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Introduction

In this lecture we will study some mean values of L-functions over
function fields.

• Average values of the class number over Fq(T ).
• Mean values of L-functions at the central point.



In his famous work Disquisitiones Mathematicae, C.F. Gauss considered the
arithmetic of binary quadratic forms ax2 + 2bxy + cy 2 defined over the integers
Z.

The discriminant of such a form is by definition D = 4b2 − 4ac. He defined an
equivalence between such forms and showed that equivalent forms have the
same discriminant. Moreover, he showed that the number of equivalence
classes o forms with the same discriminant is finite. Call that number hD .

Based on extensive numerical evidence he made two conjectures about the
average value of these class numbers hD .



Conjecture
1 Let D = −4k vary over all negative even discriminants with 1 ≤ k ≤ N.

Then ∑
1≤k≤N

hD ∼
4π

21ζ(3)
N3/2.

2 Let D = 4k vary over all positive even discriminants such that
1 ≤ k ≤ N. Then ∑

1≤k≤N

hDRD ∼
4π2

21ζ(3)
N3/2.

The number RD in the second conjecture is closely related to the regulator of
the real quadratic number field Q(

√
D). In fact, the both conjectures can be

reformulated in terms of orders O in quadratic number fields where the class
number h are interpreted in terms of the size of the Picard group of O, Pic(O),
i.e., invertible fractional ideals of O modulo principal ideals.
Both of these conjectures have been proved.



We will consider the function field analogue of Gauss’s conjectures. As usual,
instead of Z and Q we consider the pair A = Fq[T ] and k = Fq(T ). For the
remainder of this lecture, we assume that the characteristic of F is odd.
Let m ∈ A be any non-square polynomial, and consider the quadratic function
field K = k(

√
m). Write m = m0m2

1, where m0 is square-free. The polynomial
m0 is well defined up to the square of a constant. Define Om to be the ring
A + A

√
m ⊂ K . It is an A-order, i.e., it is a ring, finitely generated as an

A-module, and its quotient field is K .

Proposition
With the notations introduced above, the integral closure of A in K is Om0 .
The ring Om is a subring of Om0 and the polynomial m1 is a generator of the
annihilator of the A-module Om0/Om. Finally, if O is any A-order in K, then
O = Om for some m ∈ A.



Definition
Let m ∈ A, m not a square, and let Om ⊂ k(

√
m) be the A-order described

above. Pic(Om), the Picard group of Om, is the group of invertible fractional
ideals of Om modulo the subgroup of principal fractional ideals. The class
number hm is defined to be the cardinality of this group.

Definition
If m ∈ A, m a non-square, define χm(a) as follows:

χm(a) =
(m

a

)
2
.

Recall that if P is irreducible, then χm(P) = 0 if P | m, and if P - m then
χm(P) = 1 if m is a square modulo P and −1 otherwise. If a is a product of
irreducibles one extends χm(P) by multiplicativity, i.e., if a =

∏t
i=1 Pi , then

χm(a) =
∏t

i=1 χm(Pi ).
If m = m0m2

1 we have χm(a) = χm0 (a) whenever (a,m) = 1. However, if P is
an irreducible such that P | m1 and P - m0, then we have χm(P) = 0, whereas
χm0 (P) 6= 0.
Define L(s, χm) as follows:

L(s, χm) =
∑

n monic

χm(n)

|n|s =
∏
P-m

(
1− χm(P)

|P|s

)−1

.



Notice that if m = m0m2
1, we have

L(s, χm) =
∏
P|m1

(
1−

χm0(P)

|P|s

)
L(s, χm0 ).

When m is square-free, the next proposition shows that L(s, χm) is closely
related to the Artin L-function associated to the abelian extension k(

√
m)/k.

Proposition
Suppose m is square-free. Consider the quadratic extension K = k(

√
m) of k.

Let L∞(s, χm) be 1 if ∞ is ramified in K, (1− q−s)−1 if ∞ splits in K, and
(1 + q−s)−1 if ∞ is inert in K. Then

L∞(s, χm)L(s, χm)

is the Artin L-function associated to the unique non-trivial character of
Gal(K/k).



We are now in a position to state the connection between L(1, χm) and class
numbers. If m ∈ A, recall the definition sgn2(m). This is 1 if the leading
coefficient of m is a square in F∗ and is −1 if it is not.

Theorem
Let m ∈ A be a square-free polynomial of degree M. Then,

1 If M is odd, L(1, χm) =
√q√
|m|

hm.

