ECM3704 NUMBER THEORY

EXERCISE SHEET 1 - SOLUTIONS

This sheet does not count for assessment

1. The primes up to 200 are:
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103$, $107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199$.
2. (i)

| i | r_{i-2} | | r_{i-1} | | q_{i-1} | | r_{i} | x_{i} |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |$\quad y_{i}$.

so $\operatorname{gcd}(34,20)=2=3 \times 34-5 \times 20$ and $x=3, y=-5$.
(ii)

i	r_{i-2}		r_{i-1}		q_{i-1}		r_{i}	x_{i}	y_{i}
0							55	1	0
1							34	0	1
2	55	$=$	34	\times	1	+	21	1	-1
3	34	$=$	21	\times	1	+	13	-1	2
4	21	$=$	13	\times	1	+	8	2	-3
5	13	$=$	8	\times	1	$+$	5	-3	5
6	8	$=$	5	\times	1	+	3	5	-8
7	5	$=$	3	\times	1	+	2	-8	13
8	3	$=$	2	\times	1	$+$	1	13	-21
9	2	$=$	2	\times	1	$+$	0		

so $\operatorname{gcd}(55,34)=1=13 \times 55-21 \times 34$ and so $x=13, y=-21$.
(iii)

| i | r_{i-2} | | r_{i-1} | | q_{i-1} | | r_{i} | x_{i} |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |y_{i}.

so $\operatorname{gcd}(1105,208)=13=-3 \times 1105+16 \times 208$ and so $x=-3, y=16$.
3. We have $l=a(b / d)$ with $b / d \in \mathbb{Z}$ so $a \mid l$. Similarly $b \mid l$, so (i) holds.

Let $a^{\prime}=a / d, b^{\prime}=b / d$. Then $a^{\prime}, b^{\prime} \in \mathbb{Z}, l=a^{\prime} b^{\prime} d$ and $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$. If $a \mid m$ and $b \mid m$, say $m=a r=b s$, then, dividing by d, we have $a^{\prime} r=b^{\prime} s$. Thus $a^{\prime} \mid b^{\prime} s$. By Euclid's Lemma $a^{\prime} \mid s$. Hence $a^{\prime} b \mid b s$, that is, $l \mid m$. Thus (ii) holds.

Now suppose that L is another positive integer satisfying (i) and (ii). By (i) for L we have $a \mid L$ and $b \mid L$, so it follows from (ii) for l that $l \mid L$. Similarly $L \mid l$, and as both are positive, we conclude that $L=l$.
4. (i) Suppose that n is an integer such that $n^{2}+2$ is divisible by 4 . That is, $4 \mid\left(n^{2}+2\right)$, which is to say that

$$
n^{2}+2=4 k
$$

for some integer k. Consider two cases:
Case 1: n is even. That is, $n=2 m$ for some integer m. Then we can write $4 k=4 m^{2}+2$. Dividing by 2 , we have $2 k=2 m^{2}+1$. In the last equation we have that the lhs is even and the rhs is odd. This is a contradiction!
Case 2: n is not even. Similar to Case 1. From cases 1 and 2 we have the desired result.
(ii) Note that $x \mid y$ if and only if $(x, y)=x$. We now use some properties of the gcd.

$$
\begin{aligned}
a \mid b c & \Leftrightarrow(a, b c)=a \\
& \Leftrightarrow\left(\frac{a}{(a, b)}, \frac{b c}{(a, b)}\right)=\frac{a}{(a, b)} \\
& \Leftrightarrow\left(\frac{a}{(a, b)}, \frac{b}{(a, b)} c\right)=\frac{a}{(a, b)} \\
& \Leftrightarrow\left(\frac{a}{(a, b)}, c\right)=\frac{a}{(a, b)} \quad \text { by Euclid's Lemma } \\
& \left.\Leftrightarrow \frac{a}{(a, b)} \right\rvert\, c .
\end{aligned}
$$

