
ECM3704 – NUMBER THEORY

EXERCISE SHEET 3 – OUTLINE SOLUTIONS

1. (i)* x2 ≡ −5 (mod 73).
First solve mod 7: solutions to x2 ≡ −5 (mod 7) are x ≡ ±3 (mod 7). Try
lifting x = 3 to a solution mod 72: Putting x = 3 + 7a and substituting into
x2 ≡ −5 (mod 72), we find 6 × 7a ≡ −14 (mod 72), so a ≡ 2 (mod 7), and
x ≡ 3 + 2 × 7 = 17 (mod 72). Now lift again to a solution mod 73: put
x = 17 + 49a. We find 6 × 49a ≡ −294 (mod 73) so a ≡ 6 ≡ −1 (mod 7).
Hence x ≡ −32 (mod 73).
This shows that the solution x ≡ 3 (mod 7) lifts to x ≡ −32 (mod 73). Since
x2 is an even function, the solution x ≡ −3 (mod 7) must lift to x ≡ 32
(mod 73). Hence solution to x ≡ −5 (mod 73) is x ≡ ±32 (mod 73). [5]

(ii)* x2 ≡ 3 (mod 73) has no solutions since there are no solutions to x2 ≡ 3
(mod 7) (one can compute the Legendre symbol to check this). [3]

(iii)* Starting with x2 + x + 7 ≡ 0 (mod 3), we note that x = 1 is the only
solution. Here f

′
(1) = 3 ≡ 0 (mod 3), and f(1) ≡ 0 (mod 9), so that we

have roots x = 1, x = 4, and x = 7 (mod 9). Now f(1) 6≡ 0 (mod 27), and
hence there is no root x (mod 27) for which x ≡ 1 (mod 9). As f(4) ≡ 0
(mod 27), we obtain three roots, 4, 13, 22 (mod 27), which are ≡ 4 (mod 9).
On the other hand, f(7) 6≡ 0 (mod 27), so there is no root (mod 27) that
is ≡ 7 (mod 9). We are now in a position to determine which, if any, of
the roots 4, 13, 22 (mod 27) can be lifted to roots (mod 81). We find
that f(4) = 27 6≡ 0 (mod 81), f(13) = 189 ≡ 27 6≡ 0 (mod 81), and that
f(22) = 513 ≡ 27 6≡ 0 (mod 81), from which we deduce that the congruence
has no solution (mod 81). [7]

(iv) x3 + x2 + 8 ≡ 0 (mod 113).
Testing all possibilities mod 11, we find two solutions, x ≡ 3, 4 (mod 11).
Try lifting x ≡ 3 (mod 11): set x = 3+11a. Substituting into the congruence
we get 44 + 11a× 33 ≡ 0 (mod 112) which simplifies to 0a ≡ −4 (mod 11).
This has no solutions, so the solution x ≡ 3 (mod 11) of the given congruence
does not lift to a solution mod 112, and hence does not lift to a solution
mod 113.
Now try lifting x ≡ 4 (mod 11). Putting x = 4+11a we find a ≡ 3 (mod 11)
and hence x ≡ 37 (mod 112). Then putting x = 37 + 112a we find a ≡ −1
(mod 11) so x ≡ −84 ≡ 1247 (mod 113).
Hence the only solution of x3 +x2 + 8 ≡ 0 (mod 113) is x ≡ −84 (mod 113).

Total for question: [15]

2. In the lectures we showed that 3 is a primitive root of 19.
(i) We find that 7 ≡ 36 mod 19. Set x ≡ 3t (mod 19). Then 35t ≡ 36

(mod 19) so that 5t ≡ 6 (mod 18). Solving this gives t ≡ 12 mod 18. Thus
x ≡ 312 ≡ 11 mod 19.

(ii) We find that 4 ≡ 314 (mod 19). Set x ≡ 3t (mod 19). Then 34t ≡ 314

(mod 19) so that 4t ≡ 14 (mod 18). Solving this gives t ≡ 8 (mod 9) or
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equivalently t ≡ 8 or 17 (mod 18). Therefore x ≡ 38 or 317 (mod 19), that is
x ≡ ±6 (mod 19).

