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Dear Brian,

Your suggestions in the AIM workshop on how to tackle the Riemann Hypothesis for curves over finite fields through
analytic methods led me to revisit the Li’s criterion for the Riemann Hypothesis. While I still can not offer you a
proof of the Riemann Hypothesis for curves through the use of analytical methods (I hope we can do this by using
Levinson’s method or other analytic approach), this letter is intended to answer two questions that may be of some
interest to you:

1. What is the analogue of Li’s criterion for zeta functions of curves over finite fields?

2. There are any geometric interpretation for the Li’s coefficients?

Note that in your paper on the Riemann Hypothesis [1] , you say: "It would be interesting to find an interpretation
(geometric?) for these λn (the Li’s coefficients) or perhaps those associated with a different L-function, to make
their positivity transparent." The main aim of this letter is to answer your question by giving a geometric
interpretation for the Li’s coefficients of L–functions associated to curves over finite fields. The second assertion
about make the positivity of the Li’s coefficients transparent is under investigation by myself (my guess here is that
the positivity of the Li’s coefficients for function fields are connected with the Castelnuovo-Weil Positivity, one of the
main tools used to prove the RH for curves over Fq).

Introduction and Some Background in Function Fields
In his paper, Li [2] proved that the Riemann Hypothesis is equivalent to the positivity of a sequence of real numbers.
Below, we quickly review what is the Li’s criterion for the Riemann Hypohtesis for ζ(s) and also we present some
basic background of zeta functions over function fields.

Let {λn} be the sequence of numbers given by

λn =
∑
ρ

[
1−

(
1− 1

ρ

)n]
, for all n ∈ N (1)

where the sum above runs over the non–trivial zeros ρ of the Riemann zeta-function ζ(s). These same coefficients
can be expressed in terms of the Riemann ξ–function

ξ(s) = 1
2s(s− 1)π−

s
2 Γ
(s

2

)
ζ(s). (2)

The coefficients λn occur in the Laurent series of ξ
′

ξ at s = 0. Indeed,

d

dt
log ξ

(
t

t− 1

)
= −1

(1− t)2
ξ

′

ξ

(
t

t− 1

)
=
∞∑
n=0

λn+1t
n, (3)

i.e., the Li coefficients can be written as

λn = 1
(n− 1)!

dn

dsn
[sn−1 log ξ(s)]s=1. (4)
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In 1997, Li [2] proved the following theorem

Theorem 1 (Li [2], 1997). A necessary and sufficient condition for the nontrivial zeros of the Riemann zeta function
to lie on the critical line is that λn is non–negative for every positive integer n.

Further, in 1999, Bombieri and Lagarias [3] presented an extension of this criteria and gave a formula for λn using
the Weil explicit formulae. One of the main results proved by Bombieri and Lagarias which we will use later in this
letter is presented below.

Theorem 2 (Bombieri and Lagarias [3], 1999). Let R be a multi–set of complex numbers ρ such that

(i) 0, 1 6∈ R
(ii) if ρ ∈ R then 1− ρ and ρ ∈ R with same multiplicity as ρ.
(iii) ∑

ρ

(1 + |Re(ρ)|)
(1 + |ρ|)2 <∞. (5)

Then the following are equivalents

(a) Re(ρ) = 1
2 for all ρ ∈ R.

(b) λn =
∑
ρ [1− (1− 1/ρ)n] ≥ 0 for n = 1, 2, . . ..

In this letter we extend the Li criterion for the Riemann Hypothesis for function fields over finite fields. Before we do
this we need a few basic facts of zeta functions over function fields.

Consider K to be a global function field in one variable with a finite constant field Fq with q elements. Let us denote
by CK the correspondig curve associated to the function field K of genus g over Fq. Then the zeta-function of K is
defined by

ζK(s) =
∑
A∈DK
A≥0

1
NAs

Re(s) > 1, (6)

where DK denotes the additive group of divisors of K (the free abelian group generated by the primes in K).
Typically a divisor D ∈ DK looks like D =

∑
P a(P )P where P is a prime in K and the a(P )’s are integer

coefficients. We say that D ≥ 0 if D ∈ DK and a(P ) ≥ 0 for all P . If A ∈ DK we define the norm of A to be
NA = qdeg(A) where deg(A) =

∑
P a(P )deg(P ). We have that deg(P ) is defined to be the dimension of R/P over

Fq where R is a discrete valuation ring in K with maximal idel P such that Fq ⊂ R and the quotient field of R is
equal to K. For more details see [4, Chapter 5].

