
ECM3704 NUMBER THEORY
EXERCISE SHEET 4 – SOLUTIONS

This sheet does not count for assessment

1. (i) 3x + 5y = 7: first solve 3x ≡ 7 (mod 5). This has solution x ≡ −1
(mod 5). Write this as x = 5a − 1 and substitute into original equation to
get 3(5a − 1) + 5y = 7. This simplifies to y = 2 − 3a. Thus the general
solution is x = 5a− 1, y = 2− 3a for arbitrary a ∈ Z.

(ii) 4x − 6y = 3 has no integer solutions since the left-hand side is even
for any choice of x, y ∈ Z while the right-hand side is odd.

(iii) 4x−6y = 10 is equivalent to 2x−3y = 5. Solving 2x ≡ 5 (mod 3) we get
x ≡ 1 (mod 3), so that x = 3a+1. Substituting, we have 2(3a+1)−3y = 5,
so that y = 2a− 1. Hence the general solution is x = 3a + 1, y = 2a− 1 for
arbitrary a ∈ Z.

(iv) x2 − 7y = 4: Solving x2 ≡ 4 (mod 7) we get x ≡ ±2 (mod 7), so
that x = ±(2 + 7a). Substituting, we have (2 + 7a)2 − 7y = 4. Expanding
and simplifying, we find that y = 4a + 7a2. Hence the general solution is
x = ±(2 + 7a), y = 4a + 7a2 for arbitrary a ∈ Z.

(v) x2 + 4y2 = 25. For any integer solution we must have y2 ≤ 25/4, so by
exhaustive search the solutions are (x, y) = (±5, 0) or (±3,±2).

(vi) x2 + 1 = 7y2 + 14x3y4: for any solution of this we would have x2 + 1 ≡ 0
(mod 7), which is impossible. Hence there are no integer solutions.

(vii) x2 − y2 = 15. Clearly if (x, y) is a solution then so is any of (±x,±y),
so it suffices to find solutions with x, y ≥ 0. Now x2 − y2 = (x + y)(x− y),
so look at ways of writing 15 as a product of two factors x + y and x − y
with x+ y ≥ x− y > 0. The only possibilities are x+ y = 15, x− y = 1 and
x + y = 5, x− y = 3. This gives the solutions (x, y) = (8, 7) or (4, 1). Hence
the full list of solutions is (x, y) = (±8,±7) or (±4± 1).

2. (i) 34 = (12 + 12)(12 + 42) = 32 + 52.

(ii) 53 = 22 + 72.

(iii) 67 cannot be written as the sum of two squares, since 67 is prime and
67 ≡ 3 (mod 4).

(iv) 73 = 32 + 82.

(v) 99 cannot be written as the sum of two squares, since v11(99) = 1.

(vi) 229 = 22 + 152.
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(vii)

3185 = 5 · 72 · 13 = 72(12 + 22)(22 + 32) = 72(12 + 82) = 72 + 562.

(Alternatively, 3185 = 282 + 492.)

(viii) 5075 = 52 · 7 · 29 cannot be written as the sum of two squares since
v7(5075) = 1.

(ix) 39690 = 2 · 34 · 5 · 72 = 632(12 + 32) = 632 + 1892.

3. We use the formula (a2 + b2)(c2 + d2) = (ac− bd)2 + (ad + bc)2, which we
can obtain by expanding |z|2|w|2 = |zw|2 for z = a + ib, w = c + id:

377 = 13 · 29 = (22 + 32)(22 + 52) = 112 + 162,
and also 377 = (22 + 32)(52 + 22) = 42 + 192.

3869 = 53 · 73 = (22 + 72)(32 + 82) = 502 + 372,
and also 3869 = (22 + 72)(82 + 32) = 52 + 622.

112201 = 29 · 53 · 73 = (22 + 52)(502 + 372) = (22 + 52)(52 + 622), so

112201 = 852 + 3242 = 1762 + 2852 = 3002 + 1492 = 992 + 3202.

4. We can write the equation n = x2 − y2 as n = (x + y)(x− y).

If n is odd we can put x + y = n, x − y = 1. Then x = (n + 1)/2 and
y = (n− 1)/2. We then have x, y ∈ Z and x2 − y2 = n.

If n = 4k with k ∈ Z, put x = k+1, y = k−1. We then have x2−y2 = 4k = n.

We have now shown that we can solve x2−y2 = n whenever n 6≡ 2 (mod 4).

Conversely, if n = x2 − y2 then we have x2, y2 ≡ 0 or 1 (mod 4), so
n ≡ 0 − 0, 0 − 1, 1 − 0 or 1 − 1 (mod 4). Thus we cannot have n ≡ 2
(mod 4).

5. By inspection we have 29 = 52 + 22 + 02 + 02 and 43 = 52 + 32 + 32 + 02.
Now from lectures we have

(a21 + a22 + a23 + a24)(b
2
1 + b22 + b23 + b24) = (c21 + c22 + c23 + c24)

where

c1 = a1b1 + a2b2 + a3b3 + a4b4

c2 = a1b2 − a2b1 + a3b4 − a4b3

c3 = a1b3 − a2b4 − a3b1 + a4b2

c4 = a1b4 + a2b3 − a3b2 − a4b1.
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Taking a1 = 5, a2 = 2, a3 = a4 = 0 and b1 = 5, b2 = b3 = 3, b4 = 0, we get
c1 = 25 + 6 = 31, c2 = 15− 10 = 5, c3 = 15, c4 = 6. Hence

1247 = 312 + 52 + 152 + 62.

(There are other solutions.)

6. Given n ≥ 170, write n− 169 ∈ N as a sum of four integer squares:

n− 169 = a2 + b2 + c2 + d2,

where, without loss of generality, a ≥ b ≥ c ≥ d ≥ 0. (This is always possible
by Lagrange’s Four Squares Theorem.)
If d > 0 then n = a2 + b2 + c2 + d2 + 132.
If c > 0 and d = 0 then n = a2 + b2 + c2 + 122 + 52.
If b > 0 and c = d = 0 then n = a2 + b2 + 122 + 42 + 32.
If a > 0 and b = c = d = 0 then n = a2 + 102 + 82 + 22 + 12.
Clearly we cannot have a = b = c = d = 0.
Hence in all cases we have expressed n as a sum of 5 positive integer squares.

7. In either case, it suffices to consider only primitive Pythagorean triples.

Every primitive Pythagorean triple (x, y, z) has the form

x = r2 − s2, y = 2rs, z = r2 + s2

(after swapping x, y if necessary) for some r, s ∈ N.

If 3 - y then 3 - r, 3 - s, so we have r, s ≡ ±1 (mod 3). Hence r2 ≡ s2 ≡ 1
(mod 3), so 3 | x. Hence either x or y is divisible by 3.

If 5 - y then 5 - r, 5 - s, so we have r, s ≡ ±1 or ±2 (mod 5). Hence
r2, s2 ≡ ±1 (mod 5). Thus either r2 ≡ s2 (mod 5), so x = r2 − s2 is
divisible by 5, or r2 ≡ −s2 (mod 5), so z = r2 + s2 is divisible by 5. Hence
at least one of x, y, z is divisible by 5.

8. The statement is false: e.g. for the Pythagorean triple (9,12,15) we would
need

9 = r2 − s2, 12 = 2rs 15 = r2 + s2.

Then 2s2 = 15− 9 = 6, so that s = ±
√

3 6∈ Z.

[What we proved in lectures was that every primitive Pythagorean triple can
be obtained by these formulae.]
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