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Abstract

It is an important problem in analytic number theory to estimate mean values of the

Riemann zeta–function and other L–functions. The study of moments of L–functions

has some important applications, such as to give information about the maximal

order of the Riemann zeta–function on the critical line, the Lindelöf Hypothesis for

L–functions and non-vanishing results. Furthermore, according to the Katz–Sarnak

philosophy [Katz-Sar99a,Katz-Sar99b] it is believed that the understanding of mean

values of different families of L–functions may reveal the symmetry of such families.

The analogy between characteristic polynomials of random matrices and L–

functions was first studied by Keating and Snaith [Kea-Sna00a, Kea-Sna00b]. For

example, they were able to conjecture asymptotic formulae for the moments of L–

functions in different families. The purpose of this thesis is to study moments of

L–functions over function fields, since in this case the L–functions satisfy a Riemann

Hypothesis and one may give a spectral interpretation for such L–functions as the

characteristic polynomial of a unitary matrix. Thus, we expect that the analogy

between characteristic polynomials and L–functions can be further understood in

this scenario.

In this thesis, we study power moments of a family of L–functions associated with

hyperelliptic curves of genus g over a fixed finite field Fq in the limit as g →∞, which

is the opposite limit considered by the programme of Katz and Sarnak. Specifically,

we compute some average value theorems of L–functions of curves and we extend to

the function field setting the heuristic for integral moments and ratios of L–functions

previously developed by Conrey et.al [CFKRS05,Conr-Far-Zir] for the number field

case.
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Chapter 1

Introduction

1.1 Prime Numbers and the Riemann zeta–

function

1.1.1 Historical Introduction

In 1859, Riemann [Riemann] revisited the Euler product formula as the starting

point for his famous eight–page manuscript, introducing the Riemann zeta–

function defined for R(s) > 1 by the series

ζ(s) :=
∞∑
n=1

1

ns
, (1.1.1)

where s is a complex variable. By Cauchy’s integral test we can see that the

sum defining the Riemann zeta–function (1.1.1) is convergent for R(s) > 1.

The series is absolutely and uniformly convergent in the domain R(s) ≥ 1 + δ,

for every δ > 0. Hence ζ(s) is holomorphic for R(s) > 1 and we have the Euler

product formula

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

, (1.1.2)

which was first discovered by Euler [Euler] in 1737.

The importance of ζ(s) in the theory of prime numbers and in analytic

number theory lies in the fact that the Euler product formula connects the

1



Chapter 1. Introduction

natural numbers with the prime numbers, and thus we expect that properties

of prime numbers are encoded in the properties of the Riemann zeta–function.

The study of the zeta–function began with Euler, where making use of ζ(s) he

showed that

log log x =
∑
p≤x

1

p
+O(1), (1.1.3)

which implies the infinity of prime numbers.

The next result that Riemann established in his paper is the analytic con-

tinuation of ζ(s). He showed that ζ(s) can be meromorphically continued into

the whole complex plane C with a simple pole at s = 1 with residue 1. The

idea of the proof is to use the Jacobi theta–function (see [Tit, Section 2.6])

θ(x) =
∑
n∈Z

e−n
2πx (1.1.4)

and note that

ζ(s) =
πs/2

Γ
(
s
2

) ∫ ∞
0

xs/2−1ψ(x)dx (R(s) > 1), (1.1.5)

where Γ(s) is the usual gamma function and

ψ(x) =
∑
n≥1

e−n
2πx. (1.1.6)

We have that

ψ(x) =
θ(x)− 1

2
, (1.1.7)

and making use of the Poisson summation formula we obtain that the function

θ(x) satisfies the following functional equation

θ

(
1

x

)
=
√
xθ(x). (1.1.8)

Now, using (1.1.8) with (1.1.7) into (1.1.5) we obtain that

π−s/2Γ
(s

2

)
ζ(s) =

1

s(s− 1)
+

∫ ∞
1

(x−s/2−1/2 + xs/2−1)ψ(x)dx. (1.1.9)

The integral is convergent for all values of s since ψ(x) decreases more rapidly

than any power of x for large x. Thus we can conclude that ζ(s) is analytic in

the whole complex plane, except for a simple pole at s = 1.

2



1.1. Prime Numbers and the Riemann zeta–function

Riemann also deduced from (1.1.9) that

ξ(s) :=
s(s− 1)

2
π−s/2Γ

(s
2

)
ζ(s) = ξ(1− s). (1.1.10)

The formula above is called the functional equation of the Riemann zeta–

function. To simplify the notation, the functional equation can be written

as

ζ(s) = χ(s)ζ(1− s), (1.1.11)

where

χ(s) = πs−1/2 Γ
(

1
2
− s

2

)
Γ
(
s
2

) . (1.1.12)

Remark 1.1.1. A fact that deserves to be taken in consideration is that in

the sketch of the proof of the functional equation (1.1.10) for the ζ(s) we made

use of the theta–function θ(x), which is an example of a modular form, since

it is periodic with period 1 and satisfies a transformation formula relating

x ↔ 1
x
. Modular forms and Automorphic forms in general are connected

with the Langlands Program which very briefly states that all reasonable

generalizations of the Riemann zeta–function are somehow related to modular

forms, Galois groups and general reciprocity laws in an appropriate meaning

(see [Ber-Gel] and [Gel]).

1.1.2 Zeros of the Riemann zeta–function, the Prime

Number Theorem and the Riemann Hypothesis

We have the following integral representation for the Riemann zeta–function

ζ(s) =
e−iπsΓ(1− s)

2πi

∫
C

zs−1

ez − 1
dz, (1.1.13)

where C is the contour that starts at −∞, comes along the x–axis (a little

below it), makes a small loop around the origin (counterclockwise) and returns

to −∞ along the x–axis (just above it).

It follows from (1.1.13) that for all integers n ≥ 0

ζ(−n) = −Bn+1(1)

(n+ 1)
, (1.1.14)

3



Chapter 1. Introduction

where the Bn’s are the Bernoulli numbers (see [Apostol, Section 12.12]). In

particular, ζ(−2k) = 0 for all integers k ≥ 1, these are called the trivial zeros

of the Riemann zeta–function. Denoting s = σ+ it, Riemann showed that ζ(s)

has no zeros in the half–plane σ > 1 and that ζ(s) vanishes infinitely often in

the critical strip 0 ≤ σ ≤ 1.

Riemann sketched a proof that if no zeros of ζ(s) lie on the edge of the

critical strip, i.e., R(s) = 1, then the Prime Number Theorem (P.N.T.) should

follow as a corollary of this fact. The Prime Number Theorem can be stated

as

Theorem 1.1.2 (Prime Number Theorem). Let π(x) =
∑

p≤x 1. Then

π(x) ∼ x

log x
(1.1.15)

as x→∞.

The Prime Number Theorem was conjectured by Legendre [Legendre] and

Gauss [Gauss] and for about 100 years eminent mathematicians tried to prove

this conjecture, but only in 1896 J. Hadamard [Hadamard] and C. J. de la

Vallée Poussin [Poussin] independently proved the validity of the conjecture.

Continuing his investigation, Riemann in his paper introduces the following

function of complex variable t

ξ(t) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s), (1.1.16)

where s = 1
2

+ it and he was able to show that ξ(t) is an even and entire

function whose zeros have the imaginary part between −i/2 and i/2.

Now we are in a position to present the celebrated Riemann Hypothesis

(R.H.)

Conjecture 1.1.3 (Riemann Hypothesis). All zeros of the function ξ(t) are

real.

In his paper [Riemann], Riemann conjectured that all zeros (the nontrivial

zeros) of ζ(s) in the critical strip lie on the symmetry line of the functional

4



1.1. Prime Numbers and the Riemann zeta–function

equation, that is, σ = 1
2

(critical line). So we can state the Riemann Hypothesis

as

Conjecture 1.1.4 (Riemann Hypothesis). The nontrivial zeros of ζ(s) have

real part equal to 1
2
.

The Riemann Hypothesis still remains an open problem until the present

day and in the opinion of many mathematicians is the most important open

problem in mathematics. The Riemann Hypothesis is so important that the

Clay Mathematics Institute has a prize of $1, 000, 000 for a valid proof of it.

For a description of the Riemann Hypothesis given by the Clay Mathematics

Institute we suggest the section by E. Bombieri in [Car-Jaf-Wil].

Although no valid proof of the Riemann Hypothesis has been found, there is

extensive numerical evidence that corroborate its validity (see [Lun-Rie-Win]

and [Odl]). Hardy [Har-SZR] proved in 1914 that there are infinitely many

zeros on the critical line and Selberg [Sel-ZR] proved that a positive proportion

of the zeros lie on the critical line. This proportion has been improved to 1/3

by Levinson [Levinson], to 2/5 by Conrey [Conr-MTF] and recently due to

Bui, Conrey and Young [Bui-Conr-Young] we know that more than 41% of the

zeros are on the critical line.

We can say that one of the strongest pieces of evidence for the validity

of the Riemann Hypothesis is the analogous theory of algebraic varieties over

finite fields, due to the fact that for such varieties the associated Zeta function

satisfies the analogue of the Riemann Hypothesis (see [Weil-CA], [Deligne I]

and [Deligne II])∗.

To study the vertical distribution of zeros of ζ(s), let us define the following

function

N(T ) := #{ρ = β + iγ : 0 ≤ β ≤ 1, 0 ≤ γ ≤ T}. (1.1.17)

Making use of the argument principle it is known [VM] that

N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+ S(T ) +O

(
1

T

)
, (1.1.18)

∗See next chapter for more details on this topic
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Chapter 1. Introduction

where

S(T ) =
1

π
I
(
log ζ(1

2
+ it)

)
(1.1.19)

describes the fluctuations around the mean and is defined in such way that

it varies continuously along the straight lines joining 2 to 2 + iT , and 2 + iT

to 1/2 + iT with initial value of 0. When 1/2 + iT is a Riemann zero, S(T )

has a discontinuity jump. The following theorem was presented in Riemann’s

paper [Riemann], but the first proof was given by von Mangoldt [VM].

Theorem 1.1.5 (The Riemann–von Mangoldt formula).

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ). (1.1.20)

The connection between the zeros of ζ(s) and the prime numbers appears

in the error term of the Prime Number Theorem. Let us denote the nontrivial

zeros by ρn = βn + iγn, where . . . γ−1 < 0 < γ1 ≤ γ2 ≤ . . . It is known that if

Θ = sup
ρ

R(ρ) = sup
n
βn (1.1.21)

then

π(x) = Li(x) +O(xΘ log x), (1.1.22)

where Li(x) is the logarithmic integral and here 1/2 ≤ Θ ≤ 1. The Riemann

hypothesis is equivalent to having Θ = 1/2. Information about Θ are not well

known and the best zero–free region so far is due to Korobov and Vinogradov

(for more details about zero–free regions see, [Tit, Chapter 6] and [Ivic, Chapter

6]).

1.1.3 Moments of the Riemann zeta–function

A very important problem in analytic number theory is to estimate moments

of the Riemann zeta–function as T → ∞. The 2kth moment of the Riemann

zeta–function is defined by

Mk(T ) :=
1

T

∫ T

0

|ζ(1
2

+ it)|2kdt. (1.1.23)
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1.1. Prime Numbers and the Riemann zeta–function

The problem of moments of the Riemann zeta–function is connected with

the famous Lindelöf hypothesis, which is the following conjecture

Conjecture 1.1.6 (The Lindelöf Hypothesis). For every ε > 0

ζ(1
2

+ it) = O(tε). (1.1.24)

The connection comes from the fact that the Lindelöf hypothesis is equiva-

lent to the statement that Mk(T ) = O(T ε) for all positive integers k (see [Tit,

Theorem 13.2]). Hence the problem about mean values of the modulus of

Riemann zeta–function is related with many questions on O–results, Ω–results

and about the growth of the Riemann zeta–function on the critical line. We

can say that problems involving moments of the Riemann zeta–function are

considered one of the most profound and important topics in analytic number

theory nowadays.

The leading order asymptotic for Mk(T ) is known just for the second mo-

ment, k = 1 and for the fourth moment, k = 2. The second moment is due to

Hardy and Littlewood [Har-Lit],

M1(T ) ∼ log T. (1.1.25)

Later, in 1926, Ingham [Ing] considered the asymptotic formula for the shifted

second moment and derived

M1(T ) = log
T

2π
+ 2γ − 1 +O(T−1/2 log T ). (1.1.26)

The error was improved by the work of Heath–Brown and Huxley [HB-Hux]

to be O(T−15/22+ε) and by Watt [Watt] to be O(T θ logϕ(T + 2)) with ϕ < 4

and θ = 131/416.

The calculations for the fourth moment are deeper and complicated, but

in the same paper, Ingham established that

M2(T ) ∼ 1

2π2
(log T )4, (1.1.27)
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Chapter 1. Introduction

and the lower order terms were given by Heath–Brown [HB-FMRZ], who

showed that

M2(T ) =
4∑

n=0

cn(log T )n +O(T−1/8+ε), (1.1.28)

where the cn’s are absolute constants. The main term was also obtained by

Conrey [Conr-NFPMR] as the residue of a certain function at s = 0.

Until the present day no other mean values of the Riemann zeta–function

have been proved and it is possible that this problem may be beyond our reach

with the available techniques. It was conjectured by Conrey and Ghosh [Conr-

Gho98] that

M3(T ) ∼ 42

9!
a(3)(log T )9, (1.1.29)

and by Conrey and Gonek [Conr-Gon] that

M4(T ) ∼ 24024

16!
a(4)(log T )16, (1.1.30)

where

ak =
∏
p

[(
1− 1

p

)k2 ∞∑
m=0

(
Γ(m+ k)

m!Γ(k)

)2

p−m

]
. (1.1.31)

For the other positive integer values of k, it is believed that, as T → ∞,

there is a positive constant ck such that

Mk(T ) ∼ ck(log T )k
2

. (1.1.32)

Due to the work of Conrey and Ghosh [Conr-Gho92] the conjecture above

assumed a more explicit form, namely

ck =
akgk

Γ(k2 + 1)
, (1.1.33)

where

ak =
∏
p

[(
1− 1

p

)k2 ∑
m≥0

dk(p
m)2

pm

]
, (1.1.34)

gk is an integer when k is an integer and dk(n) is the number of ways to

represent n as a product of k factors. The main tool used by Conrey and Ghosh
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1.1. Prime Numbers and the Riemann zeta–function

in their paper is the Montogmery and Vaughan [Mon-Vau73,Mon-Vau74] mean

value theorem, which can be stated as∫ T

0

∣∣∣∣∣
N∑
n=1

ann
it

∣∣∣∣∣
2

dt =
N∑
n=1

(T +O(n))|an|2. (1.1.35)

Although not much has been proved for k beyond 2, we still have interesting

results on bounds for Mk(T ). Ramachandra [Ram-SRII] established the lower

bound Mk(T ) � (log T )k
2

for positive integers 2k and Heath–Brown [HB-

FMR] established this for all positive rational numbers k. Under the R.H.,

Conrey and Ghosh [Conr-Gho84] showed that, for any fixed k ≥ 0,

Mk(T ) ≥
(

ak
Γ(k2 + 1)

+ o(1)

)
(log T )k

2

. (1.1.36)

This result has been improved by Balasubramanian and Ramachandra [Bal-

Ram] and Soundararajan [Sound-MVRZ]. Recently Soundararajan and Radzi-

will [Rad-Sound] obtained continuous lower bounds of the correct order of

magnitude for the 2k–th moment of the Riemann zeta function for all k ≥ 1.

Considering now upper bounds forMk(T ) we have unconditionallyMk(T )�

(log T )k
2

for k = 1/n, where n is a positive integer [HB-FMR] and under the

R.H., Ramachandra [Ram-SRII,Ram-SRIII] and Heath–Brown [HB-FMR,HB-

FMRII] proved that the above is true for 0 ≤ k ≤ 2. More recently Soundarara-

jan [Sound-MRZ] under R.H. obtained that Mk(T ) � (log T )k
2+ε for every

positive real number k and every ε > 0.

A different and important type of mean value theorem involving ζ(s) which

was first studied by Bohr and Landau [Boh-Lan] is the mollified moments of

the Riemann zeta function

1

T

∫ ∞
0

|ζ(1
2

+ it)|2k|MN(1
2

+ it)|2dt, (1.1.37)

where

MN(s) =
N∑
n=1

a(n)

ns
, (1.1.38)

and the coefficients a(n) are carefully chosen to have a specific form similar

to the Möbius function. Thus MN(s) can be viewed as an approximation to
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Chapter 1. Introduction

1/ζ(s) in the half plane σ > 1. If this approximation is also valid inside the

critical strip, we expect that multiplying ζ(s) by MN(s) should absorb the

large values of the zeta–function.

The calculations for the mollified second moment were established by Bal-

asubramanian, Conrey and Heath–Brown [Bal-Conr-HB]. They showed that

for N = T θ with θ = 1/2− ε, and a(n)� nε, then it follows that

1

T

∫ T

0

|ζMN(1
2

+ it)|2dt ∼
∑
h,k≤N

a(h)a(k)(h, k)

hk

(
log

(
T (h, k)2

2πhk

)
+ 2γ − 1

)
.

(1.1.39)

It is from these mollification techniques that the theorems on the proportion

of zeros in the critical line followed. When a(n) is similar to µ(n), using

Kloosterman sums techniques, Conrey [Conr-MTF] increased the length of

the polynomial to T 4/7−ε, this led to his theorem that more than 40% of the

zeros of the Riemann zeta–function lie on the critical line as said earlier.

Through heuristic arguments Farmer [Far-LMR] suggested that Conrey’s

result still holds when θ is arbitrarily large. And as a consequence of Farmer’s

conjecture we have that almost all the zeros lie on the critical line, which is a

surprising consequence.

1.2 Analytic Theory of L–functions

We will now present a generalization of the Riemann zeta–function. For further

details and a deeper treatment of this subject see [Mon-Vau, Chapter 10],

[Daven] and [Iwan-Kow, Chapter 5].

1.2.1 Dirichlet L–functions

We will begin this section by defining the Dirichlet character.

Definition 1.2.1. A Dirichlet character to modulus q, where q ∈ N, is a

function χ : Z→ C such that

10



1.2. Analytic Theory of L–functions

(i) χ(mn) = χ(m)χ(n) for all m,n ∈ Z,

(ii) χ(n+mq) = χ(n) for all m,n ∈ Z,

(iii) χ(1) = 1, and

(iv) χ(n) = 0 whenever (n, q) 6= 1.

Definition 1.2.2. Let χ be a Dirichlet character mod q and let d | q. The

number d is called an induced modulus for χ if

χ(n) = 1 whenever (n, q) = 1 and n ≡ 1 (mod d). (1.2.1)

A Dirichlet character χ modulo q is said to be primitive mod q if it has no

induced modulus d < q.

Definition 1.2.3. Let χ be a Dirichlet character modulo q. The Dirichlet

L–function corresponding to χ is defined to be

L(s, χ) :=
∞∑
n=1

χ(n)

ns
. (1.2.2)

The Dirichlet L–function is absolutely convergent for R(s) > 1 and locally

uniformly convergent, so L(s, χ) is holomorphic in the same region and if we

call χ0 to be the principal character modulo q, where χ0(n) = 1 if (n, q) = 1

and is 0 otherwise, we have that for χ 6= χ0 the series defines a holomorphic

function for R(s) > 0. Since characters are multiplicative we can deduce in

the same way that is done for the Riemann zeta function that

L(s, χ) =
∏

p prime

(
1− χ(p)

ps

)−1

. (1.2.3)

Restricting χ to be primitive and defining the completed L-function by

Λ(1
2

+ s, χ) :=
( q
π

)s/2
Γ

(
s+ 1

2
+ a

2

)
L(1

2
+ s, χ), (1.2.4)

where

a =

 0 if χ(−1) = 1,

1 if χ(−1) = −1,
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Chapter 1. Introduction

we obtain that (1.2.4) is an entire function and satisfies the following functional

equation

Λ(1
2

+ s, χ) =
τ(χ)

ia
√
q

Λ(1
2
− s, χ), (1.2.5)

where τ(χ) is the Gauss sum defined to be

τ(χ) :=

q∑
n=1

χ(n)e(n/q), (1.2.6)

where e(x) := exp(2πix). For a proof of these facts see [Daven, Chapter 9].

The functional equation shows that L(s, χ) has an analytic continuation

to the complex plane C and is regular everywhere. The zeros of Λ(s, χ) are

located in the critical strip and this fact follows from the functional equation

and the Euler product for L(s, χ), these zeros are called the nontrivial zeros

of the L–function. We have the following conjecture

Conjecture 1.2.4 (Grand Riemann Hypothesis). All non–trivial zeros of

Dirichlet L–functions lie on the critical line.

Analogous to the Riemann zeta–function we can define the zero counting

function by

N(T, χ) := #{β + iγ : Λ(β + iγ) = 0, |γ| ≤ T}, (1.2.7)

and for T ≥ 2 we have the analogue of the Riemann–von Mangoldt formula

(see [Mon-Vau, Chapter 14]),

1

2
N(T, χ) =

T

2π
log

qT

2π
− T

2π
+O(log qT ). (1.2.8)

1.2.2 Average Value Theorems of Dirichlet L–functions

Similarly to the case of the Riemann zeta–function, the problem related to the

calculations of mean values for Dirichlet L–functions is also an important and

central problem in analytic number theory. We define the 2kth power moment

of L(s, χ) at the centre of the critical strip, that is, at s = 1/2 to be

1

ϕ∗(q)

∑∗

χ( mod q)

|L(1
2
, χ)|2k, (1.2.9)
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1.2. Analytic Theory of L–functions

where ϕ∗(q) is the number of primitive characters and
∑∗ denotes a sum over

all primitive characters χ modulo q. We will be concerned with the asymptotic

behaviour of such moments in the limit as q → ∞, this is the q–analogue of

the moments of the Riemann zeta–function on the critical line.

The leading order asymptotic for (1.2.9) is known for the second moment,

k = 1, due to Paley [Paley],

1

ϕ∗(q)

∑∗

χ( mod q)

|L(1
2
, χ)|2 ∼ ϕ(q)

q
log q. (1.2.10)

Later, Iwaniec and Sarnak [Iwan-Sar] found an asymptotic formula with a

power saving for the error term. And in 1981, Heath–Brown [HB-FMDL] es-

tablished an asymptotic formula for the fourth power moment provided that

q has not too many prime factors and therefore the error term below is domi-

nated by the main term,

1

ϕ∗(q)

∑∗

χ( mod q)

|L(1
2
, χ)|4 =

1

2π2

∏
p|q

(1− p−1)3

(1 + p−1)
(log q)4 +O

(
2ω(q)q(log q)3

ϕ∗(q)

)
.

(1.2.11)

Still on the fourth moment, Soundararajan [Sound-FMDL] established the

following asymptotic formula as q →∞,

1

ϕ∗(q)

∑∗

χ( mod q)

|L(1
2
, χ)|4 ∼ 1

2π2

∏
p|q

(1− p−1)3

(1 + p−1)
(log q)4. (1.2.12)

Recently, Young [Young-FMDL] obtained an asymptotic formula with a power

saving when q 6= 2 and q is prime,

1

ϕ∗(q)

∑∗

χ( mod q)

|L(1
2
, χ)|4 =

4∑
i=0

ci(log q)i +O(q−5/512+ε), (1.2.13)

where ci are computable constants and the exponent −5/512 is given by the

best–known bound on the size of the Hecke eigenvalue λ(n) associated with a

Maass form due to Kim and Sarnak [Kim-Sar].

Conrey, Iwaniec and Soundararajan [Conr-Iwan-Sound] recently obtained

the following asymptotic formula for a different average corresponding to the

13



Chapter 1. Introduction

sixth power moment

∑
q≤Q

∑∗

χ mod q

∫ ∞
−∞
|Λ(1

2
+ iy, χ)|6dy

∼ 42a3

∑
q≤Q

∏
p|q

(1− 1
p
)5

(1 + 4
p

+ 1
p2

)
ϕ∗(q)

(log q)9

9!

∫ ∞
−∞

∣∣∣∣Γ(1/2 + iy

2

)∣∣∣∣6 dy, (1.2.14)

where χ is a primitive even Dirichlet character modulo q, i.e. χ(−1) = 1,a3

is a certain product over primes and ϕ∗(q) is the number of even primitive

Dirichlet characters and the sum here is restricted to even primitive Dirichlet

characters.

A more general problem involving moments of Dirichlet L–functions is to

consider the q–aspect and the t–aspect and investigate asymptotic formulas or

uniform estimates for both q and T in

1

ϕ∗(q)

∑∗

χ( mod q)

∫ T

0

|L(1
2

+ it, χ)|2kdt, (1.2.15)

see Montgomery [Mon-TMNT] and Motohashi [Mot-NMVL II,Mot-NMVL III]

for some results involving this kind of average value. Recently, Bui and Heath–

Brown [Bui-HB] showed that for q, T ≥ 2

∑∗

χ( mod q)

∫ T

0

|L(1
2

+ it, χ)|4dt

=

(
1 +O

(
ω(q)

log q

√
q

φ(q)

))
ϕ∗(q)T

2π2

∏
p|q

(1− p−1)3

(1 + p−1)
(log qT )4

+O(qT (log qT )7/2), (1.2.16)

where the sum is over all primitive Dirichlet characters χ modulo q, ω(q) is

the number of distinct prime factors of q and ϕ∗(q) is the number of primitive

Dirichlet characters.

Analogous to the case of the Riemann zeta–function, no other asymptotic

formula is known in this case for k > 2. But we can investigate bounds for these

moments and heuristic arguments suggest that the correct order of magnitude

of (1.2.9) is � (log q)k
2
.
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1.2. Analytic Theory of L–functions

We have the following lower bound given by Rudnick and Soundararajan

[Rud-Sound05] for all large primes q,

1

ϕ∗(q)

∑∗

χ( mod q)

|L(1
2
, χ)|2k �k (log q)k

2

. (1.2.17)

And on the upper bounds we have the following results obtained by Huxley

[Hux-MHZ] ∑
q≤Q

∑∗

χ( mod q)

|L(1
2
, χ)|6 � Q2(logQ)9, (1.2.18)

and ∑
q≤Q

∑∗

χ( mod q)

|L(1
2
, χ)|8 � Q2(logQ)16, (1.2.19)

which agree with the order of magnitude suggested above.

1.2.3 Quadratic Dirichlet L–functions

We start this section by defining fundamental discriminants and the L-functions

associated with real characters.

Definition 1.2.5. The number d 6= 1 is called a fundamental discriminant if

either d ≡ 1 (mod 4), d square–free, or d = 4N , where N is square–free and

N ≡ 2, 3 (mod 4).

We now denote χd to be the Dirichlet character defined by the Kronecker’s

symbol χd(n) =
(
d
n

)
with d being restricted to fundamental discriminants.

The character χd defined in this way only takes values −1, 0 or 1 and if d > 0

then χd is called an even character, i.e., χd(−1) = 1, and if d < 0 it is called

an odd character, i.e., χd(−1) = −1. We present in the next theorem some

properties of χd, for details see [Mon-Vau].

Theorem 1.2.6.

(i) Let d be a fundamental discriminant. Then χd(n) is a primitive quadratic

character modulo |d|. Also there is only one real primitive character modulo

|d| for any such d.
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(ii) Any character χd can be derived as a product of the characters χ−4, χ8,

χp and χ−p, where p ≡ 1(mod4) for χp and p ≡ 3(mod4) for χ−p where p is

odd. Remember that χ±p(n) =
(
n
p

)
is the Legendre symbol.

Now, consider the L–function associated with the character χd, this L–

function is usually called a quadratic Dirichlet L–function and has the following

series representation and Euler product

L(s, χd) =
∞∑
n=1

χd(n)

ns
and L(s, χd) =

∏
p

(
1− χd(p)

ps

)−1

, (1.2.20)

where χd(n) is defined as above. The Dirichlet series is absolutely convergent

for R(s) > 1, and χd(n) is a primitive character for the fundamental discrim-

inants d. We have that the quadratic Dirichlet L–functions have a functional

equation and can be analytically continued to the whole complex plane.

Just as we proceed in the case of the Riemann zeta–function and Dirichlet

L–functions we can do for quadratic Dirichlet L–functions. An important

observation is the possibility of quadratic Dirichlet L–functions having zeros

on the real axis. We recommend the reader to see [Conr-Sound], [Iwan-CEC]

or [Mon-Vau, Chapter 11] for a detailed discussion on this subject.

1.2.4 Mean Value Theorems of Quadratic Dirichlet L–

functions

The problem of mean values for quadratic Dirichlet L–functions is to under-

stand the asymptotic behavior of∑
0<d≤D

L(1
2
, χd)

k, (1.2.21)

as D →∞. In this context Jutila [Jutila] proved that

∑
0<d≤D

L(1
2
, χd)

=
P (1)

4ζ(2)
D

{
log(D/π) +

Γ
′

Γ
(1/4) + 4γ − 1 + 4

P
′

P
(1)

}
+O(D3/4+ε) (1.2.22)
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1.2. Analytic Theory of L–functions

where

P (s) =
∏
p

(
1− 1

(p+ 1)ps

)
.

The asymptotic formula for this first moment was previously conjectured by

Goldfeld and Viola [Gold-Vio]. In the same paper [Jutila], Jutila also estab-

lished the second moment of L(s, χd) at the critical point s = 1
2
,

∑
0<d≤D

L(1
2
, χd)

2 =
c

ζ(2)
D log3D +O(D(logD)5/2+ε) (1.2.23)

with

c =
1

48

∏
p

(
1− 4p2 − 3p+ 1

p4 + p3

)
.

Restricting d to be odd, square–free and positive, so that χ8d are real,

primitive characters with conductor 8d and with χ8d(−1) = 1, Soundararajan

[Sound-NQDL] showed that

1

D∗

∑∗

0<d≤D

L(1
2
, χ8d)

3

∼ 1

184320

∏
p≥3

(
1− 12p5 − 23p4 + 23p3 − 15p2 + 6p− 1

p6(p+ 1)

)
(logD)6, (1.2.24)

where the sum
∑∗ over d indicates that d is odd and square–free and D∗ is the

number of such d in (0, D]. In the same paper [Sound-NQDL], Soundararajan

also gave a conjecture for the fourth moment. A few years later Diaconu,

Goldfeld and Hoffstein [Diac-Gold-Hoff] showed a different way to obtain the

same asymptotic formula using multiple Dirichlet series techniques. Recently,

Young [Young-FMQDL] considered the smoothly weighted first moment of

primitive quadratic Dirichlet L–functions and was able to obtain an error term

which is the square root of the main term,

∑∗

(d,2)=1

L(1
2
, χ8d)Φ

(
d

D

)
= DP (logD) +O(D1/2+ε), (1.2.25)

where Φ is a smooth function of compact support and P is a linear polynomial

depending on Φ. Before finish writing this thesis, Young [Young-TMQDL]
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posted a paper in the arXiv where he obtains the smooth third moment of

quadratic Dirichlet L–functions with an error term of size O(D3/4+ε),

∑∗

(d,2)=1

L(1
2
, χ8d)

3F (d) =
∑∗

(d,2)=1

P (log d)F (d) +O(D3/4+ε), (1.2.26)

where F is a smooth, compactly–supported function on the positive reals with

support in a dyadic interval [D/2, 3D] and satisfying F j(x) �j D
−j for j =

1, 2, . . .. The sum is over square–free numbers d and P (x) is a particular degree

6 polynomial.

Heuristic arguments suggest that the correct order of magnitude of the kth

moment is � (logD)k(k+1)/2 and the conjectured lower bound was proved by

Rudnick and Soundararajan [Rud-Sound06] for every even natural k

∑∗

|d|≤D

L(1
2
, χd)

k �k D(logD)k(k+1)/2. (1.2.27)

1.3 Random Matrix Theory

Roughly speaking, Random Matrix Theory (RMT) is the study of matrices

whose elements are random variables and is primarily concerned with the

probabilistic properties of its eigenvalues and eigenvectors. For a complete

treatment of the random matrix theory we suggest Mehta’s book [Mehta]. For

a review of the subject see [Tra-Wid], for a historical development of the theme

we suggest [For-Sna-Ver] and for applications of the theory of random matrices

in several areas we suggest the recent book [Ake-Baik-DiFran].

1.3.1 Random Matrix Theory and the Classical Com-

pact Groups

By using random matrices to study spectra of heavy atoms in physics, Wigner

[Wigner] investigated the Gaussian Ensembles which are (Gaussian Unitary–

GUE, Orthogonal–GOE and Symplectic Ensembles–GSE), but for comparisons
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and analogies with number theory, specifically with L–functions, the matrices

which has proven to be useful are those associated with the three Classical

Compact Groups. For completeness we will now present the Classical Compact

Groups.

1. Unitary Group U(N). Is the group of all N ×N matrices A such that

AA† = A†A = IN , where A† is the complex transpose of A and IN is the

N ×N identity matrix.

2. Unitary Symplectic Group USp(2N). Is the group of all 2N × 2N

matrices A ∈ U(N), where A satisfy the condition AJAt = A with

J =

 0 IN

−IN 0

 . (1.3.1)

3. Special Orthogonal Group SO(N). Is the group of N ×N matrices

A ∈ U(N), such that AtA = AAt = IN with det(A) = 1.

Each of the above groups is a compact Lie group and so they have a unique

invariant probability measure under the action of the group, called the Haar

measure. The Haar measure is different for each of these groups, for example,

the Haar measure dA for U(N) and USp(2N) are

1. U(N)

dA =
1

N !(2π)N

∏
1≤j<k≤N

|eiθk − eiθj |2dθ1 . . . dθN (1.3.2)

2. USp(2N)

dA =
1

2N(2π)NN !

∏
1≤j<k≤N

|eiθk − eiθj |2|eiθk − e−iθj |2

×
N∏
k=1

|eiθk − e−iθk |dθ1 . . . dθN , (1.3.3)

where eiθn are the eigenvalues of the associated matrices. Since the matrices of

the classical groups are unitary matrices we have that their eigenvalues lie on

19



Chapter 1. Introduction

the unit circle. And for matrices in USp(2N) the eigenvalues occur in conjugate

pairs and can be written as eiθn , e−iθn for 1 ≤ n ≤ N . See Weyl [Weyl-CG]

for a complete discussion about Haar measure and joint probability density of

eigenvalues in the classical compact groups.

1.3.2 Random Matrix Theory and Number Theory: The

meeting between Dyson and Montgomery

In the early 1970’s Hugh Montgomery was visiting the Institute for Advanced

Study in Princeton when he was introduced to Freeman Dyson. Montgomery

was working on the pair correlation of the zeros of the Riemann zeta–function,

i.e., how the distance between two zeros of the Riemann zeta–function behaves

on average. At this meeting Montgomery showed such calculations to Dyson,

who instantly realized that this pair correlation were similar to that of the

eigenvalues of a random unitary matrix. The opportunity of this meeting, the

Montgomery’s calculations and the insight of Dyson on this question was the

key point for the birth of the interaction between random matrices and the

distribution of zeros of the Riemann zeta–function as quoted in [Dyson72].

Assuming the truth of the R.H., Montgomery [Mon-PCZR] stated the fol-

lowing conjecture

Conjecture 1.3.1 (Pair Correlation of Zeros). For fixed 0 < a < b <∞ and

γ, γ
′

generic ordinates of zeros of the Riemann zeta–function, we have

∑
γ,γ
′∈[0,T ]

a≤(γ−γ′ ) log T
2π
≤b

1 ∼ T

2π
log T

(∫ b

a

1−
(

sin(πu)

πu

)2

du+ δ(a, b)

)
(1.3.4)

as T →∞. Where δ(a, b) = 1 if 0 ∈ [a, b] and δ(a, b) = 0 otherwise.

Let f(x) be a suitable test function in the Schwarz class with the support

of its Fourier transform f̂(ξ) =
∫∞
−∞ f(x)e(−xξ)dx contained in (−1, 1). Then

we can now state the Montgomery–Odlyzko conjecture
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1.3. Random Matrix Theory

Conjecture 1.3.2 (Montgomery–Odlyzko). If f(x) is a nice test function as

above and under the same hypothesis as in Conjecture 1.3.1, such that f(x)→

0 as |x| → ∞, we have

lim
T→∞

1

T

∑
n,m≤T

f

(
γn log γn

2π
− γm log γm

2π

)

=

∫ ∞
−∞

f(x)

(
δ(x) + 1−

(
sin πx

πx

)2
)
dx. (1.3.5)

Now, looking at the RMT side, for anN×N unitary matrix with normalised

eigenangles θ1, . . . , θN the two-point correlation function for the matrix A ∈

U(N) is defined by Keating [Mez-Sna, pg 253] to be

R2(A;x) :=
1

N

N∑
n=1

N∑
m=1

∞∑
k=−∞

δ(x+Nk − θn + θm). (1.3.6)

So we have that R2(A;x) is N–periodic and for a suitable test function f

1

N

∑
n,m

f(θn − θm) =

∫ N/2

−N/2
R2(A;x)f(x)dx. (1.3.7)

In 1962 Dyson [Dyson] showed that

Theorem 1.3.3. For a nice test function f , such that f(x)→ 0 as |x| → ∞,

we have∫
G(N)

1

N

∑
n,m≤N

f(θn − θm)dA =

∫
G(N)

∫ N/2

−N/2
f(x)R2(A;x)dxdA

=

∫ N/2

−N/2
f(x)

(
∞∑

k=−∞

δ(x− kN) + 1− sin2(πx)

N2 sin2(πx
N

)

)
dx, (1.3.8)

and hence

lim
N→∞

∫
G(N)

1

N

∑
n,m≤N

f(θn − θm)dA = lim
N→∞

∫
G(N)

∫ N/2

−N/2
f(x)R2(A;x)dxdA

=

∫ ∞
−∞

f(x)

(
δ(x) + 1−

(
sin(πx)

πx

)2
)
dx, (1.3.9)

where G(N) = U(N), USp(2N) or SO(2N).
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Thus comparing (1.3.5) with (1.3.9) we can conclude as did Dyson, that the

pair correlation for U(N) is the same as the conjecture for the pair correlation

for zeros of the Riemann zeta–function.

There is a considerable amount of numerical evidence provided by Odlyzko

[Odl89] and Rubinstein [Rub-ESIZ] supporting the above conjecture. Besides

the two-point correlation investigated above, higher correlations were also stud-

ied. For the three point correlation of the zeros of the Riemann zeta–function,

Hejhal [Hejhal] showed that it is asymptotically the same as the three point

correlation for U(N). Generalizing the two-point and three-point correlation

to all n–point correlations, Rudnick and Sarnak [Rud-Sar] showed that the n–

point correlation of zeros of principal L–functions match the RMT analogous

theorem for n–point correlation function. It is important to note that both

works of Hejhal and Rudnick & Sarnak are based on appropriate restrictions

on the support of the Fourier transform of the test function.

Using heuristic arguments Bogomolny and Keating [Kea93, Bog-Kea95,

Bog-Kea96a,Bog-Kea96b] obtained the above conjectures on the n–point cor-

relation of zeros of the Riemann zeta–function. An important fact is that the

results derived by Bogomolny and Keating do not present any restriction on

the support of the Fourier transform. The heuristic arguments are based on

the following conjecture due to Hardy–Littlewood [Har-Lit23]

Conjecture 1.3.4. Let π2(k;X) be the number of primes p ≤ X such that

p+ k is also a prime. Then,

π2(x) ∼ X

log2X
C(k), (1.3.10)

as X →∞ and C(k) = 0 if k is odd and for k even is

C(k) = 2
∏
q>2

q prime

(
1− 1

(q − 1)2

) ∏
p>2
p|k

p prime

(
p− 1

p− 2

)
. (1.3.11)

The formula given by Bogomolny and Keating [Bog-Kea96a] for the pair

correlation includes all of the lower order terms that arise from arithmetical
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1.4. Families of L–functions and the Katz–Sarnak Philosophy

considerations. Bogomolny and Leboeuf [Bog-Leb] have extended the same

heuristic arguments and methods beyond the Riemann zeta–function case

to compute the pair correlation for Dirichlet L–functions. Their result also

matches with the U(N) RMT pair-correlation.

1.4 Families of L–functions and the Katz–Sarnak

Philosophy

One of the most promising ways to find a proof for the Riemann Hypothesis is

due to what is called Hilbert-Pólya conjecture [Edwards,Ber-Kea]. The conjec-

ture states that there is a self-adjoint (hermitian) operator whose eigenvalues

are the nontrivial zeros of the Riemann zeta–function. There is a great deal

of evidence for the validity of this conjecture, such as: numerical and theo-

retical calculations of the local spacing distribution between the high zeroes

of L–functions, study of low-lying zeros of zeta functions and the eigenvalue

distribution laws. But the strongest piece of evidence are the function field

analogues† for zeta functions of curves over finite fields and varieties in general,

since in this case we are able to provide a spectral interpretation of the zeros

in terms of eigenvalues of Frobenius on cohomology.

Katz and Sarnak in [Katz-Sar99b] have presented the idea that for each

family of L–functions there is a corresponding symmetry group, where the

particular group is determined by symmetries of the family. This idea is based

on the study of the distribution of zeros of zeta functions in the function field

setting, as presented in their monograph [Katz-Sar99a].

The idea of symmetry types and families of L–functions were also exploited

by Conery and Farmer‡ [Conr-Far], who presented the following conjecture

concerning the moments of L–functions

†We will discuss this topic in more detail in Chapter 2.
‡We will explore this conjecture in the section 1.5.1.
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Conjecture 1.4.1 (Conrey–Farmer). For some ak, gk and B(k) we have,

1

Q∗
∑
f∈F

c(f)≤Q

V (Lf (
1
2
))k ∼ akgk

Γ(1 +B(k))
(logQ)B(k), (1.4.1)

where the L–function have a functional equation relating s↔ 1− s, the family

F is partially ordered by the conductor c(f) and Q∗ = #{f : c(f) ≤ Q}. Also

we have that V (z) depends on the symmetry type of the family (V (z) = |z|2

for unitary symmetry and V (z) = z for orthogonal or symplectic symmetry),

gk and B(k) depend only on the symmetry type of the family of L–functions

and are integral for integral k and the parameter ak depends on the family and

is computable in any specific case.

It is from the Katz-Sarnak philosophy [Katz-Sar99a,Katz-Sar99b] that the

connection between random matrices and statistical properties of families of

L–functions becomes more apparent, they showed that the distribution of the

zeros are related to average over the classical compact groups and was con-

jectured by Katz–Sarnak that the zero statistic around the critical point of

families of L–functions are related to the eigenvalue statistics associated with

matrices of the classical compact groups near to the symmetry point for this

case. For completeness, we now present other statistics involving eigenvalues

of random matrices and zeros of L–functions and some results due to Katz and

Sarnak.

1.4.1 n–level density

We now introduce other statistic of the eigenvalues associated with matrices

from the classical compact groups, called the n–level density. We refer the

reader to the section of Conrey in [Mez-Sna]. Let us establish some notation

that will be used in this section.

The sine ratios are

S(x) =
sinπx

πx
, (1.4.2)
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1.4. Families of L–functions and the Katz–Sarnak Philosophy

and

SN(x) =
sinNx/2

sinx/2
. (1.4.3)

The kernel functions are

KU(N)(x, y) = SN(y − x) (1.4.4)

KSO(2N)(x, y) =
S2N−1(y − x)− S2N−1(y + x)

2
(1.4.5)

KUSp(2N)(x, y) =
S2N+1(y − x)− S2N+1(y + x)

2
. (1.4.6)

The scaled limit of these kernel functions are given by

KU(x, y) = S(y − x) (1.4.7)

KSp(x, y) = S(y − x)− S(y + x) (1.4.8)

KO(x, y) = S(y − x) + S(y + x). (1.4.9)

The n–level densities are given in the the following theorem

Theorem 1.4.2. Let f be a rapidly decaying smooth test function and let

θ1, . . . , θn denote the eigenangles associated with the eigenvalues, eiθ1 , eiθ2 , . . . , eiθN

of A ∈ G(N) = U(N), USp(2N) or SO(2N). Then we have:

(i)∫
U(N)

∑
1≤j1<···<jn≤N

f(θj1 , . . . , θjn)dA

=
1

n!(2π)n

∫
[0,2π]n

f(θ1, . . . , θn) det
n×n

SN(θk − θj)dθ1 . . . dθn. (1.4.10)

(ii)∫
USp(2N)

∑
B⊂[1,N ]
|B|=n

fB(θ)dA

=
1

n!(π)n

∫
[0,π]n

f(θ1, . . . , θn) det
n×n

(
KUSp(2N)(θk, θj)

)
dθ1 . . . dθn. (1.4.11)
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(iii)∫
SO(2N)

∑
B⊂[1,N ]
|B|=n

fB(θ)dA

=
1

n!(π)n

∫
[0,π]n

f(θ1, . . . , θn) det
n×n

(
KSO(2N)(θk, θj)

)
dθ1 . . . dθn. (1.4.12)

If we look for the normalized eigenangles, we have the following theorem

Theorem 1.4.3. Using the same notation as before and calling θ̃j = θ N
2π

for

U(N) and θ̂j = θN
π

for SO(2N) and USp(2N) to be the normalized eigenan-

gles, we have that:

(i)

lim
N→∞

∫
U(N)

∑
1≤j1<···<jn≤N

f(θ̃j1 , . . . , θ̃jn)dA

=
1

n!

∫
Rn+
f(θ̃1, . . . , θ̃n) det

n×n
SN(θk − θj)dθ1 . . . dθn. (1.4.13)

(ii)

lim
N→∞

∫
USp(2N)

∑
B⊂[1,N ]
|B|=n

fB(θ̂)dA

=
1

n!

∫
Rn+
f(θ1, . . . , θn) det

n×n
(KUSp(θk, θj)) dθ1 . . . dθn. (1.4.14)

(iii)

lim
N→∞

∫
SO(2N)

∑
B⊂[1,N ]
|B|=n

fB(θ̂)dA

=
1

n!

∫
Rn+
f(θ1, . . . , θn) det

n×n
(KSO(θk, θj)) dθ1 . . . dθn. (1.4.15)

Instead of considering eigenvalues and eigenangles of matrices we can con-

sider studying zeros of families of L–functions and we can define in an analo-

gous way the n–level density of the zeros for these families and study how they

are distributed within families. Studies of the n–level density for L–functions
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were carried out by Iwaniec, Luo and Sarnak [Iwan-Luo-Sar], Hughes and

Rudnick [Hug-Rud], Katz and Sarnak [Katz-Sar99a], Ozluk and Snyder [Ozl-

Sny93,Ozl-Sny99], Peng Gao [Gao05,Gao08] and Rubinstein [Rub-ESIZ,Rub-

LZR].

1.4.2 kth–consecutive spacings

Let A ∈ G(N) = U(N), USp(2N) or SO(2N) jointly with the associated

Haar measure dA, and let eiθ1(A), eiθ2(A), . . . , eiθN (A) be the eigenvalues of A.

Katz–Sarnak defined the kth–consecutive spacing to be

µk(A)[a, b] =
#{1 ≤ j ≤ N : N

2π
(θj+k − θj) ∈ [a, b]}
N

, (1.4.16)

where

0 ≤ θ1(A) ≤ θ2(A) ≤ · · · ≤ θN(A) < 2π. (1.4.17)

For k = 1 this statistics is called the nearest neighbour spacing. Katz and

Sarnak showed that

Theorem 1.4.4 (Katz-Sarnak). The limit

lim
N→∞

∫
G(N)

µk(A)dA (1.4.18)

exists and is the same for G(N) = U(N), USp(2N) and SO(2N).

1.4.3 kth–lowest eigenvalue

Using the same notation of the previous subsection, Katz and Sarnak defined

the distribution of the kth–lowest eigenvalue of A, when A varies over G(N)

to be

νk(G(N))[a, b] = Haar

{
A ∈ G(N) :

θk(A)N

2π
∈ [a, b]

}
. (1.4.19)

Next, Katz and Sarnak [Katz-Sar99a,Katz-Sar99b] showed that
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Theorem 1.4.5 (Katz–Sarnak). There are measures νk(G) which depends on

the symmetry type of G such that

lim
N→∞

νk(G(N)) = νk(G), (1.4.20)

where νk(G) can be expressed in terms of Fredholm determinants.

Under the Katz–Sarnak philosophy, Jon Keating and Nina Snaith were

naturally led to raise the following question:

Question 1.4.6. Is it possible to model (predict) the mean values (moments)

of L–functions by using random matrix theory?

Now we will discuss this question.

1.5 Characteristic Polynomials and the Keating–

Snaith Conjectures

The analogies and similarities involving the statistics of eigenvalues of random

matrices and zeros of the Riemann zeta–function and other L–functions were

the motivations for the random matrix model introduced by Keating–Snaith

[Kea-Sna00a, Kea-Sna00b], in which the Riemann zeta–function and other L–

functions are modeled by characteristic polynomials of large random matrices.

The characteristic polynomial of an N ×N unitary matrix is given by

ΛA(s) = det(I − A†s) =
N∏
n=1

(1− se−iθn), (1.5.1)

where A† is the hermitian conjugate of A. And for an 2N×2N unitary matrix

with either A ∈ USp(2N) or A ∈ SO(2N), we have the eigenvalues occur in

conjugate pairs and thus the characteristic polynomial of such matrices can be

written as

ΛA(s) = det(I − A†s) =
N∏
n=1

(1− seiθn)(1− se−iθn). (1.5.2)
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If we scale the zeros of the Riemann zeta–function and the eigenphases of

N ×N unitary matrices to have unit mean spacing, Keating and Snaith noted

that was natural to equate the mean densities of each, that is

N

2π
=

1

2π
log

T

2π
, (1.5.3)

and with this relation in hands they were able to establish some results and for-

mulate some conjectures that we will now state. These results and conjectures

can be seen as a true revolution in understanding the connection between Ran-

dom Matrix Theory and the theory of the Riemann zeta–function and other

L–functions.

Theorem 1.5.1 (Keating–Snaith). Let B ⊂ C be a rectangle, then

lim
N→∞

Haar

A ∈ U(N) :
log ΛA(e0)√

1
2

logN
∈ B

 =
1

2π

∫
B

e−(x2+y2)/2dxdy. (1.5.4)

The above theorem is analogous to the following theorem proved by Selberg

(see, for example [Lau]),

Theorem 1.5.2 (Selberg). Let B ⊂ C be a rectangle, then

lim
T→∞

1

T

∣∣∣∣∣∣
t : T ≤ t ≤ 2T :

log ζ(1
2

+ it)√
1
2

log log T
∈ B


∣∣∣∣∣∣ =

1

2π

∫
B

e−(x2+y2)/2dxdy.

(1.5.5)

1.5.1 Moments of L–functions and Characteristic Poly-

nomials

This section is an attempt to answer the question raised in Section 1.4. In [Kea-

Sna00a], Keating and Snaith established the following result using a form of

Selberg’s integral
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Theorem 1.5.3 (Keating–Snaith). For all θ ∈ R and R(s) > −1 we have,

MN(s) =
〈∣∣ΛA(eiθ)

∣∣s〉
U(N)

=

∫
U(N)

|ΛA(eiθ)|sdA

=
G2(1 + 1

2
s)G(N + 1)G(N + 1 + s)

G(1 + s)G2(N + 1 + 1
2
s)

=
N∏
j=1

Γ(j)Γ(j + s)

Γ2(j + 1
2
s)

, (1.5.6)

where G is the Barnes’ G–function (see Appendix C) and the average is com-

puted with respect to the Haar measure dA over U(N).

As a corollary of the above theorem, we have

Corollary 1.5.4. For integers k ≥ 0,

MN(2k) =
G2(k + 1)

G(2k + 1)
Nk2 +O(Nk2−1), (1.5.7)

as N →∞, that is, MN(2k) is the 2kth moment of ΛA(e0), which is a polyno-

mial in N of degree k2.

Extending the above result to USp(2N) and SO(2N) Keating and Snaith

obtained in [Kea-Sna00b] the following theorem

Theorem 1.5.5 (Keating–Snaith).∫
U(N)

|ΛA(eiθ)|2kdA =
k−1∏
j=0

(
j!

(k + j)!

k∏
i=1

(N + i+ j)

)

∼

(
k−1∏
j=0

j!

(k + j)!

)
Nk2 , (1.5.8)

∫
USp(2N)

|ΛA(e0)|kdA = 2k(k+1)/2

(
k∏
j=0

j!

(2j)!

)
k∏
j=1

(N + j)
∏

1≤i<j≤k

(N + i+j
2

)

∼ 2k(k+1)/2

(
k∏
j=1

j!

(2j)!

)
Nk(k+1)/2, (1.5.9)

and ∫
SO(2N)

|ΛA(e0)|kdA = 2k(k+1)/2

(
k−1∏
j=0

j!

(2j)!

) ∏
1≤i<j≤k

(N − 1 + i+j
2

)

∼ 2k(k+1)/2

(
k−1∏
j=1

j!

(2j)!

)
Nk(k−1)/2. (1.5.10)
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Now, using the correspondence N ∼ log T
2π

, Keating and Snaith conjectured

the following formulas

Conjecture 1.5.6 (Keating–Snaith). For k fixed and R(k) > −1
2
, we have

1

T

∫ T

0

|ζ(1
2

+ it)|2kdt ∼ ak
G2(k + 1)

G(2k + 1)
(log T )k

2

, (1.5.11)

as T →∞ and

ak =
∏

p prime

((
1− 1

p

)k2 ∞∑
m=0

dk(p
m)2

pm

)
. (1.5.12)

Conjecture 1.5.7 (Keating–Snaith). For k fixed and R(k) ≥ 0, we have

1

ϕ∗(q)

∑∗

χ( mod q)

|L(1
2
, χ)|2k ∼ ak

G2(k + 1)

G(2k + 1)

∏
p|q

(
∞∑
m=0

dk(p
m)2

pm

)−1

(log q)k
2

,

(1.5.13)

as q →∞ and ak is a product over primes.

And for the symplectic family, Keating and Snaith conjectured that

Conjecture 1.5.8 (Keating–Snaith). For k fixed and R(k) ≥ 0, we have

1

D∗

∑∗

0<d≤D

L(1
2
, χ8d)

k ∼ ak
G(k + 1)

√
Γ(k + 1)√

G(2k + 1)Γ(2k + 1)
(logD)k(k+1)/2, (1.5.14)

as D →∞ and

ak = 2−k(k+2)/2
∏
p≥3

(1− 1
p
)k(k+1)/2

1 + 1
p

(
(1− 1√

p
)−k + (1 + 1√

p
)−k

2
+

1

p

)
. (1.5.15)

These conjectures for moments of L–functions in unitary, symplectic and

also in orthogonal families (not listed here) are discussed in greater detail

in [CFKRS05] where it is possible to include lower order terms in the asymp-

totic series for the moments. We will discuss the conjectures presented in

[CFKRS05] in much more detail in Chapter 6.
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1.6 Overview of this Thesis

This thesis splits into two parts. The first part consist of Chapter 3, Chapter 4

and Chapter 5, where we establish some mean value theorems for L-functions

and for the class number in the context of function fields using the new ana-

lytic techniques developed by Faifman & Rudnick [Fai-Rud] and Kurlberg &

Rudnick [Kur-Rud] used to study similar problems. The second part consist

of Chapter 6, Chapter 7 and Chapter 8, where we extend to the function field

setting the heuristic previously developed, by Conrey et.al. [CFKRS05, Conr-

Far-Zir], for the integral moments and ratios of L–functions defined over num-

ber fields. Specifically, we give a heuristic for the moments and ratios of a

family of L–functions associated with hyperelliptic curves of genus g over a

fixed finite field Fq in the limit as g →∞. As an application, we calculate the

one–level density for the zeros of these L–functions.
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Chapter 2

Function Field Preliminaries

In this chapter we will give some background on Number Theory over Function

Fields. We will use the Rosen’s book [Rosen] as a general reference. We also

suggest to the reader the books by Goss [Goss] and Thakur [Thakur] who

deal with the function field arithmetic and for the study of additive number

theory of polynomials over finite fields we recommend the book by Effinger

and Hayes [Eff-Hay].

2.1 Polynomials over Finite Fields

In this section we present some known facts about finite fields and polynomials

over finite fields.

2.1.1 Basic facts about Fq and Fq[T ]

Let Fq denote a finite field with q elements. The general model for such a

field is Z/pZ, where p is a prime number. We have that Z/pZ is a finite field

and has p elements and in general the number of elements in a finite field is

a power of a prime number, q = py. In this case the number p is called the

characteristic of Fq.

We will denote by A = Fq[T ] the polynomial ring over Fq. It is known
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that A has many properties in common with the ring of integers Z. For a

detailed discussion of the similarities between A and Z see [Rosen, Chapter 1]

and Carlitz’s original paper [Carlitz]. Let f(T ) ∈ A, so

f(T ) = anT
n + an−1T

n−1 + · · ·+ a1T + a0. (2.1.1)

If an 6= 0 we say that f has degree n, i.e., deg(f) = n and in this case we

define the sign of f to be an ∈ F∗q, (sgn(f) = an). We have that sgn(0) = 0

and deg(0) = −∞. We now present some simple properties involving f

Proposition 2.1.1. Let f, g ∈ A be non–zero polynomials. Then,

(i) deg(fg) = deg(f) + deg(g),

(ii) sgn(fg) = sgn(f)sgn(g),

(iii) deg(f + g) ≤ max(deg(f), deg(g)) and equality holds if deg(f) 6= deg(g).

A polynomial f ∈ A is called monic if sgn(f) = 1. And a polynomial f ∈ A

is reducible if we can write f(T ) = a(T )b(T ) with deg(a) > 0 and deg(b) > 0,

otherwise is called irreducible (see, for example [Ire-Ros, Chapter 1]). We also

have the following important definition associated with f ∈ A

Definition 2.1.2. The norm of a polynomial f ∈ Fq[T ] is defined in the

following way. For f 6= 0, set |f | := qdegf and if f = 0, set |f | = 0.

A monic irreducible polynomial is called a “prime” polynomial. We have that

A has the unique factorization property, that is, every f ∈ A, f 6= 0, can be

written uniquely in the form

f = αP e1
1 P e2

2 . . . P et
t , (2.1.2)

where α ∈ F∗q and each Pi is a monic irreducible polynomial, Pi 6= Pj for i 6= j

and ei is a non–negative integer for i = 1, 2, . . . , t.

Definition 2.1.3. The zeta function of A = Fq[T ], denoted by ζA(s), is defined

by the infinite series

ζA(s) :=
∑
f∈A

f monic

1

|f |s
=

∏
P monic

irreducible

(
1− |P |−s

)−1
, R(s) > 1. (2.1.3)
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And is easy to show that

ζA(s) =
1

1− q1−s . (2.1.4)

We define the gamma function of A, denoted by ΓA(s), by

ΓA(s) :=
1

(1− q−s)
. (2.1.5)

And we have the following theorem

Theorem 2.1.4. The zeta–function ζA(s) can be continued to a meromorphic

function to the whole complex plane with a simple pole at s = 1 with residue

1/ log q. If we define ξA(s) = q−sΓA(s)ζA(s), then

ξA(s) = ξA(1− s). (2.1.6)

Proof. From (2.1.4) we have that ζA(s) can be continued to a meromorphic

function. A simple calculation shows that the residue at s = 1 is 1/ log q. And

(2.1.6) follows directly from the definition of ζA(s) and ΓA(s).

We can also define the analogue of the Möbius function, denoted by µ(f)

in this case. And the Euler totient function, denoted by Φ(f) for A = Fq[T ]

as follows

µ(f) =

 (−1)t, f = αP1P2 . . . Pt,

0, otherwise,
(2.1.7)

where each Pj is a distinct monic irreducible polynomial and

Φ(f) =
∑

g monic
deg(g)<deg(f)

(f,g)=1

1. (2.1.8)

2.1.2 Prime Number Theorem in A = Fq[T ]

We now present the analogue of the Prime Number Theorem for polynomials

over finite fields.

Theorem 2.1.5 (Prime Number Theorem for Polynomials). Let πA(n) denote

the number of monic irreducible polynomials in A = Fq[T ] of degree n. Then,

πA(n) =
qn

n
+O

(
qn/2

n

)
. (2.1.9)
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Remark 2.1.6. If we denote x = qn, we have

πA(n) =
x

logq x
+O

( √
x

logq x

)
, (2.1.10)

which looks like the conjectured precise form of the classical prime number

theorem.

2.2 Dirichlet L–functions over the rational func-

tion field Fq(T )

In this section we will discuss the basic properties of L-functions over the

rational function field Fq(T ).

2.2.1 Characters and the Reciprocity Law

Assume that q is odd and let P (x) ∈ Fq[T ] be an irreducible polynomial. Then

by [Rosen, Proposition 1.10], if f ∈ A and P - f we know that the congruence

xd ≡ f (mod P ) is solvable if and only if

f
|P |−1
d ≡ 1 (mod P ),

where d is a divisor of q − 1. So if P - f , let (f/P )d be the unique element of

F∗q such that

f
|P |−1
d ≡

(
f

P

)
d

(mod P )

and if P | f we define (f/P )d = 0.

Now we can define the quadratic residue symbol (f/P ) ∈ {±1} for f

coprime to P by (
f

P

)
≡ f (|P |−1)/2 (mod P ). (2.2.1)

We can then define the Jacobi symbol (f/Q) for arbitrary monic Q. Let f be

coprime to Q and Q = P e1
1 P e2

2 . . . P es
s so(

f

Q

)
=

s∏
j=1

(
f

Pj

)ej
.
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If f,Q are not coprime we set (f/Q) = 0 and if α ∈ F∗q is a scalar then(
α

Q

)
= α((q−1)/2)degQ. (2.2.2)

The analogue of the quadratic reciprocity law for A = Fq[T ] is

Theorem 2.2.1 (Quadratic reciprocity). Let A,B ∈ Fq[T ] be relatively prime

polynomials and A 6= 0 and B 6= 0. Then,(
A

B

)
=

(
B

A

)
(−1)((q−1)/2)deg(A)deg(B) =

(
B

A

)
(−1)((|A|−1)/2)((|B|−1)/2).

(2.2.3)

2.2.2 General Dirichlet L–functions

Definition 2.2.2. Let Q ∈ A = Fq[T ] be a monic polynomial. A Dirichlet

character modulo Q is defined to be a function χ : A → C which satisfies the

following properties:

(i) χ(f + gQ) = χ(f) for all f, g ∈ A,

(ii) χ(f)χ(g) = χ(fg) for all f, g ