
ECM3704 – NUMBER THEORY

EXERCISE SHEET 2 – OUTLINE SOLUTIONS

1*.

a2 ≡ b2 (mod p)⇔ p | (a2−b2)⇔ p | (a+b)(a−b)⇔ p | (a+b) or p | (a−b).

Where the last part follows from Euclid’s Lemma. [10]
Total for question: [10]

2.
(i) The second assertion is the special case of the first obtained by using the
greatest common divisor g of a and b in the role of d. The first assertion
in turn is a direct consequence of Proposition 1.9 (iii) obtained by replacing
c, a, b in that proposition by d, a/d, b/d respectively.

(ii) If ax ≡ ay (mod m) then ay − ax = mz for some integer z. Hence we
have

a

(a,m)
(y − x) =

m

(a,m)
z,

and thus

m

(a,m)
| a

(a,m)
(y − x).

But (a/(a,m)),m/(a,m)) = 1 by the result in the first part of the question
(i) and therefore (m/(a,m)) | (y − x) by Euclid’s Lemma. That is,

x ≡ y mod

(
m

(a,m)

)
.

Conversely, if x ≡ y (mod (m/(a,m))), we multiply by a to get ax ≡ ay
(mod (am/(a,m))) by use of Proposition 2.10, part (ii). But (a,m) is a
divisor of a, so we can write ax ≡ ay (mod m) by Proposition 2.10, part (i).

3. We adapt the proof given in lectures that there are infinitely many primes
p with p ≡ 3 mod 4.

Suppose, for a contradiction, that there are only finitely many primes p ≡ 2
(mod 3). Label them p0, p1, . . . , pn, with p0 = 2. Now consider the number
N = 3 · p1 · p2 · · · pn + 2. Notice that N is odd, because it is the product of
several odd numbers plus an even number. That means it is not divisible by
2. Also notice that N ≡ 2 (mod 3), so it is not divisible by 3. Finally, notice
that no odd prime congruent to 2 mod 3 divides N , since all those primes
are included in the product 3 · p1 · p2 · · · pn, so if one of those primes were
to divide N , it would also divide 2, which is impossible. Now if 3 doesn’t
divide N , and no prime congruent to 2 mod 3 divides N , then all the prime
divisors of N must be 1 mod 3. But this is a contradiction, because then
any product of these primes - in particular, N - is 1 mod 3, yet N is 2 mod
3. So we have shown that there are infinitely many primes congruent to 2
mod 3.
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4. (i)* 3x ≡ 10 (mod 13)
We have gcd(3, 13) = 1 = 1×13−4×3 (either using the Extended Euclidean
Algorithm, or by inspection). Thus there is a solution, and it is unique mod
13. In fact

3× (−4) ≡ (mod 13), so 3× (−40) ≡ 10 (mod 13).

Hence solution is x ≡ −40 ≡ 12 (mod 13). [4]

(ii) 12x ≡ 20 (mod 38)
Dividing through by 2, we get 6x ≡ 10 (mod 19), and

gcd(6, 19) = 1 = 1× 19− 3× 6.

Hence solution is x ≡ −3× 10 ≡ 8 (mod 19).

(iii)* 20x ≡ 4 (mod 30)
This congruence has no solutions. This is because the left side of the
congruence can only be congruent to 0,10 or 20. This is because 20 and
30 share the common factor 10. [2]

(iv) 15x ≡ 43 (mod 99)
This congruence has no solutions. This is because gcd(15, 99) = 3, which
does not divide 43.

(v)* 353x ≡ 254 (mod 400)
For this congruence, we can see that x needs to be even. Thus if we let
x = 2y then we are solving the reduced congruence 353k ≡ 127 (mod 200).
Now to find the inverse of 353 ≡ −47, we use the Euclidean algorithm and
obtain that

1 = 200× (4) + 47× (−17).

This shows that 17 is the inverse of (−47) (mod 200). Thus the solution to
the reduced congruence is

k ≡ (17)(127) ≡ 2159 ≡ 159 (mod 200).

Since x = 2k, x = 318. This solution is unique, mod 400, since (353, 400) = 1.
[4]

Total for question: [10]

5*. (i) 12 × 13 − 5 × 31 = 1, so we get x ≡ 2 × 12 ≡ 24 (mod 31). Thus
general solution is x = 24 + 31a, y = −10− 13a for arbitrary a ∈ Z. [5]

(ii) 12x + 28y = 16. Dividing through by 4, we get 3x + 7y = 4. As
1 × 7 − 2 × 3 = 1, general solution is x = 7a − 1, y = 1 − 3a for arbitrary
a ∈ Z. [5]

Total for question: [10]

6*. (i) φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(5) = 4, φ(6) = 2, φ(7) = 6,
φ(8) = 4, φ(9) = 6, φ(10) = 4, φ(11) = 10, φ(12) = 4. [3]
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(ii) Since 245 ≡ 11 (mod 18), 2451040 ≡ 111040 (mod 18). Since (11, 18) = 1,
by Euler’s theorem, 11φ(18) ≡ 116 ≡ 1 (mod 18). Therefore, 111040 =
(116)173 × 112 ≡ 1173 × 13 ≡ 13 (mod 18). Thus, the desired remainder
is 13. [5]

(iii) φ(1) = 1 = φ(2). φ(3) = 2. For n = 3, there are no solutions to φ(x) = 3.
For if 3 =

∏
p∈S(pαp−p

αp−1) for S some subset of primes and αp ≥ 1, then

3 = pα−1(p − 1) for some prime p (as 3 is prime), so this tell us by unique
factorization that either pα−1 = 3 and p− 1 = 1 or pα−1 = 1 and p− 1 = 3.
The latter is not possible as 4 is not a prime, and the former is not possible
as 2α 6= 3 for any α.
For n = 1, φ(x) = 1 has exactly two solutions 1 and 2. For if p > 2, then
phi(pα) ≥ p − 1 ≥ 2. So if x is a solution to φ(x) = 1, then x cannot have
any prime factor other than 2 for if x =

∏
pα, φ(x) =

∏
(φ(pα)) ≥ φ(pα).

