## ECM3704 - NUMBER THEORY

## EXERCISE SHEET 3 - OUTLINE SOLUTIONS

1. $(\mathrm{i})^{*} x^{2} \equiv-5\left(\bmod 7^{3}\right)$.

First solve mod 7 : solutions to $x^{2} \equiv-5(\bmod 7)$ are $x \equiv \pm 3(\bmod 7)$. Try lifting $x=3$ to a solution $\bmod 7^{2}$ : Putting $x=3+7 a$ and substituting into $x^{2} \equiv-5\left(\bmod 7^{2}\right)$, we find $6 \times 7 a \equiv-14\left(\bmod 7^{2}\right)$, so $a \equiv 2(\bmod 7)$, and $x \equiv 3+2 \times 7=17\left(\bmod 7^{2}\right)$. Now lift again to a solution mod $7^{3}:$ put $x=17+49 a$. We find $6 \times 49 a \equiv-294\left(\bmod 7^{3}\right)$ so $a \equiv 6 \equiv-1(\bmod 7)$. Hence $x \equiv-32\left(\bmod 7^{3}\right)$.
This shows that the solution $x \equiv 3(\bmod 7)$ lifts to $x \equiv-32\left(\bmod 7^{3}\right)$. Since $x^{2}$ is an even function, the solution $x \equiv-3(\bmod 7)$ must lift to $x \equiv 32$ $\left(\bmod 7^{3}\right)$. Hence solution to $x \equiv-5\left(\bmod 7^{3}\right)$ is $x \equiv \pm 32\left(\bmod 7^{3}\right)$.
$\left(\right.$ ii) ${ }^{*} x^{2} \equiv 3\left(\bmod 7^{3}\right)$ has no solutions since there are no solutions to $x^{2} \equiv 3$ $(\bmod 7)$ (one can compute the Legendre symbol to check this).
(iii)* Starting with $x^{2}+x+7 \equiv 0(\bmod 3)$, we note that $x=1$ is the only solution. Here $f^{\prime}(1)=3 \equiv 0(\bmod 3)$, and $f(1) \equiv 0(\bmod 9)$, so that we have roots $x=1, x=4$, and $x=7(\bmod 9)$. Now $f(1) \not \equiv 0(\bmod 27)$, and hence there is no root $x(\bmod 27)$ for which $x \equiv 1(\bmod 9)$. As $f(4) \equiv 0$ $(\bmod 27)$, we obtain three roots, $4,13,22(\bmod 27)$, which are $\equiv 4(\bmod 9)$. On the other hand, $f(7) \not \equiv 0(\bmod 27)$, so there is no root $(\bmod 27)$ that is $\equiv 7(\bmod 9)$. We are now in a position to determine which, if any, of the roots $4,13,22(\bmod 27)$ can be lifted to roots $(\bmod 81)$. We find that $f(4)=27 \not \equiv 0(\bmod 81), f(13)=189 \equiv 27 \not \equiv 0(\bmod 81)$, and that $f(22)=513 \equiv 27 \not \equiv 0(\bmod 81)$, from which we deduce that the congruence has no solution $(\bmod 81)$.
(iv) $x^{3}+x^{2}+8 \equiv 0\left(\bmod 11^{3}\right)$.

