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Abstract. We obtain the asymptotic main term of moments of arbitrary derivatives of L-functions
in the function field setting. Specifically, we obtain the first, second, and mixed fourth moments. The
average is taken over all non-trivial characters of a prime modulus Q ∈ Fq[T ], and the asymptotic
limit is as degQ −→ ∞. This extends the work of Tamam who obtained the asymptotic main term of
low moments of L-functions, without derivatives, in the function field setting. It is also the function
field q-analogue of the work of Conrey, who obtained the fourth moment of derivatives of the Riemann
zeta-function.

Contents

1. Introduction 1
2. Notation and Statement of Results 4
3. Preliminary Results 6
4. First Moments 8
5. Second Moments 8
6. Fourth Moments: Expressing as Manageable Summations 9
7. Fourth Moments: Handling the Summations 14
8. Fourth Moments of Derivatives 18
References 21

1. Introduction

The moments of families of L-functions are part of an important area of research in analytic number
theory. The moments of the Riemann zeta-function, averaged over the critical line, have applications
to areas such as zero density estimates and the proportion of zeros on the critical line [Gon05]. Fur-
thermore, the Lindelöf hypothesis can be expressed in terms of such moments. One can also study
moments over families of L-functions that are evaluated at the central point, which has applications
to the non-vanishing of L-functions at the central point.

In 1916, Hardy and Littlewood [HL16] proved that

1

T

∫ T

0

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣2dt ∼ log T

as T −→∞. In 1926, Ingham [Ing26] expanded on this by proving that

1

T

∫ T

0

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣4dt ∼ 1

2π
log4 T

as T −→ ∞. In 1979, Heath-Brown [HB79] obtained lower order terms for the fourth moment above.
Results for moments of powers greater than 4 have resisted the attempts of mathematicians for many
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years. Indeed, at this time, we can only conjecture such results. In 2000, Keating and Snaith [KS00]
conjectured, using random matrix theory, the asymptotic main term for all even moments:

1

T

∫ T

t=0

∣∣∣ζ(1

2
+ it

)∣∣∣2kdt ∼ akG2(1 + k)

G(1 + 2k)
(log T )k

2
(1)

as deg T −→∞, where

ak :=
∏

p prime

(
1− 1

p

)k2 ∞∑
m=0

dk(p
m)2

pm
,(2)

dk(a) is the number of ways of expressing a as a product of k factors, and G is the Barnes G-function.
The factor of ak above does not occur in a natural way via the method in [KS00]. Indeed, random

matrix theory allows us to conjecture the factor G2(1+k)
G(1+2k) , and the fact that we must then include the

factor ak can be seen from other results. However, this was addressed by Gonek, Hughes, and Keat-
ing [GHK07] where they developed a method for conjecturing the main term of the even moments of
ζ(s) in such a way that all factors appear naturally. They give an Euler-Hadamard hybrid formula for
the ζ(s). That is, they express ζ(s) as, roughly, a partial product over primes multiplied by a partial
product over the zeros of ζ(s). The former contributes the factor ak, while random matrix theory is

used to conjecture that the latter contributes the factor G2(1+k)
G(1+2k) .

With regards to moments over families of L-functions, we briefly consider the family of Dirichlet
L-functions, as that is the focus of this paper. Paley [Pal31] is accredited to proving that

1

φ∗(q)

∑∗

χmod q

∣∣∣L(1

2
, χ
)∣∣∣2 ∼ φ(q)

q
log q

as q −→ ∞. Here, the sum is over all primitive characters of modulus q; φ∗(q) is the number of
primitive characters of modulus q; φ is the totient function; and L(s, χ) is the Dirichlet L-function
associated to the character χ. Extending the work of Heath-Brown [HB81], Soundararajan [Sou07]
proved that

1

φ∗(q)

∑∗

χmod q

∣∣∣L(1

2
, χ
)∣∣∣4 ∼ 1

2π2

∏
p|q

(1− p−1)3

1 + p−1
(log q)4.(3)

More recently, Young [You11] obtained lower order terms for the fourth moment above. By adapting
the method of [GHK07], Bui and Keating [BK07] conjectured the main term of all even moments of
Dirichlet L-functions at 1

2 :

1

φ∗(q)

∑∗

χmod q

∣∣∣L(1

2
, χ
)∣∣∣2k ∼ akG2(1 + k)

G(1 + 2k)

∏
p|q

( ∞∑
m=0

dk(p
m)2

pm

)−1
(log q)k

2
.

We note a similarity between the above and (1). The reason for this is that the family of Dirichlet
L-functions and the Riemann zeta function share the same symmetry [CF00, Section 1], which we
briefly touch upon later.

We must also remark that derivatives of L-functions are an important area of study. The derivative
of ζ(s) plays a key role in obtaining positive lower bounds for the proportion of non-trivial zeros of
ζ(s) on the critical line [Lev74, Con89, BCY11]. Furthermore, discrete moments of ζ ′(s), where one
averages over the zeros of ζ(s), can be used to understand the number of simple zeros of ζ(s) on the
critical line (see [Gon05] for a brief explanation of this and other related results). The derivatives of
Dirichlet L-functions are of interest because this family of L-functions shares the same symmetry as
the Riemann zeta function, and so there are analogies between their derivatives as well. Moments of
derivatives of Dirichlet L-functions at central point of 1

2 have applications to the non-vanishing of these
derivatives at that point. More generally, for some results on the moments of derivatives of automorphic
L-functions and applications, we refer the reader to [Liu18]. We now reference two results that we
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require for comparisons that we will make later. Conrey, Rubinstein, and Snaith [CRS06] conjectured,
using random matrix theory, that, for positive integers k,

1

T

∫ T

t=0

∣∣∣ζ ′(1

2
+ it

)∣∣∣2kdt ∼ akbk(log T )k
2+2k(4)

as deg T −→∞, where ak is as in (2) and values for b1, b2, . . . , b15 are explicitly given. In particular,

b1 =
1

3
, b2 =

61

25 · 32 · 5 · 7
.

This is consistent with a rigorously established result of Conrey [Con88]:

1

T

∫ T

t=0

∣∣∣ζ ′(1

2
+ it

)∣∣∣4dt ∼ ak 61

25 · 32 · 5 · 7
(log T )8.(5)

Conrey also showed that

π2

6
C2,m ∼

1

16m4
(6)

as m −→∞, where

C2,m = lim
T−→∞

T−1
(

log
( T

2π

))−4m−4 ∫ T

t=1

∣∣∣ζ(m)
(1

2
+ it

)∣∣∣4dt.
There is another setting in which one can study L-functions: The function field setting. Here, our
L-functions are defined as sums over monic polynomials from an appropriate polynomial ring. For
details and notation, see Section 2. There are many analogies between the classical setting and the
function field setting, including an analogue of the Riemann hypothesis (one of the conjectures of Weil),
which has been proved (first by Deligne). L-functions in function fields also play a crucial role in our
understanding of the symmetries of families of L-functions in both the classical and function field
settings. Indeed, for families of classical L-functions, one must consider their function field analogue,
for which we can obtain indications as to their symmetry because, in this setting, we have a spectral
interpretation of the zeros of the L-functions. For details, we refer the reader to the work of Katz and
Sarnak [KS99], as well as Conrey and Farmer [CF00].

