ECM3704 - NUMBER THEORY

EXERCISE SHEET 2 - OUTLINE SOLUTIONS

1*.
$a^{2} \equiv b^{2} \quad(\bmod p) \Leftrightarrow p\left|\left(a^{2}-b^{2}\right) \Leftrightarrow p\right|(a+b)(a-b) \Leftrightarrow p \mid(a+b)$ or $p \mid(a-b)$.
Where the last part follows from Euclid's Lemma.
Total for question: [10]
2.
(i) The second assertion is the special case of the first obtained by using the greatest common divisor g of a and b in the role of d. The first assertion in turn is a direct consequence of Proposition 1.9 (iii) obtained by replacing c, a, b in that proposition by $d, a / d, b / d$ respectively.
(ii) If $a x \equiv a y(\bmod m)$ then $a y-a x=m z$ for some integer z. Hence we have

$$
\frac{a}{(a, m)}(y-x)=\frac{m}{(a, m)} z
$$

and thus

$$
\frac{m}{(a, m)} \left\lvert\, \frac{a}{(a, m)}(y-x)\right.
$$

But $(a /(a, m)), m /(a, m))=1$ by the result in the first part of the question (i) and therefore $(m /(a, m)) \mid(y-x)$ by Euclid's Lemma. That is,

$$
x \equiv y \bmod \left(\frac{m}{(a, m)}\right)
$$

Conversely, if $x \equiv y(\bmod (m /(a, m)))$, we multiply by a to get $a x \equiv a y$ $(\bmod (a m /(a, m)))$ by use of Proposition 2.10, part (ii). But (a, m) is a divisor of a, so we can write $a x \equiv a y(\bmod m)$ by Proposition 2.10, part (i).
3. We adapt the proof given in lectures that there are infinitely many primes p with $p \equiv 3 \bmod 4$.

Suppose, for a contradiction, that there are only finitely many primes $p \equiv 2$ $(\bmod 3)$. Label them $p_{0}, p_{1}, \ldots, p_{n}$, with $p_{0}=2$. Now consider the number $N=3 \cdot p_{1} \cdot p_{2} \cdots p_{n}+2$. Notice that N is odd, because it is the product of several odd numbers plus an even number. That means it is not divisible by 2. Also notice that $N \equiv 2(\bmod 3)$, so it is not divisible by 3 . Finally, notice that no odd prime congruent to $2 \bmod 3$ divides N, since all those primes are included in the product $3 \cdot p_{1} \cdot p_{2} \cdots p_{n}$, so if one of those primes were to divide N, it would also divide 2 , which is impossible. Now if 3 doesn't divide N, and no prime congruent to $2 \bmod 3$ divides N, then all the prime divisors of N must be $1 \bmod 3$. But this is a contradiction, because then any product of these primes - in particular, $N-$ is $1 \bmod 3$, yet N is $2 \bmod$ 3. So we have shown that there are infinitely many primes congruent to 2 mod 3 .
4. $(\mathrm{i})^{*} 3 x \equiv 10(\bmod 13)$

We have $\operatorname{gcd}(3,13)=1=1 \times 13-4 \times 3$ (either using the Extended Euclidean Algorithm, or by inspection). Thus there is a solution, and it is unique mod 13. In fact

$$
3 \times(-4) \equiv \quad(\bmod 13), \quad \text { so } 3 \times(-40) \equiv 10 \quad(\bmod 13)
$$

Hence solution is $x \equiv-40 \equiv 12(\bmod 13)$.
(ii) $12 x \equiv 20(\bmod 38)$

Dividing through by 2 , we get $6 x \equiv 10(\bmod 19)$, and

$$
\operatorname{gcd}(6,19)=1=1 \times 19-3 \times 6
$$

Hence solution is $x \equiv-3 \times 10 \equiv 8(\bmod 19)$.
(iii) ${ }^{*} 20 x \equiv 4(\bmod 30)$

This congruence has no solutions. This is because the left side of the congruence can only be congruent to 0,10 or 20 . This is because 20 and 30 share the common factor 10 .
(iv) $15 x \equiv 43(\bmod 99)$

This congruence has no solutions. This is because $\operatorname{gcd}(15,99)=3$, which does not divide 43 .
(v)* $353 x \equiv 254(\bmod 400)$

For this congruence, we can see that x needs to be even. Thus if we let $x=2 y$ then we are solving the reduced congruence $353 k \equiv 127(\bmod 200)$. Now to find the inverse of $353 \equiv-47$, we use the Euclidean algorithm and obtain that

$$
1=200 \times(4)+47 \times(-17) .
$$

This shows that 17 is the inverse of $(-47)(\bmod 200)$. Thus the solution to the reduced congruence is

$$
k \equiv(17)(127) \equiv 2159 \equiv 159 \quad(\bmod 200)
$$

Since $x=2 k, x=318$. This solution is unique, $\bmod 400$, since $(353,400)=1$. [4]