(iii)* We find that 9 ≡ 32 (mod 19). Set x ≡ 3t (mod 19). Then 310t ≡ 32

(mod 19) so that 10t ≡ 2 (mod 18). This is equivalent to 5t ≡ 1 (mod 9),
and solving this gives t ≡ 2 mod 9 or equivalently t ≡ 2 or 11 (mod 18).
Therefore x ≡ 32 or 311 (mod 19), that is x ≡ ±9 (mod 19). [5]

Total for question: [5]

3. Let a ∈ Z with gcd(a, n) = 1. We showed in lectures that for any k ∈ Z,
ordn(ak) = ordn(a) if and only if gcd(ordn(a), k) = 1. In particular, if a is
a primitive root mod n then ordn(a) = ϕ(n) and so ak is a primitive root if
and only if gcd(ϕ(n), k) = 1. But any b ∈ Z with gcd(b, n) = 1 is congruent
to ak mod n for some k ∈ Z with 1 ≤ k < ϕ(n). In particular, this is the
case if we take b to be any primitive root. But the number of k ∈ Z with
both 1 ≤ k < ϕ(n) and gcd(ϕ(n), k) = 1 is ϕ(ϕ(n)).

4*. We show that if g is a primitive root (mod p) then g + tp is a primitive
root (mod p2) for exactly p−1 values of t (mod p). Let h denote the order of
g + tp (mod p2). (Thus h may depend on t). Since (g + tp)h ≡ 1 (mod p2),
it follows that (g + tp)h ≡ 1 (mod p), which in turn implies that gh ≡ 1
(mod p), and hence that (p − 1) | h. On the other hand, by Corollary 2.60
(lecture notes) we know that h | ϕ(p2) = p(p − 1). Thus h = p − 1 or
h = p(p − 1). In the latter case g + tp is a primitve root (mod p2), and in
the former case it is not. We prove that the former case arises for only one
of the p possible values of t. Let f(x) = xp−1 − 1. In the former case, g + tp
is a solution of the congruence f(x) ≡ 0 (mod p2) lying above g (mod p).
Since f

′
(g) = (p − 1)gp−2 6≡ 0 (mod p), we know from Hensel’s lemma that

g (mod p) lifts to a unique solution g + tp (mod p2). For all other values of
t (mod p), the number g + tp is a primitive root (mod p2).
Since each of the ϕ(p − 1) primitive roots (mod p) give rise to exactly
p − 1 primitive roots (mod p2), we have now shown that there exist at
least (p − 1)ϕ(p − 1) primitive roots (mod p2). To show that there are no
other primitive roots (mod p2), it suffices to argue as follows. Let g denote a
primitive root (mod p2), so that the numbers g, g2, · · · , gp(p−1) form a system
of reduced residues (mod p2). By Lemma 2.83 (lecture notes), we know that
gk is a primitive root if and only if (k, p(p − 1)) = 1. By the definition of
Euler’s phi function, there are precisely ϕ(p(p− 1)) such values of k among
the numbers 1, 2, · · · , p(p−1). Since (p, p−1) = 1, we deduce from Theorem
2.43 (lecture notes) that ϕ(p(p− 1)) = ϕ(p)ϕ(p− 1) = (p− 1)ϕ(p− 1). [15]

Total for question: [15]

5. First, we can make an observation. Let a be any positive integer congruent
to 1 modulo p. Then, by Wilson’s theorem,

a(a + 1) · · · [a + (p− 2)] ≡ (p− 1)! ≡ −1 (mod p).

In other words, the product of the p−1 integers between any two consecutive
multiples of p is congruent to −1 modulo p. Then
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(np)!

n!pn
=

(np)!

p2̇p3̇p · · · (np)

=
n∏

r=1

[(r − 1)p + 1] · · · [(r − 1)p + (p− 1)]

≡
n∏

r=1

(p− 1)! (mod p)

≡
n∏

r=1

(−1) (mod p)

≡ (−1)n (mod p).

[10]
Total for question: [10]

6. Note: in the following solutions, I have not used the Jacobi symbol.
However, several of the solutions could be simplified by using the Jacobi
symbol and the corresponding law of quadratic reciprocity.

(i)* (
3

53

)
=

(
53

3

)
as 53 ≡ 1 (mod 4)

=

(
−1

3

)
as 53 ≡ −1 (mod 3)

= −1.