We now give a brief description of some of the results regarding moments of L-functions in the function
field setting setting. Tamam [Tam14] obtained a special case of the function field analogue of (3):

1

φ(Q)

∑∗

χmodQ

∣∣∣L(1

2
, χ
)∣∣∣4 =

1− q−1

12
(degQ)4 +O

(
(degQ)3

)
as degQ −→ ∞ with Q being prime. Andrade and Yiasemides [AY20] generalised this to the full
analogue of Soundararajan’s result, by removing the restriction that Q be prime. As we will soon see,
this current paper considers another generalisation of Tamam’s result. Namely, we still impose that
Q is prime, but we consider arbitrary derivatives of the L-functions instead of the L-function itself.
A function field analogue of [BK07] can be found in the thesis of Yiasemides (yet to be published),
where conjectures of all even moments of Dirichlet L-functions in function fields are given, as well as
an extension of this to the first derivatives of the L-functions. With regards to moments of the family
of quadratic Dirichlet L-functions in function fields, we refer the reader to the work of Andrade and
Keating [AK12, AK13], and to the work of Bui and Florea [BF18] for an approach to conjecturing
higher moments via the method of the Euler-Hadamard hybrid formula.

These are but a few of the many results regarding moments of L-functions in function fields. For an
introduction to number theory in function fields, we refer the reader to the book by Rosen [Ros02].

Acknowledgments: The first author is grateful to the Leverhulme Trust (RPG-2017-320) for the
support through the research project grant “Moments of L-functions in Function Fields and Random
Matrix Theory”. The second author is grateful for an EPSRC Standard Research Studentship (DTP)
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(EP/M506527/1). Both authors are grateful to Nigel Byott and Hung Bui for pointing out errors and
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2. Notation and Statement of Results

Henceforth, q will represent an integer prime power, not equal to 2. For all such q we have a finite
field of order q, denoted by Fq. The polynomial ring over this finite field is denoted by Fq[T ], but, as
we are working with a general prime power q 6= 2, we will simply write A for Fq[T ]. The subset of
monic polynomials is denoted by M. The degree of a polynomial is the standard definition, although
we do not define it for the zero polynomial. Hence, the range degA ≤ n, for any non-negative integer
n, does not include the case A = 0. For A ∈ A\{0} we define the norm of A as |A| := qdegA, and for
A = 0 we define |0| := 0.

Generally, we reserve upper-case letters for elements of A, and the letters P and Q are reserved for
prime polynomials. Note that primality and irreducibility are equivalent as A is a Euclidean domain.
In this paper, the term “prime” is taken to mean “monic prime”. We denote the set of monic primes
in A by P. The expression degQ −→∞ should be taken to mean “degQ −→∞ with Q being prime”.
For A,B ∈ A we denote the highest common factor and lowest common multiple by (A,B) and [A,B],
respectively.

For a subset S ⊆ A we define, for all non-negative integers n, Sn := {A ∈ S : degA = n}. We identify

A0 with Fq\{0} = Fq∗. For a k-times differentiable function f(x), we defined f (k)(x) to be its k-th
derivative.

We use the “big O” and “little o” notation, and subscripts demonstrate the dependencies of the
implied constant. That is, suppose we have functions f(x) and g(x) with the same domain D. Then,
we write f(x) = O

(
g(x)

)
or f(x) � g(x) if and only if there is exists some positive constant c such

that |f(x)| ≤ c|g(x)| for all x ∈ D. If, instead, we have functions fk(x) and gk(x) that depend on
some parameter k, then we write fk(x) = O

(
gk(x)

)
or fk(x) � gk(x) if and only if there exists some

positive constant c such that for all k and all x ∈ D we have |fk(x)| ≤ c|gk(x)|. Also, if only fk(x)
is dependent on k, and g(x) is not, then we write fk(x) = Ok

(
g(x)

)
or fk(x) �k g(x) if and only if

for all k there exists some positive constant ck such that for all x ∈ D we have |fk(x)| ≤ ck|g(x)|.
Usually, the parameter that our functions may depend on will be the prime power q, and our implied
constant will in fact be independent of q. The expression “f(x) ∼ g(x) as x −→∞” is taken to mean

limx−→∞
f(x)
g(x) = 1.

Definition 2.1 (Dirichlet Character). Let R ∈ M. A Dirichlet character on A of modulus R is a
function χ : A −→ C∗ satisfying the following properties for all A,B ∈ A:

(1) χ(A) = χ(B) if A ≡ B(modR);
(2) χ(AB) = χ(A)χ(B);
(3) χ(A) = 0 if and only if (A,R) 6= 1.

We denote a sum over all characters of modulus R by
∑

χmodR. Also, note that we can view χ as a

function on A/RA, which follows naturally from point 1 above. This will allow us to use expressions
such as χ(A−1) when A ∈ (A/RA)∗.

We say χ is the trivial character of modulus R if χ(A) = 1 for all A ∈ A satisfying (A,R) = 1, and
we denote such characters by χ0 (the dependence on the modulus R is not shown with this notation,
but when used it will be clear what the associated modulus is). We define the even characters to be
those characters χ satisfying χ(a) = 1 for all a ∈ F∗q . Otherwise, we say that the character is odd. It

can be shown that there are φ(R) characters of modulus R and φ(R)
q−1 even characters of modulus R,

where φ is the totient function. This follows from the fact that a finite abelian group is isomorphic
to its dual. Specifically, we refer the reader to Theorem 9.1 and Corollary 9.3 of [Lan02], where one
should take the abelian group in the theorem to be (A/RA)∗ and the subgroup in the corollary to be F∗q .
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Now, suppose χ is a character of modulus R ∈ M and further suppose that S | R. We say that S is
an induced modulus of χ if there exists a character χ1 of modulus S such that

χ(A) =

{
χ1(A) if (A,R) = 1

0 otherwise.

We say that χ is primitive if there is no induced modulus of strictly smaller degree than R. Otherwise,
χ is said to be non-primitive. We denote the number of primitive characters of modulus R by φ∗(R).
We note that all trivial characters of modulus R ∈M\{1} are non-primitive as they are induced by the
character of modulus 1. We also note that if Q is prime, then the only non-primitive character of mod-
ulus Q is the trivial character of modulus Q. In particular, if Q is prime then φ∗(Q) = φ(Q)−1 ∼ φ(Q)

as degQ −→∞. We denote a sum over all primitive characters χ of modulus R by
∑∗

χmodR
, and if

Q is prime then it is equivalent to write
∑

χmodQ
χ 6=χ0

.

Definition 2.2 (Dirichlet L-function). Let χ be a Dirichlet character of modulus R. We define the
associated Dirichlet L-function as follows: For all Re(s) > 1,

L(s, χ) :=
∑
A∈M

χ(A)

|A|s
=

∞∑
n=0

Ln(χ)(q−s)n,

where

Ln(χ) :=
∑
A∈M

degA=n

χ(A).

This has an analytic continuation to C for non-trivial characters, and to C\{1 + 2nπi
log q : n ∈ Z} for

trivial characters.

Definition 2.3 (Riemann Zeta-function in Fq[T ]). When χ is the Dirichlet character of modulus 1,
then the associated Dirichlet L-function is simply the Riemann zeta-function on A, namely

ζA(s) :=
∑
A∈M

1

|A|s
.

We now state the main results of this paper.

Theorem 2.4. For all positive integers k, we have that

1

φ(Q)

∑
χmodQ
χ 6=χ0

L(k)
(1

2
, χ
)

=
−(− log q)k

q
1
2 − 1

(degQ)k

|Q|
1
2

+Ok

(
(log q)k

(degQ)k−1

|Q|
1
2

)
.

Theorem 2.5. For all positive integers k we have that

1

φ(Q)

∑
χmodQ
χ 6=χ0

∣∣∣∣L(k)

(
1

2
, χ

)∣∣∣∣2 =
(log q)2k

2k + 1
(degQ)2k+1 +O

(
(log q)2k(degQ)2k

)
.