5. (i) $60=2^{2} \cdot 3 \cdot 5$.
$v_{2}(60)=2 ; v_{3}(60)=v_{5}(60)=1$;
$v_{p}(60)=0$ for all primes $p \neq 2,3,5$.
(ii) $105=3 \cdot 5 \cdot 7$.
$v_{3}(105)=v_{5}(105)=v_{7}(105)=1$;
$v_{p}(105)=0$ for all primes $p \neq 3,5,7$.
(iii) $65536=2^{16}$.
$v_{2}(65536)=16 ; v_{p}(65536)=0$ for all primes $p \neq 2$.
6. It is sufficient to prove the contrapositive, that if \sqrt{m} is rational then m is a perfect square. Suppose that $\sqrt{m}=a / b$ where a and b are positive
integers. Then

$$
m=a^{2} / b^{2} .
$$

If a and b have prime-power factorisations

$$
a=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}} \quad \text { and } \quad b=p_{1}^{f_{1}} \cdots p_{k}^{f_{k}}
$$

then

$$
m=p_{1}^{2 e_{1}-2 f_{1}} \cdots p_{k}^{2 e_{k}-2 f_{k}}
$$

must be the factorisation of m. Notice that every prime p_{i} appears an even number of times in this factorisation, and $e_{i}-f_{i} \geq 0$ for each i, so

$$
m=\left(p_{1}^{e_{1}-f_{1}} \cdots p_{k}^{e_{k}-f_{k}}\right)^{2}
$$

is a perfect square.
7. The number k is a proper factor of $(n+1)!+k$ for $2 \leq k \leq n+1$, since k occurs as one of the terms in the product $(n+1)!=(n+1) \cdot n \cdot(n-1) \cdot \ldots \cdot 1$. Hence each of these n numbers $(n+1)!+k$ is composite, so we have exhibited n consecutive composite numbers.
8.
(i) Suppose $p_{1}, p_{2}, \ldots, p_{n}$ are distinct primes of the form $4 x-1$. Consider the number

$$
N=4 p_{1} p_{2} \ldots p_{n}-1 .
$$

Then $p_{i} \nmid N$ for any i. Moreover, not every prime $p \mid N$ is of the form $4 x+1$; if they all were, then N would be of the form $4 x+1$. Since N is odd, each prime divisor p_{i} is odd so there is a $p \mid N$ that is of the form $4 x-1$. Since $p \neq p_{i}$ for any i, we have found a new prime of the form $4 x-1$. We can repeat this process indefinitely, so the set of primes of the form $4 x-1$ cannot be finite.
(ii) Suppose $n=a b$ where $a, b \in \mathbb{N}$ and a is the smallest prime factor of n. Since n is not prime, we have $b>1$. Since a is the smallest prime factor of n, we have $a \leq b$. Suppose for a contradiction that $a>\sqrt{n}$. Then we also have $b>\sqrt{n}$ and so $n=a b>(\sqrt{n})^{2}=n$ - contradiction. Therefore $a \leq \sqrt{n}$.
(iii) If an odd integer n is expressible as a sum of three or more consecutive positive integers, then for some $m \geq 1$ and $k \geq 3$,

$$
n=m+(m+1)+\ldots+(m+(k-1))=k m+\frac{k(k-1)}{2} .
$$

If k is odd, then $n=k\left(m+\frac{k-1}{2}\right)$ and cannot be prime (k and $m+\frac{k-1}{2}$ are integers strictly bigger than 1). If k is even, then, $n=\frac{k}{2}(2 m+(k-1))$ and once again cannot be prime as $k / 2$ and $2 m+(k-1)$ are integers strictly bigger than 1. If an odd integer n is not prime, write $n=a b$ for some other positive integers a and b strictly bigger than 1. a and b must be odd. Assume $a \leq b$ without loss of generality. Let $k=a \geq 3$ and $m=b-\frac{a-1}{2} \geq a-\frac{a-1}{2}=$ $\frac{a+1}{2} \geq 2$. Then,
$m+(m+1)+\cdots+(m+(k-1))=k m+\frac{k(k-1)}{2}=k\left(m+\frac{k-1}{2}\right)=a b=n$.

