
ECM3704 NUMBER THEORY

EXERCISE SHEET 1 – SOLUTIONS

This sheet does not count for assessment

1. The primes up to 200 are:

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,
107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199.

2. (i)
i ri−2 ri−1 qi−1 ri xi yi
0 34 1 0
1 20 0 1
2 34 = 20 × 1 + 14 1 −1
3 30 = 14 × 1 + 6 −1 2
4 14 = 6 × 2 + 2 3 −5
5 6 = 2 × 3 + 0

so gcd(34, 20) = 2 = 3× 34− 5× 20 and x = 3, y = −5.

(ii)
i ri−2 ri−1 qi−1 ri xi yi
0 55 1 0
1 34 0 1
2 55 = 34 × 1 + 21 1 −1
3 34 = 21 × 1 + 13 −1 2
4 21 = 13 × 1 + 8 2 −3
5 13 = 8 × 1 + 5 −3 5
6 8 = 5 × 1 + 3 5 −8
7 5 = 3 × 1 + 2 −8 13
8 3 = 2 × 1 + 1 13 −21
9 2 = 2 × 1 + 0

so gcd(55, 34) = 1 = 13× 55− 21× 34 and so x = 13, y = −21.

(iii)
i ri−2 ri−1 qi−1 ri xi yi
0 1105 1 0
1 208 0 1
2 1105 = 208 × 5 + 65 1 −5
3 208 = 65 × 3 + 13 −3 16
4 65 = 13 × 5 + 0

so gcd(1105, 208) = 13 = −3× 1105 + 16× 208 and so x = −3, y = 16.
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3. We have l = a(b/d) with b/d ∈ Z so a | l. Similarly b | l, so (i) holds.

Let a′ = a/d, b′ = b/d. Then a′, b′ ∈ Z, l = a′b′d and gcd(a′, b′) = 1. If a | m
and b | m, say m = ar = bs, then, dividing by d, we have a′r = b′s. Thus
a′ | b′s. By Euclid’s Lemma a′ | s. Hence a′b | bs, that is, l | m. Thus (ii)
holds.

Now suppose that L is another positive integer satisfying (i) and (ii). By (i)
for L we have a | L and b | L, so it follows from (ii) for l that l | L. Similarly
L | l, and as both are positive, we conclude that L = l.

4. (i) Suppose that n is an integer such that n2 + 2 is divisible by 4. That
is, 4 | (n2 + 2), which is to say that

n2 + 2 = 4k

for some integer k. Consider two cases:
Case 1: n is even. That is, n = 2m for some integer m. Then we can write
4k = 4m2 + 2. Dividing by 2, we have 2k = 2m2 + 1. In the last equation
we have that the lhs is even and the rhs is odd. This is a contradiction!
Case 2: n is not even. Similar to Case 1. From cases 1 and 2 we have the
desired result.

(ii) Note that x | y if and only if (x, y) = x. We now use some properties of
the gcd.

a | bc⇔ (a, bc) = a

⇔
(

a

(a, b)
,

bc

(a, b)

)
=

a

(a, b)

⇔
(

a

(a, b)
,

b

(a, b)
c

)
=

a

(a, b)

⇔
(

a

(a, b)
, c

)
=

a

(a, b)
by Euclid′s Lemma

⇔ a

(a, b)
| c.

5. (i) 60 = 22 · 3 · 5.
v2(60) = 2; v3(60) = v5(60) = 1;
vp(60) = 0 for all primes p 6= 2, 3, 5.

(ii) 105 = 3 · 5 · 7.
v3(105) = v5(105) = v7(105) = 1;
vp(105) = 0 for all primes p 6= 3, 5, 7.

(iii) 65536 = 216.
v2(65536) = 16; vp(65536) = 0 for all primes p 6= 2.

6. It is sufficient to prove the contrapositive, that if
√
m is rational then

m is a perfect square. Suppose that
√
m = a/b where a and b are positive
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integers. Then
m = a2/b2.

If a and b have prime-power factorisations

a = pe11 · · · p
ek
k and b = pf11 · · · p

fk
k

then
m = p2e1−2f11 · · · p2ek−2fkk

must be the factorisation of m. Notice that every prime pi appears an even
number of times in this factorisation, and ei − fi ≥ 0 for each i, so

m =
(
pe1−f11 · · · pek−fkk

)2

is a perfect square.

7. The number k is a proper factor of (n+ 1)! + k for 2 ≤ k ≤ n+ 1, since k
occurs as one of the terms in the product (n+1)! = (n+1) ·n · (n−1) · . . . ·1.
Hence each of these n numbers (n+1)!+k is composite, so we have exhibited
n consecutive composite numbers.

8.
(i) Suppose p1, p2, . . . , pn are distinct primes of the form 4x − 1. Consider
the number

N = 4p1p2 . . . pn − 1.

Then pi - N for any i. Moreover, not every prime p | N is of the form 4x+ 1;
if they all were, then N would be of the form 4x + 1. Since N is odd, each
prime divisor pi is odd so there is a p | N that is of the form 4x − 1. Since
p 6= pi for any i, we have found a new prime of the form 4x − 1. We can
repeat this process indefinitely, so the set of primes of the form 4x−1 cannot
be finite.

(ii) Suppose n = ab where a, b ∈ N and a is the smallest prime factor of n.
Since n is not prime, we have b > 1. Since a is the smallest prime factor of
n, we have a ≤ b. Suppose for a contradiction that a >

√
n. Then we also

have b >
√
n and so n = ab > (

√
n)2 = n - contradiction. Therefore a ≤

√
n.

(iii) If an odd integer n is expressible as a sum of three or more consecutive
positive integers, then for some m ≥ 1 and k ≥ 3,

n = m + (m + 1) + . . . + (m + (k − 1)) = km +
k(k − 1)

2
.

If k is odd, then n = k(m + k−1
2

) and cannot be prime (k and m + k−1
2

are
integers strictly bigger than 1). If k is even, then, n = k

2
(2m + (k − 1)) and

once again cannot be prime as k/2 and 2m + (k − 1) are integers strictly
bigger than 1. If an odd integer n is not prime, write n = ab for some other
positive integers a and b strictly bigger than 1. a and b must be odd. Assume
a ≤ b without loss of generality. Let k = a ≥ 3 and m = b− a−1

2
≥ a− a−1

2
=

a+1
2
≥ 2. Then,

m+(m+1)+ · · ·+(m+(k−1)) = km+
k(k − 1)

2
= k(m+

k − 1

2
) = ab = n.
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