Testing all possibilities $\bmod 11$, we find two solutions, $x \equiv 3,4(\bmod 11)$.
Try lifting $x \equiv 3(\bmod 11)$ : set $x=3+11 a$. Substituting into the congruence we get $44+11 a \times 33 \equiv 0\left(\bmod 11^{2}\right)$ which simplifies to $0 a \equiv-4(\bmod 11)$. This has no solutions, so the solution $x \equiv 3(\bmod 11)$ of the given congruence does not lift to a solution mod $11^{2}$, and hence does not lift to a solution $\bmod 11^{3}$.
Now try lifting $x \equiv 4(\bmod 11)$. Putting $x=4+11 a$ we find $a \equiv 3(\bmod 11)$ and hence $x \equiv 37\left(\bmod 11^{2}\right)$. Then putting $x=37+11^{2} a$ we find $a \equiv-1$ $(\bmod 11)$ so $x \equiv-84 \equiv 1247\left(\bmod 11^{3}\right)$.
Hence the only solution of $x^{3}+x^{2}+8 \equiv 0\left(\bmod 11^{3}\right)$ is $x \equiv-84\left(\bmod 11^{3}\right)$.
Total for question: [15]
2. In the lectures we showed that 3 is a primitive root of 19 .
(i) We find that $7 \equiv 3^{6} \bmod 19$. Set $x \equiv 3^{t}(\bmod 19)$. Then $3^{5 t} \equiv 3^{6}$ $(\bmod 19)$ so that $5 t \equiv 6(\bmod 18)$. Solving this gives $t \equiv 12 \bmod 18$. Thus $x \equiv 3^{12} \equiv 11 \bmod 19$.
(ii) We find that $4 \equiv 3^{14}(\bmod 19)$. Set $x \equiv 3^{t}(\bmod 19)$. Then $3^{4 t} \equiv 3^{14}$ $(\bmod 19)$ so that $4 t \equiv 14(\bmod 18)$. Solving this gives $t \equiv 8(\bmod 9)$ or
equivalently $t \equiv 8$ or $17(\bmod 18)$. Therefore $x \equiv 3^{8}$ or $3^{17}(\bmod 19)$, that is $x \equiv \pm 6(\bmod 19)$.
(iii)* We find that $9 \equiv 3^{2}(\bmod 19)$. Set $x \equiv 3^{t}(\bmod 19)$. Then $3^{10 t} \equiv 3^{2}$ $(\bmod 19)$ so that $10 t \equiv 2(\bmod 18)$. This is equivalent to $5 t \equiv 1(\bmod 9)$, and solving this gives $t \equiv 2 \bmod 9$ or equivalently $t \equiv 2$ or $11(\bmod 18)$. Therefore $x \equiv 3^{2}$ or $3^{11}(\bmod 19)$, that is $x \equiv \pm 9(\bmod 19)$.

Total for question: [5]
3. Let $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, n)=1$. We showed in lectures that for any $k \in \mathbb{Z}$, $\operatorname{ord}_{n}\left(a^{k}\right)=\operatorname{ord}_{n}(a)$ if and only if $\operatorname{gcd}\left(\operatorname{ord}_{n}(a), k\right)=1$. In particular, if $a$ is a primitive root $\bmod n$ then $\operatorname{ord}_{n}(a)=\varphi(n)$ and so $a^{k}$ is a primitive root if and only if $\operatorname{gcd}(\varphi(n), k)=1$. But any $b \in \mathbb{Z}$ with $\operatorname{gcd}(b, n)=1$ is congruent to $a^{k} \bmod n$ for some $k \in \mathbb{Z}$ with $1 \leq k<\varphi(n)$. In particular, this is the case if we take $b$ to be any primitive root. But the number of $k \in \mathbb{Z}$ with both $1 \leq k<\varphi(n)$ and $\operatorname{gcd}(\varphi(n), k)=1$ is $\varphi(\varphi(n))$.
$4^{*}$. We show that if $g$ is a primitive root $(\bmod p)$ then $g+t p$ is a primitive root $\left(\bmod p^{2}\right)$ for exactly $p-1$ values of $t(\bmod p)$. Let $h$ denote the order of $g+t p\left(\bmod p^{2}\right)$. (Thus $h$ may depend on $\left.t\right)$. Since $(g+t p)^{h} \equiv 1\left(\bmod p^{2}\right)$, it follows that $(g+t p)^{h} \equiv 1(\bmod p)$, which in turn implies that $g^{h} \equiv 1$ $(\bmod p)$, and hence that $(p-1) \mid h$. On the other hand, by Corollary 2.60 (lecture notes) we know that $h \mid \varphi\left(p^{2}\right)=p(p-1)$. Thus $h=p-1$ or $h=p(p-1)$. In the latter case $g+t p$ is a primitve root $\left(\bmod p^{2}\right)$, and in the former case it is not. We prove that the former case arises for only one of the $p$ possible values of $t$. Let $f(x)=x^{p-1}-1$. In the former case, $g+t p$ is a solution of the congruence $f(x) \equiv 0\left(\bmod p^{2}\right)$ lying above $g(\bmod p)$. Since $f^{\prime}(g)=(p-1) g^{p-2} \not \equiv 0(\bmod p)$, we know from Hensel's lemma that $g(\bmod p)$ lifts to a unique solution $g+t p\left(\bmod p^{2}\right)$. For all other values of $t(\bmod p)$, the number $g+t p$ is a primitive root $\left(\bmod p^{2}\right)$.
Since each of the $\varphi(p-1)$ primitive roots $(\bmod p)$ give rise to exactly $p-1$ primitive roots $\left(\bmod p^{2}\right)$, we have now shown that there exist at least $(p-1) \varphi(p-1)$ primitive roots $\left(\bmod p^{2}\right)$. To show that there are no other primitive roots $\left(\bmod p^{2}\right)$, it suffices to argue as follows. Let $g$ denote a primitive root $\left(\bmod p^{2}\right)$, so that the numbers $g, g^{2}, \cdots, g^{p(p-1)}$ form a system of reduced residues $\left(\bmod p^{2}\right)$. By Lemma 2.83 (lecture notes), we know that $g^{k}$ is a primitive root if and only if $(k, p(p-1))=1$. By the definition of Euler's phi function, there are precisely $\varphi(p(p-1))$ such values of $k$ among the numbers $1,2, \cdots, p(p-1)$. Since $(p, p-1)=1$, we deduce from Theorem 2.43 (lecture notes) that $\varphi(p(p-1))=\varphi(p) \varphi(p-1)=(p-1) \varphi(p-1)$. [15]