Theorem 2.6. For all non-negative integers k, l we have that

1

φ(Q)

1

(log q)2k+2l

∑
χmodQ
χ 6=χ0

∣∣∣L(k)
(1

2
, χ
)∣∣∣2∣∣∣L(l)

(1

2
, χ
)∣∣∣2

= (1− q−1)(degQ)2k+2l+4

∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

fk
(
a1 + a3, a1 + a4, 1

)
fl
(
a2 + a4, a2 + a3, 1

)
da1da2da3da4

+Ok,l

(
(degQ)2k+2l+ 7

2

)
,

where for all non-negative integers i we define

fi
(
x, y, z

)
=xiyi + (z − x)i(z − y)i.
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Notice the similarity between the conjecture (4) for k = 1, 2 and Conrey’s result (5), and the corre-
sponding special cases of our results:

1

φ(Q)

∑
χmodQ
χ 6=χ0

∣∣∣∣L′(1

2
, χ

)∣∣∣∣2 ∼ (log q)2
1

3
(degQ)3

and

1

φ(Q)

∑
χmodQ
χ 6=χ0

∣∣∣∣L′(1

2
, χ

)∣∣∣∣4 ∼ (log q)4(1− q−1) 61

25 · 32 · 5 · 7
(degQ)8.

This is not surprising given that the Riemann zeta-function and the family of Dirichlet L-functions
share the same symmetry, as mentioned previously.

We also prove the following result:

Theorem 2.7. For all non-negative integers m we define

Dm := lim
degQ−→∞

1

(1− q−1)(log q)4m
1

φ(Q)

1

(degQ)4m+4

∑
χmodQ
χ 6=χ0

∣∣∣L(m)
(1

2
, χ
)∣∣∣4

=

∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

(
(a1 + a3)

m(a1 + a4)
m + (1− a1 − a3)m(1− a1 − a4)m

)
·
(

(a2 + a3)
m(a2 + a4)

m + (1− a2 − a3)m(1− a2 − a4)m
)

da1da2da3da4.

(7)

We have that

Dm ∼
1

16m4

as m −→∞.

We note the similarity between our result and (6). Note that the factor of ζ(2) = π2

6 in (6) corresponds

to the factor of ζA(2) = 1
1−q−1 in our definition of Dm.

3. Preliminary Results

The following results are well known and, for many, the proofs can be found in Rosen’s book [Ros02].

Lemma 3.1. Let χ be a non-trivial Dirichlet character modulo R ∈M. Then,∑
A∈A/RA

χ(A) =
∑

A∈(A/RA)∗
χ(A) = 0.

Lemma 3.2. Let χ be an an odd Dirichlet character. Then,∑
a∈Fq

χ(a) =
∑
a∈Fq

∗

χ(a) = 0.

Lemma 3.3. Let R ∈M. Then,∑
χmodR

χ(A) =

{
φ(R) if A ≡ 1(modR)

0 otherwise,

and, if we also have R 6= 1,∑
χmodR
χ even

χ(A) =

{
φ(R)
q−1 if A ≡ a(modR) for some a ∈ (Fq)∗

0 otherwise.
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Corollary 3.4. Let R ∈M. Then,

∑
χmodR

χ(A)χ(B) =

{
φ(R) if (AB,R) = 1 and A ≡ B(modR)

0 otherwise,

and, if we also have R 6= 1,

∑
χmodR
χ even

χ(A)χ(B) =

{
φ(R)
q−1 if (AB,R) = 1 and A ≡ aB(modR) for some a ∈ (Fq)∗

0 otherwise.

Lemma 3.5. We have that

ζA(s) =
1

1− q1−s
,

and this gives an analytic continuation of ζA to C\{1 + 2nπi
log q : n ∈ Z}. We also have the following

Euler product for Re(s) > 1:

ζA(s) =
∏
P∈P

(
1− |P |−s

)−1
.

Lemma 3.5 can be generalised to the following:

Lemma 3.6. Let R ∈M and let χ be a Dirichlet character of modulus R. If χ = χ0 then we have

L(s, χ0) =

(∏
P |R

1 + |P |−s
)
ζA(s).

If χ 6= χ0 then we have

L(s, χ) =
∑
A∈M

degA<degR

χ(A)

|A|s
.

We can now see how the analytic continuations given in the introduction are obtained.

Lemma 3.7. For Re(r),Re(s) > 1, we have that∑
R,S∈M
(R,S)=1

1

|R|r|S|s
=
( ∑
R∈M

1

|R|r
)( ∑

S∈M

1

|S|s
)(

1− q1−r−s
)
.

Proof. We have that∑
R,S∈M

1

|R|r|S|s
=
∑
G∈M

∑
R,S∈M
(R,S)=G

1

|R|r|S|s
=
∑
G∈M

1

|G|r|G|s
∑

R,S∈M
(R,S)=1

1

|R|r|S|s

=

( ∑
G∈M

1

|G|r+s

)( ∑
R,S∈M
(R,S)=1

1

|R|r|S|s

)
.

From this we easily deduce that∑
R,S∈M
(R,S)=1

1

|R|r|S|s
=

( ∑
R,S∈M

1

|R|r|S|s

)( ∑
G∈M

1

|G|r+s

)−1
=
( ∑
R∈M

1

|R|r
)( ∑

S∈M

1

|S|s
)(

1− q1−r−s
)
.

�
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4. First Moments

To prove Theorem 2.4 we will require the following lemma.

Lemma 4.1. For all positive integers k we have that

degQ−1∑
n=0

nkq
n
2 =

1

q
1
2 − 1

(degQ)k|Q|
1
2 +Ok

(
(degQ)k−1|Q|

1
2

)
.

Proof. We have that

degQ−1∑
n=0

nkq
n
2 =

1

q
1
2 − 1

degQ−1∑
n=0

(
nkq

n+1
2 − nkq

n
2

)

=
1

q
1
2 − 1

degQ−1∑
n=0

(
(n+ 1)kq

n+1
2 − nkq

n
2

)
− 1

q
1
2 − 1

degQ−1∑
n=0

(
(n+ 1)kq

n+1
2 − nkq

n+1
2

)

=
1

q
1
2 − 1

(degQ)k|Q|
1
2 +O

( k−1∑
i=0

(
k

i

)
(degQ)i

degQ−1∑
n=0

q
n+1
2

)
=

1

q
1
2 − 1

(degQ)k|Q|
1
2 +Ok

(
(degQ)k−1|Q|

1
2

)
.

�

Proof of Theorem 2.4. We can easily see that

L(k)(s, χ) = (− log q)k
degQ−1∑
n=1

nkq−ns
∑
A∈M

degA=n

χ(A),

from which we deduce that

1

φ(Q)

∑
χmodQ
χ 6=χ0

L(k)
(1

2
, χ
)

=
(− log q)k

φ(Q)

degQ−1∑
n=1

nkq−
n
2

∑
A∈M

degA=n

∑
χmodQ
χ 6=χ0

χ(A)

=− (− log q)k

φ(Q)

degQ−1∑
n=1

nkq−
n
2

∑
A∈M

degA=n

1

=− (− log q)k

q
1
2 − 1

(degQ)k

|Q|
1
2

+Ok

(
(log q)k

(degQ)k−1

|Q|
1
2

)
.

For the second equality we used Lemma 3.3, and for the last equality we used Lemma 4.1 and the fact
that φ(Q) = |Q| − 1 (since Q is prime). �

5. Second Moments

Proof of Theorem 2.5. For positive integers k we have that

L(k)
(1

2
, χ
)

= (− log q)k
degQ−1∑
n=1

nkq−
n
2

∑
A∈M

degA=n

χ(A) = (− log q)k
∑
A∈M

degA<degQ

(logq|A|)kχ(A)

|A|
1
2

,

and so

1

φ(Q)

∑
χmodQ
χ 6=χ0

∣∣∣∣L(k)

(
1

2
, χ

)∣∣∣∣2 =
(log q)2k

φ(Q)

∑
A,B∈M

degA,degB<degQ

(logq|A| logq|B|)k

|AB|
1
2

∑
χmodQ
χ 6=χ0

χ(A)χ(B).
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We now apply Corollary 3.4 to obtain that

1

φ(Q)

∑
χmodQ
χ 6=χ0

∣∣∣∣L(k)

(
1

2
, χ

)∣∣∣∣2

=(log q)2k
∑
A∈M

degA<degQ

(logq|A|)2k

|A|
− (log q)2k

φ(Q)

∑
A,B∈M

degA,degB<degQ

(logq|A| logq|B|)k

|AB|
1
2

.