Total for question: [10]
5*. (i) $12 \times 13-5 \times 31=1$, so we get $x \equiv 2 \times 12 \equiv 24(\bmod 31)$. Thus general solution is $x=24+31 a, y=-10-13 a$ for arbitrary $a \in \mathbb{Z}$.
(ii) $12 x+28 y=16$. Dividing through by 4 , we get $3 x+7 y=4$. As $1 \times 7-2 \times 3=1$, general solution is $x=7 a-1, y=1-3 a$ for arbitrary $a \in \mathbb{Z}$.

Total for question: [10]
6^{*}. (i) $\phi(1)=1, \phi(2)=1, \phi(3)=2, \phi(4)=2, \phi(5)=4, \phi(6)=2, \phi(7)=6$, $\phi(8)=4, \phi(9)=6, \phi(10)=4, \phi(11)=10, \phi(12)=4$.
(ii) Since $245 \equiv 11(\bmod 18), 245^{1040} \equiv 11^{1040}(\bmod 18)$. Since $(11,18)=1$, by Euler's theorem, $11^{\phi(18)} \equiv 11^{6} \equiv 1(\bmod 18)$. Therefore, $11^{1040}=$ $\left(11^{6}\right)^{173} \times 11^{2} \equiv 1^{173} \times 13 \equiv 13(\bmod 18)$. Thus, the desired remainder is 13 .
(iii) $\phi(1)=1=\phi(2) . \phi(3)=2$. For $n=3$, there are no solutions to $\phi(x)=3$. For if $3=\prod_{p \in S}\left(p^{\alpha_{p}-p^{\alpha_{p}}-1}\right)$ for S some subset of primes and $\alpha_{p} \geq 1$, then $3=p^{\alpha-1}(p-1)$ for some prime p (as 3 is prime), so this tell us by unique factorization that either $p^{\alpha-1}=3$ and $p-1=1$ or $p^{\alpha-1}=1$ and $p-1=3$. The latter is not possible as 4 is not a prime, and the former is not possible as $2^{\alpha} \neq 3$ for any α.
For $n=1, \phi(x)=1$ has exactly two solutions 1 and 2 . For if $p>2$, then $p h i\left(p^{\alpha}\right) \geq p-1 \geq 2$. So if x is a solution to $\phi(x)=1$, then x cannot have any prime factor other than 2 for if $x=\prod p^{\alpha}, \phi(x)=\prod\left(\phi\left(p^{\alpha}\right)\right) \geq \phi\left(p^{\alpha}\right)$. So if at all $\phi(x)=1$ has to have some other solution other than $x=1$, then $x=2^{\alpha}$ for some α. Again, if $\alpha>1$, then $\phi\left(2^{\alpha}\right)=2^{\alpha-1} \geq 2$.
$\phi(x)=2$ has exactly three solutions $3,4,6$. This can be argued again using the fact that 2 is prime. If $x=\prod p^{\alpha_{p}}$, then no prime strictly bigger than 3 can appear in this product as otherwise, $\phi(x) \geq p-1 \geq 4$. So we are looking for pairs $\left(\alpha_{1}, \alpha_{2}\right)$ so that $x=2^{\alpha_{1}} 3^{\alpha_{2}}$ is a solution to $\phi(x)=2$. As $3 \mid \phi\left(3^{\alpha_{2}}\right)$ if $\alpha_{2}>1$ and $3 \nmid 2$, we see that $\alpha_{2} \in\{0,1\}$. If $\alpha_{2}=1$, then α_{1} is wither 0 or 1 as then we are looking for solutions to $\phi\left(2^{\alpha_{1}}\right)=1$. This gives $x=3$ and $x=6$. If $\alpha_{2}=0$, then $\phi\left(2^{\alpha_{1}}\right)=2^{\alpha_{1}-1}=2$, so $\alpha_{1}=2$. This gives $x=4$. [12]