2 If M is even and sgn2(m) = −1, L(1, χm) = q+1
2
√
|m|

hm.

3 If M is even and sgn2(m) = 1, L(1, χm) = q−1√
|m|

hmRm. Here Rm is the
regulator of the ring Om.



Proof of the Theorem

Set K = k(
√

m). From previous proposition and some other results
(Proposition 14.9 - Rosen’s book) we derive

ζK (s) = ζk (s)L∞(s, χm)L(s, χm).

Multiply both sides of this equation by s − 1 and take the limit as s → 1. One
finds

hK

qg−1(q − 1) log(q)
=

1
q−1(q − 1) log(q)

L∞(1, χm)L(1, χm).

Simplifying, we obtain

hK q−g = L∞(1, χm)L(1, χm). (2.1)

We know that the genus g of K is M−1
2 in case 1 and M

2 − 1 in cases 2 and 3.
Proposition 14.6 in Rosen’s book shows that in case 1, ∞ is ramified, in case 2,
∞ is inert, and in case 3, ∞ splits. By using Proposition 14.7 in Rosen’s book,
we find hm = hK , hm = 2hK , and hmRm = hK in cases 1,2 and 3 respectively.



Continuation of the Proof

Let’s consider case 1. We have g = M−1
2 and L∞(1, χm) = 1. Also, hm = hK .

Substituting this information into equation from the previous slide, and noting√
|m| = qM/2, we find

hm
√q√
|m|

= L(1, χm).

This proves case 1.
To deal with case 2 we note g = M

2 − 1, L∞(1, χm) = (1 + q−1)−1, and
hm = 2hK . Substituting into equation from the previous slide, we find

hm

2
q√
|m|

=

(
1 +

1
q

)−1

L(1, χm).

Case 2 of the theorem is immediate from this.
The last case, case 3, is done in exactly the same way.



Proposition
Let m ∈ A be a non-square and write m = m0m2

1 with m0 square-free. Then,

hmRm√
|m|

=
hm0 Rm0√
|m0|

∏
P|m1

(1− χm0 (P)|P|−1). (2.2)

Theorem
All the assertions about the class number given in the previous theorem remain
valid if m ∈ A is a non-square polynomial.

Proof.
Suppose m = m0m2

1 with m0 square-free. From the definitions,

L(s, χm) = L(s, χm0 )
∏
P|m1

(1− χm0 (P)|P|−s).

If follows from the equation given in the last proposition that

hmRm√
|m|

1
L(1, χm)

=
hm0 Rm0√
|m0|

1
L(1, χm0 )

.

With the help of this equation and the previous proposition the result
follows.



From the last theorem, we see that the task of averaging class numbers reduces
to the task of averaging the numbers L(1, χm). It turns out that it is no harder
to average L(s, χm) for any value of s. This is what we shall do.
To begin with, notice that

L(s, χm) =
∑

n monic

χm(n)

|n|s =

∞∑
d=0

 ∑
n monic

deg(n)=d

χm(n)

 q−ds .

Definition
For d ∈ Z, d ≥ 0, define

Sd (χm) =
∑

n monic
deg(n)=d

χm(n)

.
Using this definition, we can rewrite L(s, χm) as

∑∞
d=0 Sd (χm)q−ds . This sum

is actually finite as we have seen before.

Lema
If m 6∈ F∗ is not a square, Sd (χm) = 0 for d ≥ M = deg(m).



Proof.
By the reciprocity law, we have(m

n

)( n
m

)
= (−1)

q−1
2 Md sgn(m)d .

Call the quantity on the right of this equation cd . Then, we have
χm(n) = cd (n/m). Thus, if d ≥ M,

Sd (χm) = cd
∑

n monic
deg(n)=d

( n
m

)
= 0,

by the Proof of the Proposition on Lecture 3.

Corollary
If m 6∈ F∗ is not a square, then

L(s, χm) =

M−1∑
d=0

Sd (χm)q−ds ,

a polynomial of degree at most M − 1 in q−s .
Our goal is to understand the sums

∑
deg(m)=M L(s, χm) or the same sums

restricted to monic polynomials m of degree M. By the corollary we are
reduced to considering the sums

∑
deg(m)=M Sd (χm) where d < M.