(ii) (
7

79

)
= −

(
79

7

)
as 7 ≡ 79 ≡ 3 (mod 4)

= −
(

2

7

)
as 79 ≡ 2 (mod 7)

= −(+1) as 7 ≡ ±1 (mod 8)

= −1.

(iii)* (
15

101

)
=

(
3

101

)(
5

101

)
=

(
101

3

)(
101

5

)
as 101 ≡ 1 (mod 4)

=

(
2

3

)(
1

5

)
= (−1)(+1)

= −1.
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(iv)(
31

641

)
=

(
641

31

)
as 641 ≡ 1 (mod 4)

=

(
21

31

)
=

(
3

31

)(
7

31

)
=

[
−
(

31

3

)][
−
(

31

7

)]
as 3, 7, 31 are all ≡ 3 (mod 4)

=

[
−
(

1

3

)][
−
(

3

7

)]
= [−1]

[
+

(
7

3

)]
as 3, 7, are both ≡ 3 (mod 4)

= −
(

1

3

)
= −1.

(v)(
111

991

)
=

(
3

991

)(
37

991

)
= −

(
991

3

)(
991

37

)
as 3 ≡ 991 ≡ 3 (mod 4); 37 ≡ 1 (mod 4)

= −
(

1

3

)(
−8

37

)
= −(+1)

(
−1

37

)(
2

37

)3

= −(+1)(+1)(−1)3 as 37 ≡ 1 (mod 4) and 37 ≡ −3 (mod 8)

= +1.
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(vi) (
105

1009

)
=

(
3

1009

)(
5

1009

)(
7

1009

)
=

(
1009

3

)(
1009

5

)(
1009

7

)
as 1009 ≡ 1 (mod 4)

=

(
1

3

)(
4

5

)(
1

7

)
= (+1)(+1)(+1)

= +1.

(vii)(
77

107

)
=

(
7

107

)(
11

107

)
=

[
−
(

107

7

)][
−
(

107

11

)]
as 7, 11 and 107 are all ≡ 3 (mod 4)

=

(
2

7

)(
8

11

)
= (+1)

(
2

11

)3

as 7 ≡ −1 (mod 8)

= (−1)3 as 11 ≡ 3 (mod 8)

= −1.

(viii)*(
133

191

)
=

(
7

191

)(
19

191

)
=

[
−
(

191

7

)][
−
(

191

19

)]
as 7, 19 and 191 are all ≡ 3 (mod 4)

=

(
2

7

)(
1

19

)
= (+1)(+1) as 7 ≡ −1 (mod 8)

= +1.

(ix)*(
−111

257

)
=

(
−1

257

)(
3

257

)(
37

257

)
= (+1)

(
257

3

)(
257

37

)
as 257 ≡ 1 (mod 4)

=

(
2

3

)(
−2

37

)
= (−1)

(
−1

37

)(
2

37

)
= (−1)(+1)(−1) as 37 ≡ 1 (mod 4) but 37 ≡ −3 (mod 8)

= +1.
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(x) (
221

347

)
=

(
13

347

)(
17

347

)
=

(
347

13

)(
347

17

)
as 13 ≡ 17 ≡ 1 (mod 4)

=

(
9

13

)(
7

17

)
= (+1)

(
17

7

)
as 17 ≡ 1 (mod 4)

=

(
3

7

)
= −

(
7

3

)
as 3, 7 are both ≡ 1 (mod 4)

= −
(

1

3

)
= −1.

(xi)* (
−257

541

)
=

(
−1

541

)(
257

541

)
= (+1)

(
541

257

)
as 541 ≡ 1 (mod 4)

=

(
27

257

)
=

(
3

257

)3

=

(
257

3

)
as 257 ≡ 1 (mod 4)

=

(
2

3

)
= −1.
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(xii)(
511

881

)
=

(
7

881

)(
73

881

)
=

(
881

7

)(
881

73

)
as 881 ≡ 1 (mod 4)

=

(
−1

7

)(
5

73

)
= (−1)

(
73

5

)
as 7 ≡ 3 (mod 4) and 73 ≡ 1 (mod 4)

= −
(

3

5

)
= −(−1)

= +1.

3 marks per assessed part. Total for question: [15]

7. (i) To find

(
7

11

)
by Gauss’ Lemma, we need the least residues mod 11 of

the first 5 multiples of 7, viz. 7, 14, 21, 28, 35. These least residues are 7, 3,
10, 6, 2. The number Λ with residues > 11/2 is 3, so(

7

11

)
= (−1)3 = −1.