For the first term on the RHS we have that∑
A∈M

degA<degQ

(logq|A|)2k

|A|
=

degQ−1∑
n=0

n2k =
1

2k + 1
(degQ)2k+1 +O

(
(degQ)2k

)
,

where the final equality uses Faulhaber’s formula. For the second term we have that

1

φ(Q)

∑
A,B∈M

degA,degB<degQ

(logq|A| logq|B|)k

|AB|
1
2

=
1

φ(Q)

( degQ−1∑
n=0

nkq
n
2

)2

≤ 1

φ(Q)

(
(degQ)k

degQ−1∑
n=0

q
n
2

)2

� 1

φ(Q)

(
(degQ)k|Q|

1
2
)2 � (degQ)2k.

The result now follows. �

6. Fourth Moments: Expressing as Manageable Summations

Before proceeding to the main part of the proof for the fourth moments, we need to express the fourth
moments as more manageable summations.

A generalisation of the following theorem appears in Rosen’s book [Ros02, Theorem 9.24 A].

Theorem 6.1 (Functional Equation for L(s, χ)). Let χ be a non-trivial character with modulus Q ∈ P.
If χ is an odd character, then L(s, χ) satisfies the functional equation

L(s, χ) = W (χ)q
degQ−1

2 (q−s)degQ−1L(1− s, χ),

and if χ is an even character, then L(s, χ) satisfies the functional equation

(q1−s − 1)L(s, χ) = W (χ)q
degQ

2 (q−s − 1)(q−s)degQ−1L(1− s, χ);

where we always have

|W (χ)| = 1.

Lemma 6.2. Let χ be an odd character of modulus Q ∈ P, and let k be a non-negative integer. Then,

(log q)−2k
∣∣∣L(k)

(1

2
, χ
)∣∣∣2

=
∑

A,B∈M
degAB<degQ

(
fk
(

degA,degB, degQ
)

+ gO,k
(

degA, degB, degQ
))
χ(A)χ(B)

|AB|
1
2

+
∑

A,B∈M
degAB=degQ−1

hO,k
(

degA,degB, degQ
)
χ(A)χ(B)

|AB|
1
2

,
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where

fk
(

degA,degB, degQ
)

=(degA)k(degB)k + (degQ− degA)k(degQ− degB)k,

gO,k
(

degA,degB, degQ
)

=(degQ− degA− 1)k(degQ− degB − 1)k

− (degQ− degA)k(degQ− degB)k,

hO,k
(

degA,degB, degQ
)

=− (degQ− degA− 1)k(degQ− degB − 1)k.

Remark 6.3. The “O” in the subscript is to signify that these polynomials apply to the odd character
case. It is important to note that gO,k

(
degA,degB, degQ

)
has degree 2k − 1, whereas

fk
(

degA, degB, degQ
)

has degree 2k (hence, the later ultimately contributes the higher order term);
and that all three polynomials are independent of q.

Proof. The functional equation gives us that

degQ−1∑
n=0

Ln(χ)(q−s)n =W (χ)q
degQ−1

2 (q−s)degQ−1
degQ−1∑
n=0

Ln(χ)(qs−1)n

=W (χ)q−
degQ−1

2

degQ−1∑
n=0

Ln(χ)(q1−s)degQ−n−1.

Taking the kth derivative of both sides gives

(− log q)k
degQ−1∑
n=0

nkLn(χ)(q−s)n

=(− log q)kW (χ)q−
degQ−1

2

degQ−1∑
n=0

(degQ− n− 1)kLn(χ)(q1−s)degQ−n−1.

Let us now take the squared modulus of both sides. In order to make our calculations slightly easier,
we restrict our attention to the case where s ∈ R. We obtain

(log q)2k
2 degQ−2∑
n=0

( ∑
i+j=n

0≤i,j<degQ

ikjkLi(χ)Lj(χ)

)
(q−s)n

=(log q)2kq− degQ+1
2degQ−2∑
n=0

( ∑
i+j=n

0≤i,j<degQ

(degQ− i− 1)k(degQ− j − 1)kLi(χ)Lj(χ)

)
(q1−s)2 degQ−n−2.

Both sides of the above are equal to
∣∣L(k)(s, χ)

∣∣2. By the linear independence of powers of q−s, we

have that
∣∣L(k)(s, χ)

∣∣2 is the sum of the terms corresponding to n = 0, 1, . . . ,degQ− 1 from the LHS
and n = 0, 1, . . . ,degQ− 2 from the RHS. This gives

(log q)−2k
∣∣L(k)(s, χ)

∣∣2
=

degQ−1∑
n=0

( ∑
i+j=n

0≤i,j<degQ

ikjkLi(χ)Lj(χ)

)
(q−s)n

+ q− degQ+1
degQ−2∑
n=0

( ∑
i+j=n

0≤i,j<degQ

(degQ− i− 1)k(degQ− j − 1)kLi(χ)Lj(χ)

)
(q1−s)2 degQ−n−2.
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We now substitute s = 1
2 and simplify the right-hand-side to obtain

(log q)−2k
∣∣∣L(k)

(1

2
, χ
)∣∣∣2

=

degQ−1∑
n=0

( ∑
i+j=n

0≤i,j<degQ

ikjkLi(χ)Lj(χ)

)
q−

n
2

+

degQ−2∑
n=0

( ∑
i+j=n

0≤i,j<degQ

(degQ− i− 1)k(degQ− j − 1)kLi(χ)Lj(χ)

)
q−

n
2

=

degQ−1∑
n=0

( ∑
i+j=n

0≤i,j<degQ

[
ikjk + (degQ− i− 1)k(degQ− j − 1)k

]
Li(χ)Lj(χ)

)
q−

n
2

−
∑

i+j=degQ−1
0≤i,j<degQ

(degQ− i− 1)k(degQ− j − 1)kLi(χ)Lj(χ)q−
degQ−1

2 .

Finally, we substitute back Ln(χ) =
∑

A∈M
degA=n

χ(A) to obtain the required result. �

Definition 6.4. For all s ∈ C and all non-trivial even characters, χ, of prime modulus we define

L̂(s, χ) := (q1−s − 1)L(s, χ).(8)

Lemma 6.5. For all non-trivial even characters, χ, of prime modulus and all non-negative integers k
we have that

L(k)
(1

2
, χ
)

=
1

q
1
2 − 1

L̂(k)
(1

2
, χ
)

+
1

q
1
2 − 1

k−1∑
i=0

(− log q)k−ipk,i

( q
1
2

q
1
2 − 1

)
L̂(i)

(1

2
, χ
)

=
1

q
1
2 − 1

k∑
i=0

(− log q)k−ipk,i

( q
1
2

q
1
2 − 1

)
L̂(i)

(1

2
, χ
)
,

where, for non-negative integers k, i satisfying i ≤ k, we define the polynomials pk,i by

pk,k

( q
1
2

q
1
2 − 1

)
=1,

pk,i

( q
1
2

q
1
2 − 1

)
=− q

1
2

q
1
2 − 1

k−1∑
j=i

(
k

j

)
pj,i

( q
1
2

q
1
2 − 1

)
for i < k.