So if at all φ(x) = 1 has to have some other solution other than x = 1, then
x = 2α for some α. Again, if α > 1, then φ(2α) = 2α−1 ≥ 2.
φ(x) = 2 has exactly three solutions 3,4,6. This can be argued again using
the fact that 2 is prime. If x =

∏
pαp , then no prime strictly bigger than 3

can appear in this product as otherwise, φ(x) ≥ p−1 ≥ 4. So we are looking
for pairs (α1, α2) so that x = 2α13α2 is a solution to φ(x) = 2. As 3 | φ(3α2)
if α2 > 1 and 3 - 2, we see that α2 ∈ {0, 1}. If α2 = 1, then α1 is wither 0 or
1 as then we are looking for solutions to φ(2α1) = 1. This gives x = 3 and
x = 6. If α2 = 0, then φ(2α1) = 2α1−1 = 2, so α1 = 2. This gives x = 4. [12]

Total for question: [20]

7*. (i) Here N = 3× 4× 5 = 60, N1 = N/3 = 20, N2 = N/4 = 15, and N3 =
N/5 = 12. The unique solutions of the congruences N1y1 ≡ 1 (mod n1),
N2y2 ≡ 1 (mod n2), and N3y3 ≡ 1 (mod n3), that is, 20y1 ≡ 1 (mod 3),
15y2 ≡ 1 (mod 4), and 12y3 ≡ 1 (mod 5) are 2, 3 and 3, respectively. Thus,
by the Chinese Remainder Theorem,

x ≡
3∑
i=1

aiNiyi (mod N)

≡ 1× 20× 2 + 2× 15× 3 + 3× 12× 3 (mod 60)

≡ 58 (mod 60).

[5]
(ii) N1 = 7 and N2 = 5. N1y1 ≡ 1 (mod n1) yields 7y1 ≡ 1 (mod 5); that
is y1 ≡ 3 (mod 5). Similarly, y2 ≡ 3 (mod 7). Thus, x ≡

∑
i aiNiyi ≡

2× 7× 3 + 3× 5× 3 ≡ 17 (mod 35). Thus, x = 17 + 35t. [2]
(iii) Because x = 2 + 4t, 2 + 4t ≡ 3 (mod 6); that is, 4t ≡ 1 (mod 6) which
is not solvable because (4, 6) 6= 1. [3]

Total for question: [10]

8*. 504 = 23 × 32 × 7. Let the three consecutive numbers be
{x3 − 1, x3, x3 + 1}. Their product is P = x3(x6− 1). 7 | x7− x by Fermat’s
theorem, and therefore 7 | x2(x7−x), i.e., 7 | P . x6−1 = (x2−1)(x4+x2+1).
If x ≡ 0 (mod 2), then 23 | x3 and therefore 8 | P . If x 6≡ 0 (mod 2), then
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x = 2y + 1 by the division algorithm and x2 − 1 = 4y(y + 1). 2 | y2 − y by
Fermat’s theorem and therefore, 2 | (y2 − y + 2y). This shows 8 | (x2 − 1)
and therefore 8 | P . If x ≡ 0 (mod 3), then 32 | x3 and therefore 32 | P . If
x 6≡ 0 (mod 3), then x2 ≡ 1 (mod 3) which in turn implies x4 ≡ 1 (mod 3)
and therefore x4 +x2 + 1 ≡ 3 (mod 3) = 0 (mod 3). 3 | (x2− 1)(x4 +x2 + 1)
and therefore 32 | P . As 23, 32 and 7 are pairwise coprime, this shows that
their product divides P for any x. [20]

9*. First we note (by the Chinese Remainder Theorem) that x ≡ 1 (mod 7)
and x ≡ 5 (mod 7) are the only solutions of x2 + x + 47 ≡ 0 (mod 7).
Since f

′
(x) = 2x + 1, we see that f

′
(1) = 3 6≡ 0 (mod 7) and f

′
(5) = 1 6≡ 0

(mod 7), so these roots are non-singular. Taking f ′(1) = 5 (where f ′(a) is an
integer chosen so that f

′
(a)f ′(a) ≡ 1 (mod 7)), we see as given in the proof of

Hensel’s lemma that the root a ≡ 1 (mod 7) lifts to a2 = 1−49×5. Since a2 is
considered (mod 72), we may take instead a2 = 1. Then a3 = 1−49×5 ≡ 99
(mod 73). Similarly, we take f ′(5) = 2, and see that the root 5 (mod 7)
lifts to 5 − 77 × 2 = −149 ≡ 47 (mod 72), and that 47 (mod 72) lifts to
47− f(47)× 2 = 47− 2303× 2 = −4559 ≡ 243 (mod 73). Thus we conclude
that 99 and 243 are the desired roots and that there are no others. [10]
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