{f}(U) d U$ as $g \rightarrow \infty$ for any such test function f. Theorem 1 implies:
Corollary
If $f \in \mathcal{S}(\mathbb{R})$ is even, with Fourier transform \widehat{f} supported in $(-2,2)$ then

$$
\left\langle Z_{f}\right\rangle=\int_{U S \mathrm{~S}(2 g)} Z_{f}(U) d U+\frac{\operatorname{dev}(f)}{g}+o\left(\frac{1}{g}\right)
$$

where

$$
\operatorname{dev}(f)=\widehat{f}(0) \sum_{P \text { prime }} \frac{\operatorname{deg} P}{|P|^{2}-1}-\widehat{f}(1) \frac{1}{q-1}
$$

the sum over all irreducible monic polynomials P.

To show corollary 3, one uses a Fourier expansion to see that

$$
\begin{equation*}
Z_{f}(U)=\int_{-\infty}^{\infty} f(x) d x+\frac{1}{N} \sum_{n \neq 0} \widehat{f}\left(\frac{n}{N}\right) \operatorname{tr} U^{n} \tag{2.1}
\end{equation*}
$$

Averaging $Z_{f}(U)$ over the symplectic group USp(2g), using (2.2), and assuming f is even, gives

$$
\int_{U S p(2 g)} Z_{f}(U) d U=\widehat{f}(0)-\frac{1}{g} \sum_{1 \leq m \leq g} \widehat{f}\left(\frac{m}{g}\right)
$$

and then we use Theorem 1 to deduce Corollary 3. Note that as $g \rightarrow \infty, \int_{U S p(2 g)} Z_{f}(U) d U \sim \int_{-\infty}^{\infty} f(x)\left(1-\frac{\sin 2 \pi x}{2 \pi x}\right) d x$ Corollary 3 is completely analogous to what is known in the number field setting for the corresponding case of zeta functions of quadratic fields, except for the lower order term which is different: While the coefficient of $\widehat{f}(0)$ is as in the number field setting, the coefficient of $\widehat{f}(1)$ is special to our function-field setting.

In this section we give some known background on the zeta function of hyperelliptic curves.
For a nonzero polynomial $f \in \mathbb{F}_{q}[x]$, we define the norm $|f|:=q^{\operatorname{deg} f}$. A "prime" polynomial is a monic irreducible polynomial. For a monic polynomial f, The von Mangoldt function $\Lambda(f)$ is defined to be zero unless $f=P^{k}$ is a prime power in which case $\Lambda\left(P^{k}\right)=\operatorname{deg} P$.
The analogue of Riemann's zeta function is

$$
\zeta_{q}(s):=\prod_{P \text { prime }}\left(1-|P|^{-s}\right)^{-1}
$$

which is shown to equal

$$
\begin{equation*}
\zeta_{q}(s)=\frac{1}{1-q^{1-s}} \tag{3.1}
\end{equation*}
$$

Let $\pi_{q}(n)$ be the number of prime polynomials of degree n. The Prime Polynomial Theorem in $\mathbb{F}_{q}[x]$ asserts that

$$
\pi_{q}(n)=\frac{q^{n}}{n}+O\left(q^{n / 2}\right)
$$

which follows from the identity (equivalent to (4.1))

$$
\begin{equation*}
\sum_{\operatorname{deg}(f)=n} \Lambda(f)=q^{n} \tag{3.2}
\end{equation*}
$$

the sum over all monic polynomials of degree n.

For a monic polynomial $D \in \mathbb{F}_{q}[x]$ of positive degree, which is not a perfect square, we define the quadratic character χ_{D} in terms of the quadratic residue symbol for $\mathbb{F}_{q}[x]$ by

$$
\chi_{D}(f)=\left(\frac{D}{f}\right)
$$

and the corresponding L-function

$$
\mathcal{L}\left(u, \chi_{D}\right):=\prod_{P}\left(1-\chi_{D}(P) u^{\operatorname{deg} P}\right)^{-1}, \quad|u|<\frac{1}{q}
$$

the product over all monic irreducible (prime) polynomials P. Expanding in additive form using unique factorization, we write

$$
\mathcal{L}\left(u, \chi_{D}\right)=\sum_{\beta \geq 0} A_{D}(\beta) u^{\beta}
$$

with

$$
A_{D}(\beta):=\sum_{\substack{\operatorname{deg} B=\beta \\ D}} \chi_{D}(B) .
$$

If D is non-square of positive degree, then $A_{D}(\beta)=0$ for $\beta \geq \operatorname{deg} D$ and hence the L-function is in fact a polynomial of degree at most $\operatorname{deg} D-1$.