Total for question: [15]
5. First, we can make an observation. Let $a$ be any positive integer congruent to 1 modulo $p$. Then, by Wilson's theorem,

$$
a(a+1) \cdots[a+(p-2)] \equiv(p-1)!\equiv-1 \quad(\bmod p) .
$$

In other words, the product of the $p-1$ integers between any two consecutive multiples of $p$ is congruent to -1 modulo $p$. Then

$$
\begin{aligned}
\frac{(n p)!}{n!p^{n}} & =\frac{(n p)!}{p \dot{2} p \dot{3} p \cdots(n p)} \\
& =\prod_{r=1}^{n}[(r-1) p+1] \cdots[(r-1) p+(p-1)] \\
& \equiv \prod_{r=1}^{n}(p-1)!\quad(\bmod p) \\
& \equiv \prod_{r=1}^{n}(-1) \quad(\bmod p) \\
& \equiv(-1)^{n} \quad(\bmod p)
\end{aligned}
$$

6. Note: in the following solutions, I have not used the Jacobi symbol. However, several of the solutions could be simplified by using the Jacobi symbol and the corresponding law of quadratic reciprocity.
(i)*

$$
\begin{array}{rlrl}
\left(\frac{3}{53}\right) & =\left(\frac{53}{3}\right) & \text { as } 53 \equiv 1 \quad(\bmod 4) \\
& =\left(\frac{-1}{3}\right) \quad \text { as } 53 \equiv-1 \quad(\bmod 3) \\
& =-1 .
\end{array}
$$

(ii)

$$
\begin{array}{rlrl}
\left(\frac{7}{79}\right) & =-\left(\frac{79}{7}\right) & \text { as } 7 \equiv 79 \equiv 3 \quad(\bmod 4) \\
& =-\left(\frac{2}{7}\right) & \text { as } 79 \equiv 2 \quad(\bmod 7) \\
& =-(+1) & \text { as } 7 \equiv \pm 1 \quad(\bmod 8) \\
& =-1 . & &
\end{array}
$$

(iii)*

$$
\begin{aligned}
\left(\frac{15}{101}\right) & =\left(\frac{3}{101}\right)\left(\frac{5}{101}\right) \\
& =\left(\frac{101}{3}\right)\left(\frac{101}{5}\right) \quad \text { as } 101 \equiv 1 \quad(\bmod 4) \\
& =\left(\frac{2}{3}\right)\left(\frac{1}{5}\right) \\
& =(-1)(+1) \\
& =-1
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\left(\frac{31}{641}\right) & =\left(\frac{641}{31}\right) \quad \text { as } 641 \equiv 1 \quad(\bmod 4) \\
& =\left(\frac{21}{31}\right) \\
& =\left(\frac{3}{31}\right)\left(\frac{7}{31}\right) \\
& =\left[-\left(\frac{31}{3}\right)\right]\left[-\left(\frac{31}{7}\right)\right] \quad \text { as } 3,7,31 \text { are all } \equiv 3 \quad(\bmod 4) \\
& =\left[-\left(\frac{1}{3}\right)\right]\left[-\left(\frac{3}{7}\right)\right] \\
& =[-1]\left[+\left(\frac{7}{3}\right)\right] \quad \text { as } 3,7, \text { are both } \equiv 3 \quad(\bmod 4) \\
& =-\left(\frac{1}{3}\right) \\
& =-1 .
\end{aligned}
$$