Total for question: [20]
7*. (i) Here $N=3 \times 4 \times 5=60, N_{1}=N / 3=20, N_{2}=N / 4=15$, and $N_{3}=$ $N / 5=12$. The unique solutions of the congruences $N_{1} y_{1} \equiv 1\left(\bmod n_{1}\right)$, $N_{2} y_{2} \equiv 1\left(\bmod n_{2}\right)$, and $N_{3} y_{3} \equiv 1\left(\bmod n_{3}\right)$, that is, $20 y_{1} \equiv 1(\bmod 3)$, $15 y_{2} \equiv 1(\bmod 4)$, and $12 y_{3} \equiv 1(\bmod 5)$ are 2,3 and 3 , respectively. Thus, by the Chinese Remainder Theorem,

$$
\begin{aligned}
x & \equiv \sum_{i=1}^{3} a_{i} N_{i} y_{i} \quad(\bmod N) \\
& \equiv 1 \times 20 \times 2+2 \times 15 \times 3+3 \times 12 \times 3 \quad(\bmod 60) \\
& \equiv 58 \quad(\bmod 60)
\end{aligned}
$$

(ii) $N_{1}=7$ and $N_{2}=5 . \quad N_{1} y_{1} \equiv 1\left(\bmod n_{1}\right)$ yields $7 y_{1} \equiv 1(\bmod 5)$; that is $y_{1} \equiv 3(\bmod 5)$. Similarly, $y_{2} \equiv 3(\bmod 7)$. Thus, $x \equiv \sum_{i} a_{i} N_{i} y_{i} \equiv$ $2 \times 7 \times 3+3 \times 5 \times 3 \equiv 17(\bmod 35)$. Thus, $x=17+35 t$.
(iii) Because $x=2+4 t, 2+4 t \equiv 3(\bmod 6)$; that is, $4 t \equiv 1(\bmod 6)$ which is not solvable because $(4,6) \neq 1$.

Total for question: [10]
8*. $504=2^{3} \times 3^{2} \times 7$. Let the three consecutive numbers be $\left\{x^{3}-1, x^{3}, x^{3}+1\right\}$. Their product is $P=x^{3}\left(x^{6}-1\right) .7 \mid x^{7}-x$ by Fermat's theorem, and therefore $7 \mid x^{2}\left(x^{7}-x\right)$, i.e., $7 \mid P . x^{6}-1=\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)$. If $x \equiv 0(\bmod 2)$, then $2^{3} \mid x^{3}$ and therefore $8 \mid P$. If $x \not \equiv 0(\bmod 2)$, then
$x=2 y+1$ by the division algorithm and $x^{2}-1=4 y(y+1) .2 \mid y^{2}-y$ by Fermat's theorem and therefore, $2 \mid\left(y^{2}-y+2 y\right)$. This shows $8 \mid\left(x^{2}-1\right)$ and therefore $8 \mid P$. If $x \equiv 0(\bmod 3)$, then $3^{2} \mid x^{3}$ and therefore $3^{2} \mid P$. If $x \not \equiv 0(\bmod 3)$, then $x^{2} \equiv 1(\bmod 3)$ which in turn implies $x^{4} \equiv 1(\bmod 3)$ and therefore $x^{4}+x^{2}+1 \equiv 3(\bmod 3)=0(\bmod 3) .3 \mid\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)$ and therefore $3^{2} \mid P$. As $2^{3}, 3^{2}$ and 7 are pairwise coprime, this shows that their product divides P for any x.

9*. First we note (by the Chinese Remainder Theorem) that $x \equiv 1(\bmod 7)$ and $x \equiv 5(\bmod 7)$ are the only solutions of $x^{2}+x+47 \equiv 0(\bmod 7)$. Since $f^{\prime}(x)=2 x+1$, we see that $f^{\prime}(1)=3 \not \equiv 0(\bmod 7)$ and $f^{\prime}(5)=1 \not \equiv 0$ $(\bmod 7)$, so these roots are non-singular. Taking $\overline{f^{\prime}(1)}=5$ (where $\overline{f^{\prime}(a)}$ is an integer chosen so that $\left.f^{\prime}(a) \overline{f^{\prime}(a)} \equiv 1(\bmod 7)\right)$, we see as given in the proof of Hensel's lemma that the root $a \equiv 1(\bmod 7)$ lifts to $a_{2}=1-49 \times 5$. Since a_{2} is considered $\left(\bmod 7^{2}\right)$, we may take instead $a_{2}=1$. Then $a_{3}=1-49 \times 5 \equiv 99$ $\left(\bmod 7^{3}\right)$. Similarly, we take $\overline{f^{\prime}(5)}=2$, and see that the root $5(\bmod 7)$ lifts to $5-77 \times 2=-149 \equiv 47\left(\bmod 7^{2}\right)$, and that $47\left(\bmod 7^{2}\right)$ lifts to $47-f(47) \times 2=47-2303 \times 2=-4559 \equiv 243\left(\bmod 7^{3}\right)$. Thus we conclude that 99 and 243 are the desired roots and that there are no others. [10]