To proceed further, assume that D is square-free (and monic of positive degree). Then $\mathcal{L}\left(u, \chi_{D}\right)$ has a "trivial" zero at $u=1$ if and only if $\operatorname{deg} D$ is even. Thus

$$
\mathcal{L}\left(u, \chi_{D}\right)=(1-u)^{\lambda} \mathcal{L}^{*}\left(u, \chi_{D}\right), \quad \lambda= \begin{cases}1 & \operatorname{deg} D \text { even } \\ 0 & \operatorname{deg}(D) \text { odd }\end{cases}
$$

where $\mathcal{L}^{*}\left(u, \chi_{D}\right)$ is a polynomial of even degree

$$
2 \delta=\operatorname{deg} D-1-\lambda
$$

satisfying the functional equation

$$
\mathcal{L}^{*}\left(u, \chi_{D}\right)=\left(q u^{2}\right)^{\delta} \mathcal{L}^{*}\left(\frac{1}{q u}, \chi_{D}\right) .
$$

In fact $\mathcal{L}^{*}\left(u, \chi_{D}\right)$ is the Artin L-function associated to the unique nontrivial quadratic character of $\mathbb{F}_{q}(x)(\sqrt{D(x)})$. We write

$$
\mathcal{L}^{*}\left(u, \chi_{D}\right)=\sum_{\beta=0}^{2 \delta} A_{D}^{*}(\beta) u^{\beta}
$$

where $A_{D}^{*}(0)=1$, and the coefficients $A_{D}^{*}(\beta)$ satisfy

$$
\begin{equation*}
A_{D}^{*}(\beta)=q^{\beta-\delta} A_{D}^{*}(2 \delta-\beta) . \tag{3.3}
\end{equation*}
$$

In particular the leading coefficient is $A_{D}^{*}(2 \delta)=q^{\delta}$.

For D monic, square-free, and of positive degree, the zeta function (2.1) of the hyperelliptic curve $y^{2}=D(x)$ is

$$
Z_{D}(u)=\frac{\mathcal{L}^{*}\left(u, \chi_{D}\right)}{(1-u)(1-q u)}
$$

The Riemann Hypothesis, proved by Weil, asserts that all zeros of $Z_{C}(u)$, hence of $\mathcal{L}^{*}\left(u, \chi_{D}\right)$, lie on the circle $|u|=1 / \sqrt{q}$. Thus we may write

$$
\mathcal{L}^{*}\left(u, \chi_{D}\right)=\operatorname{det}\left(I-u \sqrt{q} \Theta_{D}\right)
$$

for a unitary $2 \delta \times 2 \delta$ matrix Θ_{D}.

By taking a logarithmic derivative of the identity

$$
\operatorname{det}\left(I-u \sqrt{q} \Theta_{D}\right)=(1-u)^{-\lambda} \prod_{P}\left(1-\chi_{D}(P) u^{\operatorname{deg} P}\right)^{-1}
$$

which comes from writing $\mathcal{L}^{*}\left(u, \chi_{D}\right)=(1-u)^{-\lambda} \mathcal{L}\left(u, \chi_{D}\right)$, we find

$$
\begin{equation*}
-\operatorname{tr} \Theta_{D}^{n}=\frac{\lambda}{q^{n / 2}}+\frac{1}{q^{n / 2}} \sum_{\operatorname{deg} f=n} \Lambda(f) \chi_{D}(f) \tag{3.4}
\end{equation*}
$$

Assume now that B is monic, of positive degree and not a perfect square. Then we have a bound for the character sum over primes:

$$
\begin{equation*}
\left|\sum_{\substack{\operatorname{deg} P=n \\ P \text { prime }}}\left(\frac{B}{P}\right)\right| \ll \frac{\operatorname{deg} B}{n} q^{n / 2} \tag{3.5}
\end{equation*}
$$

This is deduced by writing $B=D C^{2}$ with D square-free, of positive degree, and then using the explicit formula (4.4) and the unitarity of Θ_{D} (which is the Riemann Hypothesis).

We denote by \mathcal{H}_{d} the set of square-free monic polynomials of degree d in $\mathbb{F}_{q}[x]$. The cardinality of \mathcal{H}_{d} is

$$
\# \mathcal{H}_{d}= \begin{cases}\left(1-\frac{1}{q}\right) q^{d}, & d \geq 2 \\ q, & d=1\end{cases}
$$

as is seen by writing

$$
\sum_{d \geq 0} \frac{\# \mathcal{H}_{d}}{q^{d s}}=\sum_{f \text { monic squarefree }}|f|^{-s}=\frac{\zeta_{q}(s)}{\zeta_{q}(2 s)}
$$

and using (4.1). In particular for $g \geq 1$,

$$
\# \mathcal{H}_{2 g+1}=(q-1) q^{2 g}
$$

We consider $\mathcal{H}_{2 g+1}$ as a probability space (ensemble) with the uniform probability measure, so that the expected value of any function F on $\mathcal{H}_{2 g+1}$ is defined as

$$
\begin{equation*}
\langle F\rangle:=\frac{1}{\# \mathcal{H}_{2 g+1}} \sum_{Q \in \mathcal{H}_{2 g+1}} F(Q) \tag{4.1}
\end{equation*}
$$

We can pick out square-free polynomials by using the Möbius function μ of $\mathbb{F}_{q}[x]$ (as is done over the integers) via

$$
\sum_{A^{2} \mid Q} \mu(A)= \begin{cases}1 & Q \text { square-free } \\ 0 & \text { otherwise }\end{cases}
$$

Thus we may write expected values as

$$
\begin{equation*}
\langle F(Q)\rangle=\frac{1}{(q-1) q^{2 g}} \sum_{2 \alpha+\beta=2 g+1} \sum_{\operatorname{deg} B=\beta} \sum_{\operatorname{deg} A=\alpha} \mu(A) F\left(A^{2} B\right) \tag{4.2}
\end{equation*}
$$

the sum over all monic A, B.