The zeta function of K can be rewritten as

ZK(T ) =
∞∑
n=1

bnT
n, (7)

where T = q−s and bn = #{D ∈ DK : D ≥ 0, deg(D) = n}. Using the multiplicativity of the norm NA and the
fact that DK is a free abelian group on the set of primes of K we see, at least formally, that

ζK(s) =
∏
P

prime divisor in K

(
1− 1

NP s

)−1
for Re(s) > 1, (8)

One can regard the zeta–function of K as an analogue of the classical Riemann zeta function and it can be written as

ζK(s) = ZK(T = q−s). (9)

By Weil [5] we have that ζK(s) satisfies the following properties:

(i) [Rationality] ζK(s) is a rational function

2/6



ZK(T ) = LK(T )
(1− T )(1− qT ) , (10)

where L(T ) ∈ Z[T ] is a polynomial of degree 2g.
(ii) [Functional Equation] We have

ZK(q−s) = qg−1q−s(2g − 2)ZK
(

1
q1−s

)
, (11)

or making use of the s variable we have

qs(g−1)ζK(s) = q(1−s)(g−1)ζK(1− s), (12)

for all s ∈ C.
(iii) [Riemann Hypothesis for Function Fields] All the roots of ζK(s) lie on the line Re(s) = 1/2. Equivalently, the

inverse roots of LK(T ) all have absolute value √q.

From (10) we see that ζK(s) is a meromorphic function in the whole complex plane C with simple poles at
1 + k 2πi

log(q) and k 2πi
log(q) for k ∈ Z.

The polynomial

LK(T ) = (1− T )(1− qT )ZK(T ) (13)

is called the L–polynomial of the curve CK and from (11) we can see that LK(T ) satisfies the functional equation

LK(T ) = qgT 2gLK

(
1
qT

)
. (14)

We write

LK(T )
2g∑
n=0

anT
n, (15)

where ai ∈ Z, a0 = 1, a2g = qg and the functional equation (Poincaré duality) gives us that a2g−i = qg−iai for
0 ≤ i ≤ g.

Since the coefficients of the polynomial LK(T ) are in Z we can factor this polynomial over C as

LK(T ) =
2g∏
i=1

(1− αiT ), (16)

where the αi’s are the inverse roots of LK(T ) and they can be arranged such as αiαg+i = q holds for i = 1, . . . , g.
For more details see [4].

The Li Criterion for Riemann Hypothesis for Curves over Fq
Consider the function

ξK(s) = (1− q−s)(1− q1−s)ΛK(s), (17)

where

ΛK(s) = q(g−1)sζK(s) (18)

and satisfies the functional equation

ΛK(s) = ΛK(1− s). (19)
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This function is an entire function of order one. By analogy we define the Li coefficients for the function field K by

λK(n) =
∑
ρK

[
1−

(
1− 1

ρK

)n]
, n ≥ 1, (20)

where the sum runs over the non–trivial zeros ρK of ζK(s). In the same way as in the classical case the coefficients
λK(n) occur also in the Taylor expansion of ξ

′
K

ξK
at s = 0, i.e.,

d

dt
log ξK

(
t

t− 1

)
=
∞∑
n=0

λK(n+ 1)tn. (21)

The following proposition presents an explicit formula for the Li coefficients λK(n).

Proposition 1. For all n ≥ 1 we have that,

λK(n) = −n
{ 2g∑
i=1

∞∑
r=1

(αi)r

r

[
n−1∑
k=0

(
n− 1
k

)
(log qr)k+1

(k + 1)!

]}
. (22)

Proof. From the definition of ξK(s), we have that

log ξK
(

t

t− 1

)
= logLK(q−

t
t−1 )

= log
2g∏
i=1

(1− αiq−
t
t−1 )

= −
2g∑
i=1

∞∑
r=1

(αi)r

r
q
− rt
t−1

= −
2g∑
i=1

∞∑
r=1

(αi)r

r

(
1 +

∞∑
n=1

(
n−1∑
k=0

(
n− 1
k

)
(log qr)k+1

(k + 1)!

)
tn

)
. (23)

From (21) the proposition follows.

The following result it is not important for the main discussion of this letter. So I will not present the proof here. (it
follows from the class number hK associated to the function field K and from Poincaré–duality).

Proposition 2. We have that λK(1) ≥ 0 for all function fields K, i.e., for all curves CK over Fq.

The next result answers question (1) about the Li criterion for function fields.

Theorem 3. The non–trivial zeros of ζK(s) lie on the line Re(s) = 1
2 if and only if λK(n) ≥ 0 for all n ∈ N.

Proof. Let

Z(ζK(s)) =
{
ρK = 1

2 ± i
θj

log(q) + i
2kπ

log(q) , j ∈ 1, . . . , g , k ∈ Z
}
, (24)

where θ1, θ2, . . . , θg ∈ [0, 2π[ are the angles of the roots of LK(T ). Moreover, the multi–set Z(ζK(s)) is invariant
under the symmetry ρK 7→ 1− ρK . Therefore the multi–set Z(ζK(s)) satisfies the hypothesis of Theorem 2.
Therefore the results follows.

A Geometric Interpretation for λK(n)
In this section I present a geometric interpretation for the Li coefficients associated to the zeta function ζK(s) of a
function field K. In this way I hope have clarified your assertion from the paper [1].
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Theorem 4. The following conditions are equivalent

(i) The zeros of ζK(s) lie on the line Re(s) = 1
2 .

(ii) |λK(n)| ≤ 2gqn/2 for all n ∈ N.

Proof. Assumes that the zeros of ζK(s) lie on the line Re(s) = 1
2 , then we can conclude that the roots of LK(T ) are

of absolute value q−1/2. Note that

log(LK(T )) =
∞∑
n=1

λK(n)
n

Tn. (25)

Taking the logarithm of (16) we have that

∞∑
n=1

λK(n)
n

Tn = −
2g∑
i=1

∞∑
n=1

(αi)n

n
Tn, (26)

where |αi| = q1/2. Then,

λK(n) = −
2g∑
i=1

αni , (27)

for all n ≥ 1. Using that |αi| = q1/2 we obtain that |λK(n)| ≤ 2gqn/2.

Conversely, if |λK(n)| ≤ 2gqn/2 for all n ∈ N, then R ≥ q−1/2, where R is the radius of convergence of∑∞
n=1

λK(n)
n Tn. Indeed, if T = εq−1/2 with |ε| < 1, then

∑∞
n=1

∣∣∣λK(n)
n

∣∣∣ |T |n ≤ 2g log(1− ε). Therefore, from (25),
LK(T ) has no roots in the disc |T | < q−1/2 (i.e., |αi| ≤ q1/2).

Using the fact that
∏2g
i=1 αi = a2g = qg, we obtain the desired result.

The zeta function ZK(T ) encodes information about the rational points on the curve CK . If we call
Nn = |CK(Fqn)| to be the number of Fqn–rational points on the curve CK corresponding to the function field K
over Fq then by definition the zeta function of the curve CK is given by

ZK(T ) = exp
( ∞∑
n=1

Nn
n
Tn

)
. (28)

Theorem 5. The zeros of ζK(s) lie on the line Re(s) = 1
2 if and only if

|Nn − (qn + 1)| ≤ 2gqn/2, (29)

for all n ≥ 1.

Proof. From (10), we have

log(LK(T )) = log(1− T ) + log(1− qT ) + log(ZK(T )). (30)

Hence from (28) and (25), we obtain

∞∑
n=1

λK(n)
n

Tn = −
∞∑
n=1

Tn

n
−
∞∑
n=1

qnTn

n
+
∞∑
n=1

Nn
Tn

n
. (31)

Therefore

log(LK(T )) =
∞∑
n=1

(
Nn − qn − 1

n

)
Tn. (32)
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Then, from Teorem 4 the result follows.

The geometric interpretation for the λK(n) is that

λk(n) = Nn − qn − 1, (33)

i.e., the Li coefficients for the function field K is a function on the number of rational points Nn of the curve CK .

Consider CD : y2 = D(T ) be an hyperelliptic curve of genus g over Fq where D(T ) is a square–free monic
polynomial in Fq[T ]. In this case

LCD
(T ) = det(I − T√qΘCD

)
= det(I − TFrq|H1(CD)), (34)

where ΘCD
∈ USp(2g) and H1(CD) denotes the first cohomology of the curve CD. From (27) we have conclude

that

λK(n) = −
2g∑
i=1

αni = −trΘn
CD
. (35)

And therefore equation (35) provides an interpretation for λK(n) in terms of the trace of powers of ΘCD
or if you

prefer in terms of the Frobenius acting on the H1(CD) cohomology.

To conclude, we not only provided a geometric interpretation for the λK(n), but also a cohomological interpretation
and an interpretation in terms of the conjugacy classes associated to the curve CD.

With best regards,
Julio Andrade
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