(ii) The least residues mod 13 of 5, 10, 15, 20, 25, 30 are 5, 10, 2, 7, 12, 4
respectively, so again Λ = 3 and(

5

13

)
= (−1)3 = −1.

(iii) The least residues mod 17 of −3, −6, −9, −12, −15, −18, −21, −24 are
14, 11, 8, 5, 2, 16, 13, 10 respectively, so Λ = 5 and(

−3

17

)
= (−1)5 = −1.

(iv) The least residues mod 19 of 5, 10, 15, 20, 25, 30, 35, 40, 45 are 5, 10,
15, 1, 6, 11, 16, 2, 7 respectively, so Λ = 4 and(

5

19

)
= (−1)4 = +1.

8*. If p = 2, we have the solution x = 1. For any odd p, let p
′

denote its
least positive residue modulo 13. Then
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(
13

p

)
=
( p

13

)
=

(
p
′

13

)
,

so p
′

must be a quadratic residue modulo 13. A quick check shows that
p
′ ≡ ±1,±3,±4 mod 13.

Note also that p = 13 is a solution. [10]
Total for question: [10]

9. If x2 ≡ a (mod p) is soluble with p - a, we have

(
a

p

)
= +1 by definition

of the Legendre symbol, so a(p−1)/2 ≡ +1 (mod p) by Euler’s criterion. Now
(p + 1)/4 is an integer since p ≡ 3 (mod 4), and for x = ±a(p+1)/4 we have

x2 ≡ a(p+1)/2 ≡ aa(p−1)/2 ≡ a (mod p).

Thus the solutions of x2 ≡ a (mod p) are x ≡ ±a(p+1)/4 (mod p). (We know
that there are exactly two solutions mod p.)
Applying this to x2 ≡ 5 (mod 79): we have p = 79 and (p+1)/4 = 20, so the
solutions (if there are any) are ±520 mod 79. Now 520 ≡ 20 (mod 79), and
we easily verify that 202 ≡ 5 (mod 79). Hence the solutions are x ≡ ±20
(mod 79).

10*.
(i) We have s(0, p) =

∑p
n=1

(
n2

p

)
. By definition of the Legendre Symbol,(

n2

p

)
= 1 for all values of n for 1 ≤ n ≤ p − 1. For n = p, the Legendre

symbol is zero thus s(0, p) =
∑p

n=1

(
n2

p

)
= p− 1. [5]

(ii) We have

p∑
a=1

s(a, p) =

p∑
a=1

p∑
n=1

(
n(n + a)

p

)

=

p∑
n=1

p∑
a=1

(
n(n + a)

p

)

=

p∑
n=1

p∑
b=1

(
nb

p

)
by the change of variable b ≡ n + a (mod p)

=

p∑
n=1

p∑
b=1

(
n

p

)(
b

p

)

=

p∑
n=1

(
n

p

) p∑
b=1

(
b

p

)

=

(
p∑

n=1

(
n

p

))2

.

Now
∑p

n=1

(
n
p

)
= 0 since there are (p − 1)/2 quadratic residues giving the

value (n
p
) = 1, plus (p−1)/2 quadratic non-residue giving the value (n

p
) = −1,

plus (0
p
) = 0. [5]
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(iii) In the sum s(a, p) =
∑p

n=1

(
n(n+a)

p

)
, use the change of variables b ≡ na−1

(mod p), so that n ≡ ab (mod p), to rewrite

s(a, p) =

p∑
b=1

(
ab(ab + a)

p

)

=

p∑
b=1

(
a2b(b + 1)

p

)

=

p∑
b=1

(
a2

p

)(
b(b + 1)

p

)

=

p∑
b=1

(
b(b + 1)

p

)
since

(
a2

p

)
= 1

= s(1, p).

[5]

(iv)Combining the previous parts, we find

0 =

p∑
a=1

s(a, p) by part (ii)

= (p− 1)s(1, p) + s(0, p) by part (iii)

= (p− 1)s(1, p) + (p− 1) by part(i).

Therefore s(1, p) = −1 and hence by part (iii), s(a, p) = −1 for all a such
that (a, p) = 1. [5]

Total for question: [20]
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