Suppose now that we are given a polynomial $f \in \mathbb{F}_{q}[x]$ and apply (5.2) to the quadratic character $\chi_{Q}(f)=\left(\frac{Q}{f}\right)$. Then

$$
\chi_{A^{2} B}(f)=\left(\frac{B}{f}\right)\left(\frac{A}{f}\right)^{2}= \begin{cases}\left(\frac{B}{f}\right) & \operatorname{gcd}(A, f)=1 \\ 0 & \text { otherwise }\end{cases}
$$

Hence

$$
\left\langle\chi_{Q}(f)\right\rangle=\frac{1}{(q-1) q^{2 g}} \sum_{2 \alpha+\beta=2 g+1} \sigma(f ; \alpha) \sum_{\operatorname{deg} B=\beta}\left(\frac{B}{f}\right)
$$

where

$$
\sigma(f ; \alpha):=\sum_{\substack{\operatorname{deg} A=\alpha \\ \operatorname{gcd}(A, f)=1}} \mu(A)
$$

Suppose P is a prime of degree $n, k \geq 1$ and $\alpha \geq 0$. Set

$$
\sigma_{n}(\alpha):=\sigma\left(P^{k} ; \alpha\right)=\sum_{\substack{\operatorname{deg} A=\alpha \\ \operatorname{gcd}\left(A, P^{k}\right)=1}} \mu(A)
$$

Since the conditions $\operatorname{gcd}\left(A, P^{k}\right)=1$ and $\operatorname{gcd}(A, P)=1$ are equivalent for a prime P and any $k \geq 1$, this quantity is independent of k; the notation anticipates that it depends only on the degree n of P, as is shown in:
Lemma
i) For $n=1$,

$$
\sigma_{1}(0)=1, \quad \sigma_{1}(\alpha)=1-q \text { for all } \alpha \geq 1
$$

ii) If $n \geq 2$ then

$$
\sigma_{n}(\alpha)= \begin{cases}1 & \alpha=0 \bmod n \\ -q & \alpha=1 \bmod n \\ 0 & \text { otherwise }\end{cases}
$$

Proof.

Since P is prime,

$$
\sigma_{n}(\alpha)=\sum_{\operatorname{deg} A=\alpha} \mu(A)-\sum_{\substack{\operatorname{deg} A=\alpha \\ P \mid A}} \mu(A)=\sum_{\operatorname{deg} A=\alpha} \mu(A)-\sum_{\operatorname{deg} A_{1}=\alpha-n} \mu\left(P A_{1}\right)
$$

Now $\mu\left(P A_{1}\right) \neq 0$ only when A_{1} is coprime to P, in which case $\mu\left(P A_{1}\right)=\mu(P) \mu\left(A_{1}\right)=-\mu\left(A_{1}\right)$. Hence

$$
\sigma_{n}(\alpha)=\sum_{\operatorname{deg} A=\alpha} \mu(A)+\sum_{\substack{\operatorname{deg} A_{1}=\alpha-n \\\left(P, A_{1}\right)=1}} \mu\left(A_{1}\right)
$$

that is

$$
\sigma_{n}(\alpha)-\sigma_{n}(\alpha-n)=\sum_{\operatorname{deg} A=\alpha} \mu(A)= \begin{cases}1 & \alpha=0 \\ -q & \alpha=1 \\ 0 & \alpha \geq 2\end{cases}
$$

on using

$$
\sum_{A \text { monic }} \frac{\mu(A)}{|A|^{s}}=\frac{1}{\zeta_{q}(s)}=1-q^{1-s}
$$

and (4.1). For $n \geq 2$ we get (ii) while for $n=1$ we find that $\sigma_{1}(0)=1$ and for $\alpha \geq 1$,

$$
\sigma_{1}(\alpha)=\sigma_{1}(\alpha-1)=\cdots=\sigma_{1}(1)=-\boldsymbol{q}
$$

Lemma
Let P be a prime. Then

$$
\left\langle\chi_{Q}\left(P^{2}\right)\right\rangle=\frac{|P|}{|P|+1}+O\left(q^{-2 g}\right) .
$$

Proof of Lemma

Since P is prime, $\chi_{Q}\left(P^{2}\right)=1$ unless P divides Q, that is setting

$$
\iota_{P}(f):= \begin{cases}1, & P \nmid f \\ 0, & P \mid f\end{cases}
$$

we have $\chi_{Q}\left(P^{2}\right)=\iota_{P}(Q)$ and thus by (5.2)

$$
\left\langle\chi_{Q}\left(P^{2}\right)\right\rangle=\langle\iota p\rangle=\frac{1}{(q-1) q^{2 g}} \sum_{\operatorname{deg} A^{2} B=2 g+1} \mu(A) \iota_{P}\left(A^{2} B\right)
$$

Since P is prime, $P \nmid A^{2} B$ if and only if $P \nmid A$ and $P \nmid B$. Hence

$$
\left\langle\chi_{Q}\left(P^{2}\right)\right\rangle=\frac{1}{(q-1) q^{2 g}} \sum_{0 \leq \alpha \leq g} \sum_{\operatorname{deg}} \mu(A) \sum_{\operatorname{deg}, P \nmid A} \sum_{B=2 g+1-2 \alpha, P \nmid B} 1
$$

Continuation of the Proof

Writing $m:=\operatorname{deg} P$,

$$
\#\{B: \operatorname{deg} B=\beta \quad P \nmid B\}=q^{\beta} \cdot \begin{cases}1, & \text { if } m>\beta \\ 1-\frac{1}{|P|}, & \text { if } m \leq \beta\end{cases}
$$

and

$$
\sum_{\operatorname{deg} A=\alpha, P \nmid A} \mu(A)=\sigma_{m}(\alpha)
$$

is computed in Lemma 4. Hence

$$
\begin{aligned}
\left\langle\chi_{Q}\left(P^{2}\right)\right\rangle & =\frac{1}{(q-1) q^{2 g}} \sum_{0 \leq \alpha \leq g} \sigma_{m}(\alpha) q^{2 g+1-2 \alpha} \cdot \begin{cases}1-\frac{1}{|P|}, & 0 \leq \alpha \leq g-\frac{m-1}{2} \\
1, & g-\frac{m-1}{2}<\alpha \leq g\end{cases} \\
& =\left(1-\frac{1}{|P|}\right) \frac{1}{1-\frac{1}{q}}\left(\sum_{\alpha=0}^{\infty} \frac{\sigma_{m}(\alpha)}{q^{2 \alpha}}+O\left(q^{-2 g}\right)\right) .
\end{aligned}
$$

Continuation of the Proof

Moreover, inserting the values of $\sigma_{m}(\alpha)$ given by Lemma 4 gives

$$
\sum_{\alpha=0}^{\infty} \frac{\sigma_{m}(\alpha)}{q^{2 \alpha}}=\frac{1-\frac{1}{q}}{1-\frac{1}{|P|^{2}}}
$$

(this is valid both for $m=1$ and $m \geq 2!$) and hence

$$
\left\langle\chi_{Q}\left(P^{2}\right)\right\rangle=\left(1-\frac{1}{|P|}\right) \frac{1}{1-\frac{1}{q}} \frac{1-\frac{1}{q}}{1-\frac{1}{|P|^{2}}}+O\left(q^{-2 g}\right)=\frac{|P|}{|P|+1}+O\left(q^{-2 g}\right)
$$

as claimed.

We consider the double character sum

$$
S(\beta ; n):=\sum_{\substack{\operatorname{deg} P=n \\ P \text { prime } \\ B \text { monic }}} \sum_{\substack{\operatorname{deg} B=\beta \\ P}}\left(\frac{B}{P}\right)
$$

We may express $S(\beta, n)$ in terms of the coefficients $A_{P}(\beta)=\sum_{\operatorname{deg} B=\beta} \chi_{P}(B)$ of the L-function $\mathcal{L}\left(u, \chi_{P}\right)=\sum_{\beta} A_{P}(\beta) u^{\beta}$:

$$
S(\beta ; n)=(-1)^{\frac{q-1}{2} \beta n} \sum_{\operatorname{deg} P=n} A_{P}(\beta)
$$

which follows from the law of quadratic reciprocity: If A, B are monic then

$$
\left(\frac{B}{P}\right)=(-1)^{\frac{q-1}{2} \operatorname{deg} P \operatorname{deg} B}\left(\frac{P}{B}\right)=(-1)^{\frac{q-1}{2} \operatorname{deg} P \operatorname{deg} B} \chi_{P}(B) .
$$

Since $A_{P}(\beta)=0$ for $\beta \geq \operatorname{deg} P$, we find:

Lemma
For $n \leq \beta$ we have

$$
S(\beta ; n)=0
$$

Proposition

i) If n is odd and $0 \leq \beta \leq n-1$ then

$$
\begin{equation*}
S(\beta ; n)=q^{\beta-\frac{n-1}{2}} S(n-1-\beta ; n) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
S(n-1 ; n)=\pi_{q}(n) q^{\frac{n-1}{2}}, \quad n \text { odd } . \tag{5.2}
\end{equation*}
$$

ii) If n is even and $1 \leq \beta \leq n-2$ then

$$
\begin{equation*}
S(\beta ; n)=q^{\beta-\frac{n}{2}}\left(-S(n-1-\beta ; n)+(q-1) \sum_{j=0}^{n-\beta-2} S(j ; n)\right) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
S(n-1 ; n)=-\pi_{q}(n) q^{\frac{n-2}{2}}, \quad n \text { even } . \tag{5.4}
\end{equation*}
$$

Proof of Proposition

Assume that $n=\operatorname{deg} P$ is odd. Then $\mathcal{L}\left(u, \chi_{P}\right)=\mathcal{L}^{*}\left(u, \chi_{P}\right)$, and so the coefficients $A_{P}(\beta)=A_{P}^{*}(\beta)$ coincide. Therefore the functional equation in the form (4.3) implies

$$
A_{P}(\beta)=A_{P}(n-1-\beta) q^{\beta-\frac{n-1}{2}}, \quad n \text { odd }, \quad 0 \leq \beta \leq n-1
$$

Consequently we find that for n odd,

$$
S(\beta ; n)=q^{\beta-\frac{n-1}{2}} S(n-1-\beta ; n), \quad n \text { odd, } \quad 0 \leq \beta \leq n-1 .
$$

In particular we have

$$
S(n-1 ; n)=q^{\frac{n-1}{2}} S(0, n)=q^{\frac{n-1}{2}} \pi_{q}(n), \quad n \text { odd } .
$$

Continuation of the Proof

Next, assume that $n=\operatorname{deg} P$ is even. Then $\mathcal{L}\left(u, \chi_{P}\right)=(1-u) \mathcal{L}^{*}\left(u, \chi_{P}\right)$, which implies that the coefficients of $\mathcal{L}\left(u, \chi_{P}\right)$ and $\mathcal{L}^{*}\left(u, \chi_{P}\right)$ satisfy

$$
A_{P}(\beta)=A_{P}^{*}(\beta)-A_{P}^{*}(\beta-1), \quad \beta \geq 1
$$

and

$$
\begin{equation*}
A_{P}^{*}(\beta)=A_{P}(\beta)+A_{P}(\beta-1)+\cdots+A_{P}(0) \tag{5.5}
\end{equation*}
$$

Moreover

$$
A_{P}(0)=A_{P}^{*}(0), \quad A_{P}(n-1)=-A_{P}^{*}(n-2)
$$

In particular, since

$$
A_{P}^{*}(0)=1, \quad A_{P}^{*}(n-2)=q^{\frac{n-2}{2}}
$$

(see (4.3)) we get

$$
A_{P}(n-1)=-A_{P}^{*}(n-2)=-q^{\frac{n-2}{2}}, \quad n \text { even }
$$

so that

$$
S(n-1 ; n)=-\pi_{q}(n) q^{\frac{n-2}{2}}, \quad n \text { even }
$$

Continuation of the Proof

The functional equation (4.3) implies

$$
A_{P}^{*}(\beta)=A_{P}^{*}(n-2-\beta) q^{\beta-\frac{n-2}{2}}, \quad 0 \leq \beta \leq n-2
$$

and hence for $1 \leq \beta \leq n-2$

$$
A_{P}(\beta)=A_{P}^{*}(\beta)-A_{P}^{*}(\beta-1)=A_{P}^{*}(n-2-\beta) q^{\beta-\frac{n-2}{2}}-A_{P}^{*}(n-1-\beta) q^{\beta-\frac{n}{2}}
$$

and inserting (6.5) gives

$$
A_{P}(\beta)=q^{\beta-\frac{n}{2}}\left(-A_{P}(n-1-\beta)+(q-1) \sum_{j=0}^{n-\beta-2} A_{P}(j)\right)
$$

Summing over all primes P of degree n gives

$$
S(\beta ; n)=q^{\beta-\frac{n}{2}}\left(-S(n-1-\beta ; n)+(q-1) \sum_{j=0}^{n-\beta-2} S(j ; n)\right)
$$

as claimed.

Lemma

Suppose $\beta<\boldsymbol{n}$. Then

$$
\begin{equation*}
S(\beta ; n)=\eta_{\beta} \pi_{q}(n) q^{\frac{\beta}{2}}+O\left(\frac{\beta}{n} q^{\frac{n}{2}+\beta}\right) \tag{5.6}
\end{equation*}
$$

where $\eta_{\beta}=1$ for β even, and $\eta_{\beta}=0$ for β odd.

Proof of Lemma

We write

$$
S(\beta ; n)=\sum_{\substack{B=\square \\ \operatorname{deg} B=\beta}} \sum_{\operatorname{deg} P=n}\left(\frac{B}{P}\right)+\sum_{\substack{B \neq \square \\ \operatorname{deg} B=\beta}} \sum_{\operatorname{deg} P=n}\left(\frac{B}{P}\right)
$$

where the squares only occur when β is even.
For B not a perfect square, we use the Riemann Hypothesis for curves in the form (4.5):

$$
\sum_{\operatorname{deg} P=n}\left(\frac{B}{P}\right) \ll \frac{\operatorname{deg} B}{n} q^{n / 2}
$$

Continuation of the Proof

Hence summing over all nonsquare B of degree β, of which there are at most q^{β}, gives

$$
\sum_{\substack{B \neq \square \\ \operatorname{deg} B=\beta}} \sum_{\operatorname{deg} P=n}\left(\frac{B}{P}\right) \ll \frac{\beta}{n} q^{\beta+\frac{n}{2}}
$$

Assume now that β is even. For $B=C^{2}$, we have P and B are coprime since $\operatorname{deg} C=\beta / 2<n=\operatorname{deg} P$, and hence $\left(\frac{B}{P}\right)=\left(\frac{C^{2}}{P}\right)=+1$ and so the squares, of which there are $q^{\beta / 2}$, contribute $\pi_{q}(n) q^{\beta / 2}$. This proves (6.6).

By using duality, (6.6) can be bootstrapped into an improved estimate when β is odd:

Proposition
If β is odd and $\beta<n$ then

$$
\begin{equation*}
S(\beta ; n)=-\eta_{n} \pi_{q}(n) q^{\beta-\frac{n}{2}}+O\left(q^{n}\right) . \tag{5.7}
\end{equation*}
$$

Proof of Proposition

Assume n odd with $\beta<\boldsymbol{n}$. Then by (6.1) for odd n,

$$
S(\beta ; n)=q^{\beta-\frac{n-1}{2}} S(n-1-\beta ; n)
$$

and inserting the inequality (6.6) with β replaced by $n-1-\beta$ (which is odd in this case) we get

$$
S(n-1-\beta ; n) \ll q^{\frac{n}{2}+(n-1-\beta)}
$$

hence

$$
S(\beta ; n) \ll q^{\beta-\frac{n-1}{2}} q^{\frac{n}{2}+(n-1-\beta)} \ll q^{n}
$$

as claimed.

Proof of Proposition

Assume n even, with $\beta<n$. Using (6.3) and the bound (6.6) gives

$$
\begin{aligned}
S(\beta ; n) & =q^{\beta-\frac{n}{2}}\left(-S(n-1-\beta ; n)+(q-1) \sum_{j=0}^{n-\beta-2} S(j ; n)\right) \\
& =q^{\beta-\frac{n}{2}}\left(-\eta_{n-1-\beta} \pi_{q}(n) q^{\frac{n-1-\beta}{2}}+(q-1) \sum_{j=0}^{n-\beta-2} \eta_{j} \pi_{q}(n) q^{\frac{j}{2}}\right) \\
& +O\left(q^{\beta-\frac{n}{2}} \sum_{j=0}^{n-1-\beta} \frac{j}{n} q^{\frac{n}{2}+j}\right) .
\end{aligned}
$$

Continuation of the Proof

The remainder term is $O\left(q^{n}\right)$. For the main term, we note that $n-1-\beta=2 L$ is even since β is odd and n is even, and then we can write the sum as

$$
q^{\beta-\frac{n}{2}} \pi_{q}(n)\left(-q^{L}+(q-1) \sum_{l=0}^{L-1} q^{\prime}\right)=-q^{\beta-\frac{n}{2}} \pi_{q}(n)
$$

which is our claim.

The explicit formula (4.4) says that for $n>0$,

$$
\operatorname{tr} \Theta_{Q}^{n}=-\frac{1}{q^{n / 2}} \sum_{\operatorname{deg} f=n} \Lambda(f) \chi_{Q}(f)
$$

the sum over all monic primes powers. We will separately treat the contributions \mathcal{P}_{n} of primes, \square_{n} of squares and \mathbb{H}_{n} of higher odd powers of primes:

$$
\begin{equation*}
\operatorname{tr} \Theta_{Q}^{n}=\mathcal{P}_{n}+\square_{n}+\mathbb{H}_{n} \tag{6.1}
\end{equation*}
$$

When n is even, we have a contribution to $\operatorname{tr} \Theta_{Q}^{n}$ coming from squares of prime powers (for odd n this term does not appear), which give

$$
\square_{n}=-\frac{1}{q^{n / 2}} \sum_{\operatorname{deg} h=\frac{n}{2}} \Lambda(h) \chi_{Q}\left(h^{2}\right)
$$

Since $\chi_{Q}\left(h^{2}\right)=0$ or 1 , we clearly have $\square_{n} \leq 0$ and

$$
\square_{n} \geq-\frac{1}{q^{n / 2}} \sum_{\operatorname{deg} h=\frac{n}{2}} \Lambda(h)=-1
$$

by (4.2). Hence the contribution of squares is certainly bounded.

Now for $h=P^{k}$ a prime power,

$$
\begin{equation*}
\left\langle\chi_{Q}\left(h^{2}\right)\right\rangle=\left\langle\chi_{Q}\left(P^{2}\right)\right\rangle=1-\frac{1}{|P|+1}+O\left(q^{-2 g}\right) \tag{6.2}
\end{equation*}
$$

by Lemma 5. Thus, recalling that $\sum_{\operatorname{deg} h=m} \Lambda(h)=q^{m}$ (4.2), the contribution of squares to the average is

$$
\begin{align*}
\left\langle\square_{n}\right\rangle & =-1+\frac{1}{q^{n / 2}} \sum_{\operatorname{deg} P \left\lvert\, \frac{n}{2}\right.}\left(\operatorname{deg}(P) \frac{1}{|P|+1}+O\left(q^{-2 g}\right)\right) \\
& =-1+\frac{1}{q^{n / 2}} \sum_{\operatorname{deg} P \left\lvert\, \frac{n}{2}\right.} \frac{\operatorname{deg}(P)}{|P|+1}+O\left(q^{-2 g}\right) \tag{6.3}
\end{align*}
$$

In particular, we find that the contribution of squares to the average is

$$
\left\langle\square_{n}\right\rangle=-1+O\left(\frac{n}{q^{n / 2}}\right)+O\left(q^{-2 g}\right)
$$

and thus if $n \gg 3 \log _{q} g$ we get

$$
\left\langle\square_{n}\right\rangle=-\eta_{n}\left(1+o\left(\frac{1}{g}\right)\right)
$$

The contribution to $\operatorname{tr} \Theta_{Q}^{n}$ of primes is

$$
\mathcal{P}_{n}=-\frac{n}{q^{n / 2}} \sum_{\operatorname{deg} P=n} \chi_{Q}(P)
$$

Proposition

$$
\begin{equation*}
\left\langle\mathcal{P}_{n}\right\rangle=-\frac{n}{(q-1) q^{2 g+n / 2}} \sum_{\substack{\beta+2 \alpha=2 g+1 \\ \alpha, \beta \geq 0}} \sigma_{n}(\alpha) S(\beta ; n) \tag{6.4}
\end{equation*}
$$

Moreover, if $n>g$ then

$$
\begin{equation*}
\left\langle\mathcal{P}_{n}\right\rangle=-\frac{n}{(q-1) q^{2 g+n / 2}}(S(2 g+1 ; n)-q S(2 g-1 ; n)) \tag{6.5}
\end{equation*}
$$

Proof.

Using (5.2) we have

$$
\begin{aligned}
\left\langle\mathcal{P}_{n}\right\rangle & =-\frac{n}{(q-1) q^{2 g+n / 2}} \sum_{\operatorname{deg} P=n} \sum_{\substack{\beta+2 \alpha=2 g+1 \\
\alpha, \beta \geq 0}} \sigma_{n}(\alpha) \sum_{\operatorname{deg} B=\beta}\left(\frac{B}{P}\right) \\
& =-\frac{n}{(q-1) q^{2 g+n / 2}} \sum_{\substack{\alpha+2 \alpha=2 g+1 \\
\alpha, \beta \geq 0}} \sigma_{n}(\alpha) S(\beta ; n)
\end{aligned}
$$

which gives the first assertion.
Now assume that $n>g$. Then $\sigma_{n}(\alpha) \neq 0$ forces $\alpha=0,1 \bmod n$ by Lemma 4(ii) and together with $\alpha \leq g<n$ we must have $\alpha=0,1$. Hence in (7.4) the only nonzero terms are those with $\alpha=0,1$ which gives (7.5).

Assume first that $n \leq g$. In (7.4), if $S(\beta ; n) \neq 0$ then $\beta<n$ by Lemma 6. For those, we use the bound $|S(\beta ; n)| \ll \frac{\beta}{n} q^{\beta+n / 2}$ of Lemma 8 and hence

$$
\begin{equation*}
\left\langle\mathcal{P}_{n}\right\rangle \ll \frac{n}{q^{2 g+\frac{n}{2}}} \sum_{\beta<n} \frac{\beta}{n} q^{n / 2+\beta} \ll n q^{n-2 g} \leq g q^{-g} \tag{6.6}
\end{equation*}
$$

since $n \leq g$, which vanishes as $g \rightarrow \infty$.
For $g<n<2 g$, use (7.5), and note that $S(2 g \pm 1 ; n)=0$ by Lemma 6 . Hence

$$
\left\langle\mathcal{P}_{n}\right\rangle=0, \quad g<n<2 g .
$$

We have $S(2 g+1 ; 2 g)=0$ by Lemma 6 , and $S(2 g-1 ; 2 g)=-\pi(2 g) q^{\frac{2 g-2}{2}}$ by (6.4). Hence

$$
\begin{aligned}
\left\langle\mathcal{P}_{n}\right\rangle & =-\frac{2 g}{(q-1) q^{2 g+g}}(S(2 g+1,2 g)-q S(2 g-1,2 g)) \\
& =-\frac{2 g}{(q-1) q^{2 g+g}} q \pi(2 g) q^{\frac{2 g-2}{2}} \\
& =-\frac{1}{q-1}+O\left(g q^{-g}\right) .
\end{aligned}
$$

Here we use (6.7) to find

$$
\begin{aligned}
\left\langle\mathcal{P}_{n}\right\rangle & =-\frac{n}{(q-1) q^{2 g+\frac{n}{2}}}(S(2 g+1 ; n)-q S(2 g-1 ; n)) \\
& =-\frac{n}{(q-1) q^{2 g+\frac{n}{2}}}\left(-\eta_{n} \pi_{q}(n) q^{2 g+1-\frac{n}{2}}+q \eta_{n} \pi_{q}(n) q^{2 g-1-\frac{n}{2}}\right) \\
& +O\left(\frac{n}{q^{2 g+\frac{n}{2}} q^{n}}\right) \\
& =\eta_{n} \frac{n \pi_{q}(n)}{q^{n}}+O\left(n q^{\frac{n}{2}-2 g}\right) \\
& =\eta_{n}\left(1+O\left(g q^{-g}\right)\right)+O\left(n q^{\frac{n}{2}-2 g}\right) .
\end{aligned}
$$

The main term is asymptotic to η_{n}, and the remainder is $o(1 / g)$ provided

$$
2 g<n<4 g-5 \log _{q} g .
$$

The contribution of odd powers of primes $P^{d}, d>1$ odd, $\operatorname{deg} P^{d}=n$, is

$$
\mathbb{H}_{n}=-\frac{1}{q^{\frac{n}{2}}} \sum_{d \mid n} \sum_{\operatorname{deg} P=\frac{n}{d}} \frac{n}{d} \chi_{Q}\left(P^{d}\right)
$$

Since $\chi_{Q}\left(P^{d}\right)=\chi_{Q}(P)$ for d odd, the average is

$$
\begin{aligned}
\left\langle\mathbb{H}_{n}\right\rangle= & -\frac{1}{(q-1) q^{2 g+\frac{n}{2}}} \sum_{\substack{d \mid n \\
3 \leq d \text { odd }}} \frac{n}{d} \sum_{\operatorname{deg} P=\frac{n}{d}} \sum_{2 \alpha+\beta=2 g+1} \sigma_{n / d}(\alpha) \sum_{\operatorname{deg} B=\beta}\left(\frac{B}{P}\right) \\
= & -\frac{1}{(q-1) q^{2 g+\frac{n}{2}}} \sum_{\substack{d \mid n \\
3 \leq d \text { odd }}} \frac{n}{d} \sum_{2 \alpha+\beta=2 g+1} \sigma_{n / d}(\alpha) S\left(\beta ; \frac{n}{d}\right) .
\end{aligned}
$$

In order that $S\left(\beta ; \frac{n}{d}\right) \neq 0$ we need $\beta<n / d$. Thus using the bound $S\left(\beta ; \frac{n}{d}\right) \ll q^{\beta+\frac{n}{2 d}}$ of (6.6) (recall that $\beta \leq 2 g+1$ is odd here) gives

$$
\begin{aligned}
\left\langle\mathbb{H}_{n}\right\rangle & \ll \frac{1}{q^{2 g+\frac{n}{2}}} \sum_{\substack{d \mid n \\
3 \leq d \text { odd }}} \frac{n}{d} \sum_{\beta \leq \min (n / d, 2 g+1)} q^{\frac{n}{2 d}+\beta} \\
& \ll \frac{n}{q^{2 g+\frac{n}{2}}} \sum_{\substack{d \mid n \\
3 \leq d \text { odd }}} q^{\frac{n}{2 d}+\min \left(2 g, \frac{n}{d}\right)} .
\end{aligned}
$$

Treating separately the cases $n / 3<2 g$ and $n / 3 \geq 2 g$ we see that we have in either case

$$
\begin{equation*}
\left\langle\mathbb{H}_{n}\right\rangle \ll g q^{-2 g} \tag{6.7}
\end{equation*}
$$

We saw that

$$
\left\langle\operatorname{tr} \Theta_{Q}^{n}\right\rangle=\left\langle\mathcal{P}_{n}\right\rangle+\left\langle\square_{n}\right\rangle+\left\langle\mathbb{H}_{n}\right\rangle
$$

with the individual terms giving

$$
\begin{gathered}
\left\langle\mathcal{P}_{n}\right\rangle= \begin{cases}O\left(g q^{-g}\right), & 0<n<2 g \\
-\frac{1}{q-1}+O\left(g q^{-g}\right), & n=2 g \\
\eta_{n}+O\left(n q^{n / 2-2 g}\right), & 2 g<n\end{cases} \\
\left\langle\square_{n}\right\rangle=-\eta_{n}+\eta_{n} \frac{1}{q^{n / 2}} \sum_{\operatorname{deg} P \left\lvert\, \frac{n}{2}\right.} \frac{\operatorname{deg} P}{|P|+1}+O\left(q^{-2 g}\right),
\end{gathered}
$$

and

$$
\left\langle\mathbb{H}_{n}\right\rangle=O\left(g q^{-2 g}\right)
$$

Putting these together gives Theorem 1. In particular

$$
\left\langle\operatorname{tr} \Theta_{Q}^{n}\right\rangle=\left\{\begin{array}{cc}
-\eta_{n}, & 3 \log _{q} g<n<2 g \\
-1-\frac{1}{q-1}, & n=2 g \\
0, & 2 g<n<4 g-8 \log _{q} g
\end{array}\right\}+o\left(\frac{1}{g}\right)
$$