Definition
Let M and N be non-negative integers and n a monic polynomial of degree N.
Define Φn(M) to be the number of monic polynomials m of degree M such
that gcd(n,m) = 1. Define Φ(N,M) to be the number of pairs (n,m) of monic
polynomials such that deg(n) = N, deg(m) = M, and gcd(n,m) = 1.
Note that ∑

n monic
deg(n)=N

Φn(M) = Φ(N,M).

Also, it is obvious that Φ(N,M) = Φ(M,N).

Proposition
Φ(0,M) = qM and if M,N ≥ 1, then

Φ(N,M) = qM+N
(

1− 1
q

)
.



Proof of the Proposition
From the definition, Φ(0,M) is equal to the number of monic polynomials of
degree M which we know is qM . This proves the first assertion. To prove the
second assertion, call two pairs (n,m) and (n

′
,m
′
) equivalent if

gcd(n,m) = gcd(n
′
,m
′
). Breaking the set {(n,m) : deg(n) = N, deg(m) = M}

into equivalence classes and counting leads to the identity

qN+M =

min(N,M)∑
d=0

qd Φ(N − d ,M − d).

Suppose M,N ≥ 1. The proof now proceeds by induction on the number
M + N. The smallest value this number can have is 2, in which case the
formula yields q2 = Φ(1, 1) + qΦ(0, 0), or Φ(1, 1) = q2 − q = q2(1− q−1).
Now suppose the formulais correct for all pairs N

′
,M
′
≥ 1 with

N
′

+ M
′
< N + M. We may also suppose, by symmetry, that N ≤ M. Then

qM+N = Φ(N,M) +

N−1∑
d=1

qd Φ(N − d ,M − d) + qNΦ(0,M − N).



Continuation of the Proof

For 1 ≤ d ≤ N − 1 we have Φ(N − d ,M − d) = qM+N−2d (1− q−1) whereas by
the first part of the proof, Φ(0,M − N) = qM−N . Substituting into the above
formula and simplifying slightly,

qM+N = Φ(N,M) + qM+N
N−1∑
d=1

q−d (1− q−1) + qM = Φ(N,M) + qM+N−1.

The second assertion now follows immediately.

It is convenient to extend the definition of Φ(N,M) to half integers by defining
Φ(N/2,M) = 0 if N is odd.



Proposition
Suppose 1 ≤ d ≤ M − 1. Then∑

m monic
deg(m)=M

Sd (χm) = (q − 1)−1
∑

deg(m)=M

Sd (χm) = Φ(d/2,M).



Proof of the Proposition

To begin with assume all sums are over monics. Then∑
deg(m)=M

Sd (χm) =
∑

deg(m)=M

∑
deg(n)=d

(m
n

)
=
∑

deg(n)=d

∑
deg(m)=M

(m
n

)
.

If n is not a square (∗/n) is a non-trivial character modulo n. Thus, in this
case, since M > deg(n) = d , ∑

deg(m)=M

(m
n

)
= 0,

by the Proof of the Proposition on the third lecture.
Now, suppose that n = n2

1 is a square. Then (m/n) = (m/n1)2 = 1 whenever
gcd(m, n1) = 1 and (m/n1)2 = 0 otherwise. It follows that∑

deg(m)=M

(m
n

)
=

∑
deg(m)=M

(m
n1

)2
= Φn1 (M).



Continuation of the Proof

Thus ∑
deg(m)=M

Sd (χm) =
∑

deg(n1)=d/2

Φn1 (M) = Φ(d/2,M).

To do the general case, let α ∈ F∗ and sum over all αm as m runs through the
monics of degree M. The above calculation shows the answer is again equal to
Φ(d/2,M). It follows that if we sum over all polynomials of degree d the
answer is (q − 1)Φ(d/2,M). This completes the proof.



We now have all the information we need to state our main results about
averages of L-functions. We begin with the easiest case, averaging over all
monics of fixed odd degree.

Theorem
Let M be odd and positive. We have, for all s ∈ B with s 6= 1

2 ,

q−M
∑

deg(m)=M

L(s, χM) =
ζA(2s)

ζA(2s + 1)
−
(

1− 1
q

)
(q1−2s)

M+1
2 ζA(2s).

For s = 1
2 , we have

q−M
∑

deg(m)=M

L( 1
2 , χm) = 1 +

(
1− 1

q

)(M − 1
2

)
.



Proof of the Theorem

We know that L(s, χm) =
∑M−1

d=0 Sd (χm)q−ds . From this, and the previous two
propositions, we find

∑
deg(m)=M

L(s, χm) =

M−1∑
d=0

 ∑
deg(m)=M

Sd (χm)

 q−ds

= qM + Φ(1,M)q−2s + Φ(2,M)q−4s + · · ·+ Φ((M − 1)/2,M)q−(M−1)s

= qM
(

1 +

(
1− 1

q

)[
q1−2s + (q1−2s)2 + · · ·+ (q1−2s)

M−1
2
])

.



Continuation of the Proof

The result for s = 1
2 follows from this by substitution. For s 6= 1

2 we sum the
geometric series to derive

q−M
∑

deg(m)=M

L(s, χm) = 1 +

(
1− 1

q

)
q1−2s 1− (q1−2s)

M−1
2

1− q1−2s

= 1 +

(
1− 1

q

)
q1−2s

1− q1−2s −
(

1− 1
q

)
(q1−2s)

M+1
2 ζA(2s).

We have used the fact that ζA(s) = (1− q1−s)−1. A close look at the last line
shows that it only remains to identify the sum of the first two terms with a
quotient of zeta values. This follows from the calculation

1 +

(
1− 1

q

)
q1−2s

1− q1−2s =
ζA(2s)

ζA(2s + 1)
.



Corollary
If R(s) > 1

2 , then

q−M
∑

deg(m)=M

L(s, χm)→ ζA(2s)

ζA(2s + 1)
,

as M →∞ through odd values.

Corollary
If M is odd and positive, then

q−M
∑

deg(m)=M

hm =
ζA(2)

ζA(3)
q

M−1
2 − q−1.

Proof.
Follows from the theorem and the fact that L(1, χm) = hm

√q√
|m|

.



We are left with considerations of the two cases where deg(m) = M is even and
the leading coefficient of m is either a square in F∗ or a non-square. The
results we have in this case are:

Theorem
Let M be even and positive. The following sums are over all non-square monic
polynomials of degree M.

1 Suppose s 6= 1
2 or 1. Then

q−M
∑

L(s, χm) =
ζA(2s)

ζA(2s + 1)
−
(

1− 1
q

)
(q1−2s)M/2ζA(2s)

−q−M/2
(

ζA(2s)

ζA(2s + 1)
−
(

1− 1
q

)
(q1−s)MζA(s)

)
.

2 For s = 1 we have

q−M
∑

L(1, χm) =
ζA(2)

ζA(3)
− q−M/2

(
2 +

(
1− 1

q

)
(M − 1)

)
.



Corollary
If Re(s) > 1

2 , then as M →∞ though even integers,

q−M
∑

L(s, χm)→ ζA(2s)

ζA(2s + 1)
.

Corollary
With the hypotheses of the theorem, we have

q−M
∑

hmRm = (q − 1)−1
(
ζA(2)

ζA(3)
qM/2 −

(
2 +

(
1− 1

q

)
(M − 1)

))
.



I want to conclude this lecture by mentioning a refinement and generalization
of the above results. The first refinement is to consider only polynomials m
that are square-free. In this case, Om is the integral closure of A = F[T ] in
K = k(

√
m). Thus the class numbers hm are similar to the class numbers

associated to quadratic number fields. In the language of binary quadratic
forms, we would be restricting consideration to forms with fundamental
discriminants. Averaging in this case is surprisingly difficult.

Definition
For s ∈ C, R(s) ≥ 1

2 , define

c(s) =
∏

P

(1− |P|−2 − |P|−(2s+1) + |P|−(2s+2)).

It is easy to see the product converges uniformly and absolutely in the region
under consideration.
For simplicity we state the next theorem for the region R(s) ≥ 1. But we have
full results concerning the region R(s) ≥ 1

2 .



Theorem
Let ε > 0 be given and assume s ∈ C with R(s) ≥ 1.

1 If M = 2n + 1 is odd, then

(q − 1)−1(qM − qM−1)−1
∑

m

L(s, χm) = ζA(2)ζA(2s)c(s) + O(q−n(1−ε)),

where the sum is over all square-free m such that deg(m) = M.
2 If M = 2n is even, then

2−1(q−1)−1(qM−qM−1)−1
∑

m

L(s, χm) = ζA(2)ζA(2s)c(s)+O(q−n(1−ε)),

where the sum is over all square-free m such that deg(m) = M and
sgn2(m) = 1, or over all square-free m with deg(m) = M and
sgn2(m) = −1.
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