ECM3704 - NUMBER THEORY
EXERCISE SHEET 3 - OUTLINE SOLUTIONS

1. ()* 22 = —5 (mod 73).

First solve mod 7: solutions to #2 = —5 (mod 7) are x = £3 (mod 7). Try
lifting x = 3 to a solution mod 7%: Putting # = 3 + 7a and substituting into
2?2 = —5 (mod 7?), we find 6 x 7a = —14 (mod 7?), so a = 2 (mod 7), and

r=3+2x7 =17 (mod 7?). Now lift again to a solution mod 73: put
x = 17+ 49a. We find 6 x 49a = —294 (mod 7%) so a = 6 = —1 (mod 7).
Hence x = —32 (mod 73).

This shows that the solution z = 3 (mod 7) lifts to z = —32 (mod 7%). Since
2? is an even function, the solution z = —3 (mod 7) must lift to = 32

(mod 73). Hence solution to z = —5 (mod 7%) is x = £32 (mod 73). [5]

(ii)* 22 = 3 (mod 7?) has no solutions since there are no solutions to z% =
(mod 7) (one can compute the Legendre symbol to check this). [3]

(iii)* Starting with 2z + 2 + 7 = 0 (mod 3), we note that x = 1 is the only
solution. Here f'(1) = 3 = 0 (mod 3), and f(1) = 0 (mod 9), so that we
have roots = 1, x = 4, and = 7 (mod 9). Now f(1) # 0 (mod 27), and
hence there is no root x (mod 27) for which z = 1 (mod 9). As f(4) =0
(mod 27), we obtain three roots, 4, 13, 22 (mod 27), which are =4 (mod 9).
On the other hand, f(7) £ 0 (mod 27), so there is no root (mod 27) that
is = 7 (mod 9). We are now in a position to determine which, if any, of
the roots 4, 13, 22 (mod 27) can be lifted to roots (mod 81). We find
that f(4) = 27 # 0 (mod 81), f(13) = 189 = 27 # 0 (mod 81), and that
f(22) =513 =27 # 0 (mod 81), from which we deduce that the congruence
has no solution (mod 81). [7]

(iv) > + 22 +8 =0 (mod 113).

Testing all possibilities mod 11, we find two solutions, x = 3,4 (mod 11).

Try lifting z = 3 (mod 11): set z = 3+11a. Substituting into the congruence

we get 44 + 11a x 33 =0 (mod 11?) which simplifies to 0a = —4 (mod 11).

This has no solutions, so the solution z = 3 (mod 11) of the given congruence

does not lift to a solution mod 112, and hence does not lift to a solution

mod 113,

Now try lifting z = 4 (mod 11). Putting x = 4+ 11a we find a = 3 (mod 11)

and hence z = 37 (mod 11%). Then putting z = 37 + 11%a we find a = —1

(mod 11) so & = —84 = 1247 (mod 113).

Hence the only solution of 23 +2? +8 = 0 (mod 113) is x = —84 (mod 113).
Total for question: [15]

2. In the lectures we showed that 3 is a primitive root of 19.

(i) We find that 7 = 3° mod 19. Set z = 3' (mod 19). Then 3 = 3¢
(mod 19) so that 5t = 6 (mod 18). Solving this gives ¢ = 12 mod 18. Thus
r =32 =11 mod 19.

(i) We find that 4 = 3" (mod 19). Set x = 3! (mod 19). Then 3% = 3
(mod 19) so that 4t = 14 (mod 18). Solving this gives ¢ = 8 (mod 9) or



equivalently ¢ = 8 or 17 (mod 18). Therefore x = 3% or 3!7 (mod 19), that is
r = =+6 (mod 19).

(iii)* We find that 9 = 3? (mod 19). Set x = 3" (mod 19). Then 3!% = 32
(mod 19) so that 10t = 2 (mod 18). This is equivalent to 5t = 1 (mod 9),
and solving this gives ¢ = 2 mod 9 or equivalently ¢t = 2 or 11 (mod 18).
Therefore z = 3? or 3! (mod 19), that is = +9 (mod 19). [5]

Total for question: [5]

3. Let a € Z with ged(a,n) = 1. We showed in lectures that for any k € Z,
ord,(a*) = ord,(a) if and only if ged(ord,(a), k) = 1. In particular, if a is
a primitive root mod n then ord,(a) = p(n) and so a” is a primitive root if
and only if ged(p(n), k) = 1. But any b € Z with ged(b,n) = 1 is congruent
to a® mod n for some k € Z with 1 < k < p(n). In particular, this is the
case if we take b to be any primitive root. But the number of £ € Z with
both 1 < k < ¢(n) and ged(p(n), k) =1 is ¢(p(n)).

4*. We show that if ¢ is a primitive root (mod p) then g + tp is a primitive
root (mod p?) for exactly p—1 values of ¢ (mod p). Let h denote the order of
g +tp (mod p?). (Thus h may depend on t). Since (g + tp)" =1 (mod p?),
it follows that (g + tp)* = 1 (mod p), which in turn implies that ¢" =
(mod p), and hence that (p — 1) | h. On the other hand, by Corollary 2.60
(lecture notes) we know that h | p(p?) = p(p —1). Thus h = p — 1 or
h = p(p —1). In the latter case g + tp is a primitve root (mod p?), and in
the former case it is not. We prove that the former case arises for only one
of the p possible values of t. Let f(x) = 2P~! — 1. In the former case, g + tp
is a solution of the congruence f(x) = 0 (mod p?) lying above g (mod p).
Since f'(g) = (p — 1)g*"2 # 0 (mod p), we know from Hensel’s lemma that
g (mod p) lifts to a unique solution g + tp (mod p?). For all other values of
t (mod p), the number g + tp is a primitive root (mod p?).
Since each of the ¢(p — 1) primitive roots (mod p) give rise to exactly
p — 1 primitive roots (mod p?), we have now shown that there exist at
least (p — 1)p(p — 1) primitive roots (mod p?). To show that there are no
other primitive roots (mod p?), it suffices to argue as follows. Let g denote a
primitive root (mod p?), so that the numbers g, g2, - - - , g?®~V) form a system
of reduced residues (mod p?). By Lemma 2.83 (lecture notes), we know that
g* is a primitive root if and only if (k,p(p — 1)) = 1. By the definition of
Euler’s phi function, there are precisely ¢(p(p — 1)) such values of k£ among
the numbers 1,2,---  p(p—1). Since (p,p—1) = 1, we deduce from Theorem
2.43 (lecture notes) that o(p(p—1)) = p(P)p(p—1) = (p— )p(p —1). [15]
Total for question: [15]

