This sheet does not count towards assessment.

1. Find all solutions in integers to the following Diophantine equations (or show that there are none):
(i) $3 x+5 y=7$;
(ii) $4 x-6 y=3$;
(iii) $4 x-6 y=10$;
(iv) $x^{2}-7 y=4$;
(v) $x^{2}+4 y^{2}=25$;
(vi) $x^{2}+1=7 y^{2}+14 x^{3} y^{4}$;
(vii) $x^{2}-y^{2}=15$.
2. For each of the following numbers n, determine whether n can be written as the sum of two squares and, if it can, write n in that form.
(i) 34 ;
(ii) 53 ;
(iii) 67 ;
(iv) 73 ;
(v) $99 ; \quad$ (vi) 229 ;
(vii) $3185=5 \cdot 7^{2} \cdot 13 ; \quad$ (viii) $5075=5^{2} \cdot 7 \cdot 29 ; \quad$ (ix) $39690=2 \cdot 3^{4} \cdot 5 \cdot 7^{2}$.
3. If $n=a^{2}+b^{2}$, we will regard any of the 8 expressions $(\pm a)^{2}+(\pm b)^{2}$ and $(\pm b)^{2}+(\pm a)^{2}$ for n as equivalent to $a^{2}+b^{2}$. Find two inequivalent expressions for $377=13 \cdot 29$ as the sum of two squares. Do the same for $3869=53 \cdot 73$. Find four inequivalent representations of $112201=29 \cdot 53 \cdot 73$.
4. Show that a positive integer n can be expressed as the difference of two integer squares if and only if $n \not \equiv 2(\bmod 4)$.
5. Write 29 and 43 as sums of 4 squares, and hence write $1247=29 \cdot 43$ in that form.
6. Show that if $n \geq 170$ then n can be written as the sum of 5 positive squares. [Hint: Write $m=n-169$ as a sum of 4 integer squares and use the fact that $169=13^{2}=5^{2}+12^{2}=3^{2}+4^{2}+12^{2}=1^{2}+2^{2}+8^{2}+10^{2}$.]
7. Show that in every Pythagorean triple (x, y, z), at least one of x, y is divisible by 3 , and at least one of x, y, z is divisible by 5 .
8. Prove or disprove the following statement: If (x, y, z) is a Pythagorean triple (not necessarily primitive) then, after swapping x and y if necessary, there are integers r, s such that $x=r^{2}-s^{2}, y=2 r s, z=r^{2}+s^{2}$.