Remark 6.6. Because 1 ≤ q
1
2

q
1
2−1

< 4 for all prime powers q, we can see that the polynomials pk,i

(
q
1
2

q
1
2−1

)
can be bounded independently of q (but dependent on k and i of course). The factors (− log q)k−i are of
course still dependent on q, as well as k and i. These two points are important when we later determine
how the lower order terms in our main results are dependent on q.

Proof. We prove this by strong induction on k. The base case, k = 0, is obvious by Definition 6.4.
Now, suppose the claim holds for j = 0, 1, . . . , k. Differentiating, k + 1 number of times, the equation
(8) gives

L̂(k+1)(s, χ) = (q1−s − 1)L(k+1)(s, χ) + q1−s
k∑
j=0

(
k + 1

j

)
(− log q)k+1−jL(j)(s, χ).

Substituting s = 1
2 and rearranging gives

L(k+1)
(1

2
, χ
)

=
1

q
1
2 − 1

L̂(k+1)
(1

2
, χ
)
− q

1
2

q
1
2 − 1

k∑
j=0

(
k + 1

j

)
(− log q)k+1−jL(j)

(1

2
, χ
)
.
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We now apply the inductive hypothesis to obtain

L(k+1)
(1

2
, χ
)

=
1

q
1
2 − 1

L̂(k+1)
(1

2
, χ
)

− q
1
2

q
1
2 − 1

k∑
j=0

(
k + 1

j

)
(− log q)k+1−j 1

q
1
2 − 1

j∑
i=0

(− log q)j−ipj,i

( q
1
2

q
1
2 − 1

)
L̂(i)

(1

2
, χ
)

=
1

q
1
2 − 1

L̂(k+1)
(1

2
, χ
)

+
1

q
1
2 − 1

k∑
i=0

(− log q)k+1−i
(
− q

1
2

q
1
2 − 1

k∑
j=i

(
k + 1

j

)
pj,i

( q
1
2

q
1
2 − 1

))
L̂(i)

(1

2
, χ
)
.

The result follows by the definition of the polynomials pk,i . �

Lemma 6.7. For all non-negative integers k, and all non-trivial even characters χ of modulus Q ∈ P,
we have that

1

(log q)2k(q
1
2 − 1)2

∣∣∣L̂(k)
(1

2
, χ
)∣∣∣2

=
∑

A,B∈M
degAB<degQ

(
fk
(

degA,degB, degQ
)

+ gE,k
(

degA, degB, degQ
))
χ(A)χ(B)

|AB|
1
2

+
∑

degQ−2≤n≤degQ

∑
A,B∈M
degAB=n

hE,k,n
(

degA, degB, degQ
)
χ(A)χ(B)

|AB|
1
2

,

where

fk
(

degA, degB, degQ
)

= (degA)k(degB)k + (degQ− degA)k(degQ− degB)k,

and gE,k
(

degA, degB, degQ
)
, hE,k,n

(
degA, degB, degQ

)
are polynomials of degrees 2k − 1 and 2k,

respectively, whose coefficients can be bounded independently of q.

Proof. Let us define L−1(χ) := 0, and recall from Lemma 3.6 that LdegQ(χ) = 0. We can now define,
for n = 0, 1, . . . ,degQ,

Mn(χ) := Ln(χ)− qLn−1(χ).

Then, the functional equation for even characters can be written as

−
degQ∑
n=0

Mn(χ)(q−s)n = W (χ)q−
degQ

2

degQ∑
n=0

Mn(χ)(q1−s)degQ−n.(9)

Note that both sides of (9) are equal to L̂(s, χ). We proceed similarly to the odd character case. First
we differentiate, k number of times, the equation (9); and then we take the modulus squared of both
sides. Again, in order to make our calculations slightly easier, we restrict our attention to the case
where s ∈ R. We obtain

(log q)2k
2 degQ∑
n=0

( ∑
i+j=n

0≤i,j≤degQ

ikjkMi(χ)Mj(χ)

)
(q−s)n

=(log q)2kq− degQ
2 degQ∑
n=0

( ∑
i+j=n

0≤i,j≤degQ

(degQ− i)k(degQ− j)kMi(χ)Mj(χ)

)
(q1−s)2 degQ−n.
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Now we take the terms corresponding to n = 0, 1, . . . ,degQ from the LHS and n = 0, 1, . . . ,degQ− 1
from the RHS to obtain

L̂(k)(s, χ) =(log q)2k
degQ∑
n=0

( ∑
i+j=n

0≤i,j≤degQ

ikjkMi(χ)Mj(χ)

)
(q−s)n

+(log q)2kq− degQ
degQ−1∑
n=0

( ∑
i+j=n

0≤i,j≤degQ

(degQ− i)k(degQ− j)kMi(χ)Mj(χ)

)
(q1−s)2 degQ−n.

Substituting s = 1
2 and simplifying the RHS gives

L̂(k)
(1

2
, χ
)

=(log q)2k
degQ−1∑
n=0

( ∑
i+j=n

0≤i,j≤degQ

(
ikjk + (degQ− i)k(degQ− j)k

)
Mi(χ)Mj(χ)

)
q−

n
2

+ (log q)2k
∑

i+j=degQ
0≤i,j≤degQ

ikjkMi(χ)Mj(χ)q−
degQ

2 .

(10)

Now, we want factors such as Ln(χ) in our expression, as opposed to factors like Mn(χ). To this end,
suppose p(i, j) is a finite polynomial. Then,

degQ−1∑
n=0

( ∑
i+j=n

0≤i,j≤degQ

p(i, j)Mi(χ)Mj(χ)

)
q−

n
2

=

degQ−1∑
n=0

( ∑
i+j=n

0≤i,j≤degQ

p(i, j)
(
Li(χ)− qLi−1(χ)

)(
Lj(χ)− qLj−1(χ)

))
q−

n
2

=

degQ−1∑
n=0

( ∑
i+j=n

0≤i,j≤degQ

p(i, j)Li(χ)Lj(χ)

)
q−

n
2 +

degQ−3∑
n=0

( ∑
i+j=n

0≤i,j≤degQ

p(i+ 1, j + 1)Li(χ)Lj(χ)

)
q−

n−2
2

−
degQ−2∑
n=0

( ∑
i+j=n

0≤i,j≤degQ

p(i, j + 1)Li(χ)Lj(χ)

)
q−

n−1
2 −

degQ−2∑
n=0

( ∑
i+j=n

0≤i,j≤degQ

p(i+ 1, j)Li(χ)Lj(χ)

)
q−

n−1
2 .

Grouping the terms together gives

degQ−1∑
n=0

( ∑
i+j=n

0≤i,j≤degQ

p(i, j)Mi(χ)Mj(χ)

)
q−

n
2

=

degQ−1∑
n=0

( ∑
i+j=n

0≤i,j≤degQ

[
qp(i+ 1, j + 1)− q

1
2 p(i, j + 1)− q

1
2 p(i+ 1, j) + p(i, j)

]
Li(χ)Lj(χ)

)
q−

n
2

−
∑

i+j=degQ−2
0≤i,j≤degQ

qp(i+ 1, j + 1)Li(χ)Lj(χ)q−
degQ−2

2

+
∑

i+j=degQ−1
0≤i,j≤degQ

(
q

1
2 p(i, j + 1) + q

1
2 p(i+ 1, j)− qp(i+ 1, j + 1)

)
Li(χ)Lj(χ)q

degQ−1
2 .

In the case where

p(i, j) = ikjk + (degQ− i)k(degQ− j)k
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we have that

qp(i+ 1, j + 1)− q
1
2 p(i, j + 1)− q

1
2 p(i+ 1, j) + p(i, j) = (q

1
2 − 1)2

(
fk(i, j, degQ) + gE,k(i, j, degQ)

)
,

where gE,k(i, j, degQ) is a polynomial of degree 2k−1 whose coefficients can be bounded independently
of q.