5. First, we can make an observation. Let a be any positive integer congruent
to 1 modulo p. Then, by Wilson’s theorem,
ala+1)---la+(p—2)]={p-1)=-1 (mod p).

In other words, the product of the p—1 integers between any two consecutive
multiples of p is congruent to —1 modulo p. Then



[10]
Total for question: [10]

6. Note: in the following solutions, I have not used the Jacobi symbol.
However, several of the solutions could be simplified by using the Jacobi
symbol and the corresponding law of quadratic reciprocity.

(i)*
(%) _ (?) as53=1 (mod 4)

—1

_ (?) as 53= —1  (mod 3)

= -1

(7_79) _ _(779) as T=79=3 (mod 4)

= — (%) as 79 =2 (mod 7)
—(+1) as 7=+1 (mod 8)

(iii)*

(1) -

) as 101 =1 (mod 4)



(

31
641

111
991

)

3

as 3, 7, are both = 3

as 37 =1

as 3, 7, 31 are

all =3

(mod 4)

(mod 4)

(mod 4) and 37 = —3 (mod 8)



(mod 4)
(mod 4)
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as 207 =1

(mod 4)



(xii)

(&) - () ()
- (g) (%) as 881 =1 (mod 4)
- (F) (@
= (-1) ? as 7=3 (mod4)and 73=1 (mod 4)

3 marks per assessed part. Total for question: [15]

7
7. (i) To find (ﬁ) by Gauss’ Lemma, we need the least residues mod 11 of

the first 5 multiples of 7, viz. 7, 14, 21, 28, 35. These least residues are 7, 3,
10, 6, 2. The number A with residues > 11/2 is 3, so

(%) = (-1 =-1.

(ii) The least residues mod 13 of 5, 10, 15, 20, 25, 30 are 5, 10, 2, 7, 12, 4
respectively, so again A = 3 and

<%) = (-1 = -1

(iii) The least residues mod 17 of —3, —6, —9, —12, —15, —18, —21, —24 are
14, 11, 8, 5, 2, 16, 13, 10 respectively, so A = 5 and

(I_S) = (—-1)° = —1.

(iv) The least residues mod 19 of 5, 10, 15, 20, 25, 30, 35, 40, 45 are 5, 10,
15, 1, 6, 11, 16, 2, 7 respectively, so A = 4 and

(%) = (=1)* = +1.

8*. If p = 2, we have the solution z = 1. For any odd p, let p' denote its
least positive residue modulo 13. Then



By (2 - )

p) \13/ \13)’
so p must be a quadratic residue modulo 13. A quick check shows that
p = +1,+3,4+4 mod 13.
Note also that p = 13 is a solution. [10]

Total for question: [10]

9. If 22 = a (mod p) is soluble with p { a, we have (2) = +1 by definition
p

of the Legendre symbol, so a®?~Y/2 = 41 (mod p) by Euler’s criterion. Now
(p+1)/4 is an integer since p = 3 (mod 4), and for x = £aP*/* we have

22 = aP? = qaP V2 =4 (mod p).

Thus the solutions of 22 = a (mod p) are z = +aP*V/* (mod p). (We know
that there are exactly two solutions mod p.)

Applying this to 22 =5 (mod 79): we have p = 79 and (p+1)/4 = 20, so the
solutions (if there are any) are +5* mod 79. Now 5% = 20 (mod 79), and
we easily verify that 202 = 5 (mod 79). Hence the solutions are x = +20
(mod 79).

10%*.

(i) We have s(0,p) = > P_, (%) By definition of the Legendre Symbol,
("Tf) = 1 for all values of n for 1 < n < p— 1. For n = p, the Legendre
symbol is zero thus s(0,p) = > " _, (%) =p—1. [5]

(ii) We have

gs(a,p) = a: n: (n(np+ a))
_ g aé (n(np+ a))
- Zp: Zi: (%’) by the change of variable b =n+a (mod p)
() 6)
()2 0)

Now P _, %) = 0 since there are (p — 1)/2 quadratic residues giving the
value (3) = 1, plus (p—1)/2 quadratic non-residue giving the value (%) = —1,
plus (2) = 0. [5]



(iii) In the sum s(a,p) = Y7 _, (@), use the change of variables b = na™*

(mod p), so that n = ab (mod p), to rewrite

s(a,p) = Zp: (M>

p

_ ; (a2b([;+ 1))

-2 (5) (57
(

(iv)Combining the previous parts, we find

0= Z s(a,p) by part (ii)
(p—1)s(1,p) +s(0,p) by part (iii)

1
(p—1Ds(L,p)+(p—1) by part(i).

Therefore s(1,p) = —1 and hence by part (iii), s(a,p) = —1 for all a such
that (a,p) = 1. [5]
Total for question: [20]