(v)

$$
\begin{aligned}
\left(\frac{111}{991}\right) & =\left(\frac{3}{991}\right)\left(\frac{37}{991}\right) \\
& =-\left(\frac{991}{3}\right)\left(\frac{991}{37}\right) \quad \text { as } 3 \equiv 991 \equiv 3 \quad(\bmod 4) ; 37 \equiv 1 \quad(\bmod 4) \\
& =-\left(\frac{1}{3}\right)\left(\frac{-8}{37}\right) \\
& =-(+1)\left(\frac{-1}{37}\right)\left(\frac{2}{37}\right)^{3} \\
& =-(+1)(+1)(-1)^{3} \quad \text { as } 37 \equiv 1 \quad(\bmod 4) \text { and } 37 \equiv-3 \quad(\bmod 8) \\
& =+1
\end{aligned}
$$

(vi)

$$
\begin{aligned}
\left(\frac{105}{1009}\right) & =\left(\frac{3}{1009}\right)\left(\frac{5}{1009}\right)\left(\frac{7}{1009}\right) \\
& =\left(\frac{1009}{3}\right)\left(\frac{1009}{5}\right)\left(\frac{1009}{7}\right) \quad \text { as } 1009 \equiv 1 \quad(\bmod 4) \\
& =\left(\frac{1}{3}\right)\left(\frac{4}{5}\right)\left(\frac{1}{7}\right) \\
& =(+1)(+1)(+1) \\
& =+1
\end{aligned}
$$

(vii)

$$
\begin{aligned}
\left(\frac{77}{107}\right) & =\left(\frac{7}{107}\right)\left(\frac{11}{107}\right) \\
& =\left[-\left(\frac{107}{7}\right)\right]\left[-\left(\frac{107}{11}\right)\right] \quad \text { as } 7,11 \text { and } 107 \text { are all } \equiv 3 \quad(\bmod 4) \\
& =\left(\frac{2}{7}\right)\left(\frac{8}{11}\right) \\
& =(+1)\left(\frac{2}{11}\right)^{3} \quad \text { as } 7 \equiv-1 \quad(\bmod 8) \\
& =(-1)^{3} \quad \text { as } 11 \equiv 3 \quad(\bmod 8) \\
& =-1
\end{aligned}
$$

(viii)*

$$
\begin{aligned}
\left(\frac{133}{191}\right) & =\left(\frac{7}{191}\right)\left(\frac{19}{191}\right) \\
& =\left[-\left(\frac{191}{7}\right)\right]\left[-\left(\frac{191}{19}\right)\right] \quad \text { as } 7,19 \text { and } 191 \text { are all } \equiv 3 \quad(\bmod 4) \\
& =\left(\frac{2}{7}\right)\left(\frac{1}{19}\right) \\
& =(+1)(+1) \quad \text { as } 7 \equiv-1 \quad(\bmod 8) \\
& =+1
\end{aligned}
$$

(ix)*

$$
\begin{aligned}
\left(\frac{-111}{257}\right) & =\left(\frac{-1}{257}\right)\left(\frac{3}{257}\right)\left(\frac{37}{257}\right) \\
& =(+1)\left(\frac{257}{3}\right)\left(\frac{257}{37}\right) \quad \text { as } 257 \equiv 1 \quad(\bmod 4) \\
& =\left(\frac{2}{3}\right)\left(\frac{-2}{37}\right) \\
& =(-1)\left(\frac{-1}{37}\right)\left(\frac{2}{37}\right) \\
& =(-1)(+1)(-1) \quad \text { as } 37 \equiv 1 \quad(\bmod 4) \text { but } 37 \equiv-3 \quad(\bmod 8) \\
& =+1 .
\end{aligned}
$$

(x)

$$
\begin{aligned}
\left(\frac{221}{347}\right) & =\left(\frac{13}{347}\right)\left(\frac{17}{347}\right) \\
& =\left(\frac{347}{13}\right)\left(\frac{347}{17}\right) \quad \text { as } 13 \equiv 17 \equiv 1 \quad(\bmod 4) \\
& =\left(\frac{9}{13}\right)\left(\frac{7}{17}\right) \\
& =(+1)\left(\frac{17}{7}\right) \quad \text { as } 17 \equiv 1 \quad(\bmod 4) \\
& =\left(\frac{3}{7}\right) \\
& =-\left(\frac{7}{3}\right) \quad \text { as } 3,7 \text { are both } \equiv 1 \quad(\bmod 4) \\
& =-\left(\frac{1}{3}\right) \\
& =-1 .
\end{aligned}
$$

$(\mathrm{xi})^{*}$

$$
\begin{aligned}
\left(\frac{-257}{541}\right) & =\left(\frac{-1}{541}\right)\left(\frac{257}{541}\right) \\
& =(+1)\left(\frac{541}{257}\right) \quad \text { as } 541 \equiv 1 \quad(\bmod 4) \\
& =\left(\frac{27}{257}\right) \\
& =\left(\frac{3}{257}\right)^{3} \\
& =\left(\frac{257}{3}\right) \quad \text { as } 257 \equiv 1 \quad(\bmod 4) \\
& =\left(\frac{2}{3}\right) \\
& =-1
\end{aligned}
$$

(xii)

$$
\begin{aligned}
\left(\frac{511}{881}\right) & =\left(\frac{7}{881}\right)\left(\frac{73}{881}\right) \\
& =\left(\frac{881}{7}\right)\left(\frac{881}{73}\right) \quad \text { as } 881 \equiv 1 \quad(\bmod 4) \\
& =\left(\frac{-1}{7}\right)\left(\frac{5}{73}\right) \\
& =(-1)\left(\frac{73}{5}\right) \quad \text { as } 7 \equiv 3 \quad(\bmod 4) \text { and } 73 \equiv 1 \quad(\bmod 4) \\
& =-\left(\frac{3}{5}\right) \\
& =-(-1) \\
& =+1
\end{aligned}
$$

3 marks per assessed part. Total for question: [15]
7. (i) To find $\left(\frac{7}{11}\right)$ by Gauss' Lemma, we need the least residues mod 11 of the first 5 multiples of 7 , viz. $7,14,21,28,35$. These least residues are 7,3 , $10,6,2$. The number $\Lambda$ with residues $>11 / 2$ is 3 , so

$$
\left(\frac{7}{11}\right)=(-1)^{3}=-1
$$

(ii) The least residues mod 13 of $5,10,15,20,25,30$ are $5,10,2,7,12,4$ respectively, so again $\Lambda=3$ and

$$
\left(\frac{5}{13}\right)=(-1)^{3}=-1 .
$$

(iii) The least residues mod 17 of $-3,-6,-9,-12,-15,-18,-21,-24$ are $14,11,8,5,2,16,13,10$ respectively, so $\Lambda=5$ and

$$
\left(\frac{-3}{17}\right)=(-1)^{5}=-1 .
$$

(iv) The least residues mod 19 of $5,10,15,20,25,30,35,40,45$ are 5,10 , $15,1,6,11,16,2,7$ respectively, so $\Lambda=4$ and

$$
\left(\frac{5}{19}\right)=(-1)^{4}=+1
$$

$8^{*}$. If $p=2$, we have the solution $x=1$. For any odd $p$, let $p^{\prime}$ denote its least positive residue modulo 13. Then

$$
\left(\frac{13}{p}\right)=\left(\frac{p}{13}\right)=\left(\frac{p^{\prime}}{13}\right)
$$

so $p^{\prime}$ must be a quadratic residue modulo 13. A quick check shows that $p^{\prime} \equiv \pm 1, \pm 3, \pm 4 \bmod 13$.
Note also that $p=13$ is a solution.
9. If $x^{2} \equiv a(\bmod p)$ is soluble with $p \nmid a$, we have $\left(\frac{a}{p}\right)=+1$ by definition of the Legendre symbol, so $a^{(p-1) / 2} \equiv+1(\bmod p)$ by Euler's criterion. Now $(p+1) / 4$ is an integer since $p \equiv 3(\bmod 4)$, and for $x= \pm a^{(p+1) / 4}$ we have

$$
x^{2} \equiv a^{(p+1) / 2} \equiv a a^{(p-1) / 2} \equiv a \quad(\bmod p) .
$$

Thus the solutions of $x^{2} \equiv a(\bmod p)$ are $x \equiv \pm a^{(p+1) / 4}(\bmod p)$. (We know that there are exactly two solutions mod $p$.)
Applying this to $x^{2} \equiv 5(\bmod 79)$ : we have $p=79$ and $(p+1) / 4=20$, so the solutions (if there are any) are $\pm 5^{20} \bmod 79$. Now $5^{20} \equiv 20(\bmod 79)$, and we easily verify that $20^{2} \equiv 5(\bmod 79)$. Hence the solutions are $x \equiv \pm 20$ $(\bmod 79)$.

10*.
(i) We have $s(0, p)=\sum_{n=1}^{p}\left(\frac{n^{2}}{p}\right)$. By definition of the Legendre Symbol, $\left(\frac{n^{2}}{p}\right)=1$ for all values of $n$ for $1 \leq n \leq p-1$. For $n=p$, the Legendre symbol is zero thus $s(0, p)=\sum_{n=1}^{p}\left(\frac{n^{2}}{p}\right)=p-1$.
(ii) We have

$$
\begin{aligned}
\sum_{a=1}^{p} s(a, p) & =\sum_{a=1}^{p} \sum_{n=1}^{p}\left(\frac{n(n+a)}{p}\right) \\
& =\sum_{n=1}^{p} \sum_{a=1}^{p}\left(\frac{n(n+a)}{p}\right) \\
& =\sum_{n=1}^{p} \sum_{b=1}^{p}\left(\frac{n b}{p}\right) \quad \text { by the change of variable } b \equiv n+a \quad(\bmod p) \\
& =\sum_{n=1}^{p} \sum_{b=1}^{p}\left(\frac{n}{p}\right)\left(\frac{b}{p}\right) \\
& =\sum_{n=1}^{p}\left(\frac{n}{p}\right) \sum_{b=1}^{p}\left(\frac{b}{p}\right) \\
& =\left(\sum_{n=1}^{p}\left(\frac{n}{p}\right)\right)^{2} .
\end{aligned}
$$

Now $\sum_{n=1}^{p}\left(\frac{n}{p}\right)=0$ since there are $(p-1) / 2$ quadratic residues giving the value $\left(\frac{n}{p}\right)=1$, plus $(p-1) / 2$ quadratic non-residue giving the value $\left(\frac{n}{p}\right)=-1$, plus $\left(\frac{0}{p}\right)=0$.
(iii) In the sum $s(a, p)=\sum_{n=1}^{p}\left(\frac{n(n+a)}{p}\right)$, use the change of variables $b \equiv n a^{-1}$ $(\bmod p)$, so that $n \equiv a b(\bmod p)$, to rewrite

$$
\begin{aligned}
s(a, p) & =\sum_{b=1}^{p}\left(\frac{a b(a b+a)}{p}\right) \\
& =\sum_{b=1}^{p}\left(\frac{a^{2} b(b+1)}{p}\right) \\
& =\sum_{b=1}^{p}\left(\frac{a^{2}}{p}\right)\left(\frac{b(b+1)}{p}\right) \\
& =\sum_{b=1}^{p}\left(\frac{b(b+1)}{p}\right) \quad \text { since }\left(\frac{a^{2}}{p}\right)=1 \\
& =s(1, p) .
\end{aligned}
$$

(iv)Combining the previous parts, we find

$$
\begin{array}{rlr}
0 & =\sum_{a=1}^{p} s(a, p) \quad \text { by part (ii) } \\
& =(p-1) s(1, p)+s(0, p) & \text { by part (iii) } \\
& =(p-1) s(1, p)+(p-1) & \text { by part(i). }
\end{array}
$$

Therefore $s(1, p)=-1$ and hence by part (iii), $s(a, p)=-1$ for all $a$ such that $(a, p)=1$.