We can now see that (10) becomes

1

(log q)2k(q
1
2 − 1)2

L̂(k)
(1

2
, χ
)

=

degQ−1∑
n=0

( ∑
i+j=n

0≤i,j≤degQ

(
fk(i, j, degQ) + gE,k(i, j, degQ)

)
Li(χ)Lj(χ)

)
q−

n
2

+

degQ∑
n=degQ−2

( ∑
i+j=n

0≤i,j≤degQ

hE,k,n(i, j, degQ)Li(χ)Lj(χ)

)
q−

n
2 ,

where hE,k,n(i, j, degQ) is a polynomial of degree k whose coefficients can be bounded independently
of q. Finally, we substitute back Ln(χ) =

∑
A∈M

degA=n
χ(A) to obtain the required result. �

7. Fourth Moments: Handling the Summations

We now demonstrate some techniques for handling the summations that we obtained in Section 6.

Lemma 7.1. Let Q ∈ P, and let p1
(

degA, degB, degQ
)

and p2
(

degA,degB, degQ
)

be finite poly-
nomials (which, for presentational purposes, we will write as p1 and p2, except when we need to use
variables other than degA,degB, degQ). Then,

1

φ(Q)

∑
χmodQ
χ 6=χ0

( ∑
A,B∈M

degAB<degQ

p1 χ(A)χ(B)

|AB|
1
2

)( ∑
C,D∈M

degCD<degQ

p2 χ(C)χ(D)

|CD|
1
2

)

=
∑

A,B,C,D∈M
degAB<degQ
degCD<degQ
AC=BD

p1p2

|ABCD|
1
2

+
∑

A,B,C,D∈M
degAB<degQ
degCD<degQ
AC≡BD(modQ)

AC 6=BD

p1p2

|ABCD|
1
2

− 1

φ(Q)

∑
A,B,C,D∈M
degAB<degQ
degCD<degQ

p1p2

|ABCD|
1
2

.

Proof. This follows by expanding the brackets and applying Corollary 3.4 . �

Lemma 7.2. Let p
(

degA,degB, degC,degD,degQ
)

be a finite homogeneous polynomial of degree d.
Then, ∑

A,B,C,D∈M
degAB<degQ
degCD<degQ
AC=BD

p
(

degA, degB, degC,degD,degQ
)

|ABCD|
1
2

=(1− q−1)(degQ)d+4

∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

p
(
a1 + a3, a1 + a4, a2 + a4, a2 + a3, 1

)
da1da2da3da4

+Op
(
(degQ)d+3

)
.

Remark 7.3. The subscript p in Op should be interpreted as saying that the implied constant is
dependent on the coefficients of p.

Proof. Consider the function f defined by

f(t1, t2, t3, t4) =
∑

A,B,C,D∈M
AC=BD

t1
degAt2

degBt3
degCt4

degD

|ABCD|
1
2

(11)
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with domain |ti| < 1
2q
− 1

2 . Note that AC = BD if and only if there exist G,H,R, S ∈ M satisfying
(R,S) = 1 and A = GR, B = GS, C = HS, D = HR. Hence,

f(t1, t2, t3, t4)

=
∑

G,H,R,S∈M
(R,S)=1

t1
degGRt2

degGSt3
degHSt4

degHR

|GHRS|

=
∑

G,H,R,S∈M

t1
degGRt2

degGSt3
degHSt4

degHR

|GHRS|
− q−1

∑
G,H,R,S∈M

t1
degGR+1t2

degGS+1t3
degHS+1t4

degHR+1

|GHRS|

=
∑

a1,a2,a3,a4≥0
t1
a1+a3t2

a1+a4t3
a2+a4t4

a2+a3 − q−1
∑

a1,a2,a3,a4≥0
t1
a1+a3+1t2

a1+a4+1t3
a2+a4+1t4

a2+a3+1,

(12)

where the second equality follows by similar means as in the proof of Lemma 3.7.

Now, for i = 1, 2, 3, 4 we define the operator Ωi := ti
d
dti

. For non-negative integers k1, k2, k3, k4 we can

apply the operator Ω1
k1Ω2

k2Ω3
k3Ω4

k4 to (11) and (12) to obtain

∑
A,B,C,D∈M
AC=BD

(degA)k1(degB)k2(degC)k3(degD)k4

|ABCD|
1
2

t1
degAt2

degBt3
degCt4

degD

=
∑

a1,a2,a3,a4≥0
(a1 + a3)

k1(a1 + a4)
k2(a2 + a4)

k3(a2 + a3)
k4t1

a1+a3t2
a1+a4t3

a2+a4t4
a2+a3

− q−1
∑

a1,a2,a3,a4≥0
(a1 + a3 + 1)k1(a1 + a4 + 1)k2(a2 + a4 + 1)k3(a2 + a3 + 1)k4

· t1a1+a3+1t2
a1+a4+1t3

a2+a4+1t4
a2+a3+1

= (1− q−1)
∑

a1,a2,a3,a4≥0
(a1 + a3)

k1(a1 + a4)
k2(a2 + a4)

k3(a2 + a3)
k4t1

a1+a3t2
a1+a4t3

a2+a4t4
a2+a3

+ q−1
∑

(a1,a2)=(0,0),(0,1),(1,0)
a3,a4≥0

(a1 + a3)
k1(a1 + a4)

k2(a2 + a4)
k3(a2 + a3)

k4t1
a1+a3t2

a1+a4t3
a2+a4t4

a2+a3 .

From this we can deduce that if p
(

degA,degB, degC,degD,degQ
)

is a finite homogeneous polynomial
of degree d, then

∑
A,B,C,D∈M
AC=BD

p
(

degA, degB, degC,degD,degQ
)

|ABCD|
1
2

t1
degAt2

degBt3
degCt4

degD

= (1− q−1)
∑

a1,a2,a3,a4≥0
p
(
a1 + a3, a1 + a4, a2 + a4, a2 + a3,degQ

)
t1
a1+a3t2

a1+a4t3
a2+a4t4

a2+a3

+ q−1
∑

(a1,a2)=(0,0),(0,1),(1,0)
a3,a4≥0

p
(
a1 + a3, a1 + a4, a2 + a4, a2 + a3,degQ

)
t1
a1+a3t2

a1+a4t3
a2+a4t4

a2+a3 .
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Now, we can extract and sum the coefficients of t1
i1t2

i2t3
i3t4

i4 for which i1 + i2 < degQ and i3 + i4 <
degQ to obtain∑

A,B,C,D∈M
degAB<degQ
degCD<degQ
AC=BD

p
(

degA,degB, degC,degD,degQ
)

|ABCD|
1
2

= (1− q−1)
∑

a1,a2,a3,a4≥0
2a1+a3+a4<degQ
2a2+a3+a4<degQ

p
(
a1 + a3, a1 + a4, a2 + a4, a2 + a3, degQ

)

+ q−1
∑

(a1,a2)=(0,0),(0,1),(1,0)
a3,a4≥0

2a1+a3+a4<degQ
2a2+a3+a4<degQ

p
(
a1 + a3, a1 + a4, a2 + a4, a2 + a3, degQ

)

= (1− q−1)
∫

a1,a2,a3,a4≥0
2a1+a3+a4<degQ
2a2+a3+a4<degQ

p
(
a1 + a3, a1 + a4, a2 + a4, a2 + a3,degQ

)
da1da2da3da4

+Op
(
(degQ)d+3

)
+Op

(
(degQ)d+2

)
= (1− q−1)(degQ)d+4

∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

p
(
a1 + a3, a1 + a4, a2 + a4, a2 + a3, 1

)
da1da2da3da4

+Op
(
(degQ)d+3

)
.

�

Lemma 7.4. Let p
(

degA,degB, degC,degD,degQ
)

be a finite polynomial of degree d. Then,∑
A,B,C,D∈M
degAB<degQ
degCD<degQ
AC≡BD(modQ)

AC 6=BD

p
(

degA,degB, degC,degD,degQ
)

|ABCD|
1
2

�p (degQ)d+3.

Proof. Because degAB, degCD < degQ, we have that

p
(

degA,degB, degC,degD,degQ
)
�p (degQ)d.

Hence, ∑
A,B,C,D∈M
degAB<degQ
degCD<degQ
AC≡BD(modQ)

AC 6=BD

p
(

degA,degB, degC,degD,degQ
)

|ABCD|
1
2

�p(degQ)d
∑

A,B,C,D∈M
degAB<degQ
degCD<degQ
AC≡BD(modQ)

AC 6=BD

1

|ABCD|
1
2

= (degQ)d
∑

0≤z1,z2<degQ

q−
z1+z2

2

∑
A,B,C,D∈M
degAB=z1
degCD=z2

AC≡BD(modQ)
AC 6=BD

1.

(13)

Now, Lemma 7.9 from [AY20] tells us that for non-negative integers z1, z2 we have∑
A,B,C,D∈M
degAB=z1
degCD=z2

AC≡BD(modQ)
AC 6=BD

1

{
�ε

1
|Q|
(
qz1qz2

)1+ε
if z1 + z2 ≤ 19

10 degQ

� 1
φ(Q)q

z1qz2(z1 + z2)
3 if z1 + z2 >

19
10 degQ.

(14)
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Hence, for ε < 1
38 we have∑

0≤z1,z2<degQ

q−
z1+z2

2

∑
A,B,C,D∈M
degAB=z1
degCD=z2

AC≡BD(modQ)
AC 6=BD

1

� 1

|Q|
∑

0≤z1,z2<degQ
z1+z2≤ 19

10
degQ

(
q

1
2
+ε
)z1+z2 +

1

φ(Q)

∑
0≤z1,z2<degQ
z1+z2>

19
10

degQ

q
z1+z2

2 (z1 + z2)
3

� |Q|
φ(Q)

(degQ)3 � (degQ)3.

The result follows by applying this to (13). �

Remark 7.5. In her paper, Tamam [Tam14, Lemma 8.5] states a similar result as (14) above. How-
ever, in her proof she claims that d(N)� degN , which is not the case. Addressing this is non-trivial
and was done in [AY20], as stated above.

Lemma 7.6. Let p
(

degA,degB, degC,degD,degQ
)

be a finite polynomial of degree d. Then,

1

φ(Q)

∑
A,B,C,D∈M
degAB<degQ
degCD<degQ

p
(

degA,degB, degC,degD,degQ
)

|ABCD|
1
2

�p (degQ)d+2.

Proof. Because degAB, degCD < degQ, we have that

p
(

degA,degB, degC,degD,degQ
)
�p (degQ)d.

Hence,

1

φ(Q)

∑
A,B,C,D∈M
degAB<degQ
degCD<degQ

p
(

degA, degB, degC,degD,degQ
)

|ABCD|
1
2

�p
(degQ)d

φ(Q)

( ∑
A,B∈M

degAB<degQ

1

|AB|
1
2

)( ∑
C,D∈M

degCD<degQ

1

|CD|
1
2

)

=
(degQ)d

φ(Q)

( ∑
n,m≥0

n+m<degQ

q
m+n

2

)2

� (degQ)d+2.

�

From Lemmas 7.1 to 7.6 we can deduce the following:

Lemma 7.7. Let Q ∈ P, and let p1
(

degA,degB, degQ
)

and p2
(

degC,degD,degQ
)

be finite homo-
geneous polynomials of degree d1 and d2, respectively. Then,

1

φ(Q)

∑
χmodQ
χ 6=χ0

( ∑
A,B∈M

degAB<degQ

p1 χ(A)χ(B)

|AB|
1
2

)( ∑
C,D∈M

degCD<degQ

p2 χ(C)χ(D)

|CD|
1
2

)

=(1− q−1)(degQ)d1+d2+4

∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

p1
(
a1 + a3, a1 + a4, 1

)
p2
(
a2 + a4, a2 + a3, 1

)
da1da2da3da4

+Op1,p2
(
(degQ)d1+d2+3

)
.

Similarly, the following can be proved:
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Lemma 7.8. Let Q ∈ P, and let p1
(

degA,degB, degQ
)

and p2
(

degC,degD,degQ
)

be finite homo-
geneous polynomials of degree d1 and d2, respectively. Then,

1

φ(Q)

∑
χmodQ
χ even
χ 6=χ0

( ∑
A,B∈M

degAB<degQ

p1 χ(A)χ(B)

|AB|
1
2

)( ∑
C,D∈M

degCD<degQ

p2 χ(C)χ(D)

|CD|
1
2

)

=q−1(degQ)d1+d2+4

∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

p1
(
a1 + a3, a1 + a4, 1

)
p2
(
a2 + a4, a2 + a3, 1

)
da1da2da3da4

+Op1,p2
(
(degQ)d1+d2+3

)
.

The proof of Lemma 7.8 is similar to the proof of Lemma 7.7. From [AY20], we use Lemma 7.10
instead of Lemma 7.9.

We can similarly prove the following:

Lemma 7.9. Let Q ∈ P, let p1
(

degA,degB, degQ
)

and p2
(

degC,degD,degQ
)

be finite homoge-
neous polynomials of degree d1 and d2, respectively, and let a ∈ {0, 1, 2}. Then,

1

φ(Q)

∑
χmodQ
χ 6=χ0

( ∑
A,B∈M

degAB=degQ−a

p1 χ(A)χ(B)

|AB|
1
2

)( ∑
C,D∈M

degCD=degQ−a

p2 χ(C)χ(D)

|CD|
1
2

)
= Op1,p2

(
(degQ)d1+d2+3

)
,

and

1

φ(Q)

∑
χmodQ
χ even
χ 6=χ0

( ∑
A,B∈M

degAB=degQ−a

p1 χ(A)χ(B)

|AB|
1
2

)( ∑
C,D∈M

degCD=degQ−a

p2 χ(C)χ(D)

|CD|
1
2

)
= Op1,p2

(
(degQ)d1+d2+3

)
.

8. Fourth Moments of Derivatives

We are now equipped to prove the fourth moment result.

Proof of Theorem 2.6. We have that

1

φ(Q)

∑
χmodQ
χ 6=χ0

∣∣∣L(k)
(1

2
, χ
)∣∣∣2∣∣∣L(l)

(1

2
, χ
)∣∣∣2

=
1

φ(Q)

∑
χmodQ
χ odd

∣∣∣L(k)
(1

2
, χ
)∣∣∣2∣∣∣L(l)

(1

2
, χ
)∣∣∣2 +

1

φ(Q)

∑
χmodQ
χ even
χ 6=χ0

∣∣∣L(k)
(1

2
, χ
)∣∣∣2∣∣∣L(l)

(1

2
, χ
)∣∣∣2.(15)

Using Lemma 6.2, we have, for the first term on the RHS, that

1

φ(Q)

1

(log q)2k+2l

∑
χmodQ
χ odd

∣∣∣L(k)
(1

2
, χ
)∣∣∣2∣∣∣L(l)

(1

2
, χ
)∣∣∣2

=
1

φ(Q)

∑
χmodQ
χ odd

( ∑
A,B∈M

degAB<degQ

(
fk + gO,k

)
χ(A)χ(B)

|AB|
1
2

+
∑

A,B∈M
degAB=degQ−1

hO,kχ(A)χ(B)

|AB|
1
2

)

·

( ∑
C,D∈M

degCD<degQ

(
fl + gO,l

)
χ(C)χ(D)

|CD|
1
2

+
∑

C,D∈M
degCD=degQ−1

hO,lχ(C)χ(D)

|CD|
1
2

)
.

(16)
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By using Lemmas 7.7 and 7.8, we have that

1

φ(Q)

∑
χmodQ
χ odd

( ∑
A,B∈M

degAB<degQ

(
fk + gO,k

)
χ(A)χ(B)

|AB|
1
2

)( ∑
C,D∈M

degCD<degQ

(
fl + gO,l

)
χ(C)χ(D)

|CD|
1
2

)

=
1

φ(Q)

∑
χmodQ
χ 6=χ0

( ∑
A,B∈M

degAB<degQ

(
fk + gO,k

)
χ(A)χ(B)

|AB|
1
2

)( ∑
C,D∈M

degCD<degQ

(
fl + gO,l

)
χ(C)χ(D)

|CD|
1
2

)

− 1

φ(Q)

∑
χmodQ
χ even
χ 6=χ0

( ∑
A,B∈M

degAB<degQ

(
fk + gO,k

)
χ(A)χ(B)

|AB|
1
2

)( ∑
C,D∈M

degCD<degQ

(
fl + gO,l

)
χ(C)χ(D)

|CD|
1
2

)

= (1− 2q−1)(degQ)2k+2l+4

∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

fk
(
a1 + a3, a1 + a4, 1

)
fl
(
a2 + a4, a2 + a3, 1

)
da1da2da3da4

+Ok,l

(
(degQ)2k+2l+3

)
.

Strictly speaking, Lemmas 7.7 and 7.8 require that the polynomials fk + gO,k and fl + gO,l are homo-
geneous, which is not the case. However, these polynomials can be written as sums of homogeneous
polynomials, with the terms of highest degree being fk and fl, respectively. We can then apply the
lemmas term-by-term to obtain the result above.

We now have the main term of (16). Indeed, for the remaining terms we can apply the Cauchy-Schwarz

inequality and Lemmas 7.7, 7.8, and 7.9 to see that they are equal to Ok,l

(
(degQ)2k+2l+ 7

2

)
. Hence,

1

φ(Q)

1

(log q)2k+2l

∑
χmodQ
χ odd

∣∣∣L(k)
(1

2
, χ
)∣∣∣2∣∣∣L(l)

(1

2
, χ
)∣∣∣2

= (1− 2q−1)(degQ)2k+2l+4

∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

fk
(
a1 + a3, a1 + a4, 1

)
fl
(
a2 + a4, a2 + a3, 1

)
da1da2da3da4

+Ok,l

(
(degQ)2k+2l+ 7

2

)
.

(17)

We now look at the second term on the RHS of (15). By using Lemma 6.7 and similar means as those
used to deduce (17), we can show for all non-negative integers i, j that

1

φ(Q)

1

(log q)2i+2j

1

(q
1
2 − 1)4

∑
χmodQ
χ even
χ 6=χ0

∣∣∣L̂(i)
(1

2
, χ
)∣∣∣2∣∣∣L̂(j)

(1

2
, χ
)∣∣∣2

= q−1(degQ)2i+2j+4

∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

fi
(
a1 + a3, a1 + a4, 1

)
fj
(
a2 + a4, a2 + a3, 1

)
da1da2da3da4

+Oi,j

(
(degQ)2i+2j+ 7

2

)
.
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Using Lemma 6.5 and the Cauchy-Schwarz inequality, we obtain that

1

φ(Q)

1

(log q)2k+2l

∑
χmodQ
χ even
χ 6=χ0

∣∣∣L(k)
(1

2
, χ
)∣∣∣2∣∣∣L(l)

(1

2
, χ
)∣∣∣2

= q−1(degQ)2k+2l+4

∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

fk
(
a1 + a3, a1 + a4, 1

)
fl
(
a2 + a4, a2 + a3, 1

)
da1da2da3da4

+Ok,l

(
(degQ)2k+2l+ 7

2

)
.

(18)

The proof follows from (15), (17), (18). �

We now proceed to prove Theorem 2.7.

Lemma 8.1. Let m be a positive integer. For all non-negative x we have that(
1− x

m

)m
≤ e−x,

and for all x ∈ [0, 2m
1
3 ] we have that(

1− x

m

)m
≥ e−xe

−4

m
1
3 −2m

− 1
3 .

Proof. By using the Taylor series for log we have that

log
((

1− x

m

)m)
= −x− x2

2m
− x3

3m2
− x4

4m3
− . . . .

Clearly, the RHS is ≤ −x, which proves the first inequality. For the second inequality we use the
bounds on x to obtain that

x2

2m
+

x3

3m2
+

x4

4m3
+ . . . ≤ x2

m

∞∑
i=0

( x
m

)i
=
x2

m

(
1

1− x
m

)
≤
(

4

m
1
3 − 2m−

1
3

)
,

from which the result follows. �

Proof of Theorem 2.7. Let us expand the brackets in (7) and multiply by m4. One of the terms is the
following:

m4

∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

(1− a1 − a3)m(1− a1 − a4)m(1− a2 − a3)m(1− a2 − a4)mda1da2da3da4

=

∫
a1,a2,a3,a4≥0
2a1+a3+a4<m
2a2+a3+a4<m

(
1− a1 + a3

m

)m(
1− a1 + a4

m

)m(
1− a2 + a3

m

)m(
1− a2 + a4

m

)m
da1da2da3da4,

where we have used the substitutions ai → ai
m . On one hand, by using Lemma 8.1, we have that∫

a1,a2,a3,a4≥0
2a1+a3+a4<m
2a2+a3+a4<m

(
1− a1 + a3

m

)m(
1− a1 + a4

m

)m(
1− a2 + a3

m

)m(
1− a2 + a4

m

)m
da1da2da3da4

≥
∫
0≤a1,a2,a3,a4≤m

1
3

2a1+a3+a4<m
2a2+a3+a4<m

(
1− a1 + a3

m

)m(
1− a1 + a4

m

)m(
1− a2 + a3

m

)m(
1− a2 + a4

m

)m
da1da2da3da4

≥e
−16

m
1
3 −2m

− 1
3

∫
0≤a1,a2,a3,a4≤m

1
3

e−2(a1+a2+a3+a4)da1da2da3da4 −→
1

16

as m −→∞. On the other hand, by the same lemma, we have that∫
a1,a2,a3,a4≥0
2a1+a3+a4<m
2a2+a3+a4<m

(
1− a1 + a3

m

)m(
1− a1 + a4

m

)m(
1− a2 + a3

m

)m(
1− a2 + a4

m

)m
da1da2da3da4

≤
∫
0≤a1,a2,a3,a4≤m

e−2(a1+a2+a3+a4)da1da2da3da4 −→
1

16
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as m −→∞. So, we see that

m4

∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

(1− a1 − a3)m(1− a1 − a4)m(1− a2 − a3)m(1− a2 − a4)mda1da2da3da4 −→
1

16

(19)

as m −→∞.

Now, after we expanded the brackets in (7) and multiplied by m4, there were other terms. These can
be seen to tend to 0 as m −→∞. We prove one case below; the rest are similar.

m4

∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

(1− a1 − a3)m(1− a1 − a4)m(a2 + a3)
m(a2 + a4)

mda1da2da3da4

≤m4

∫
a1,a2,a3,a4≥0
2a1+a3+a4<1
2a2+a3+a4<1

(a2 + a3)
m(a2 + a4)

m � m4

4m
,

where we have used the following: The maximum value that (a2 + a3)(a2 + a4) can take subject to the
conditions in the integral is at most equal to the maximum value that f(x, y) := xy can take subject
to the conditions x, y ≥ 0 and x+ y < 1. By plotting this range and looking at contours of f(x, y) we
can see that the maximum value is 1

4 . The result follows. �
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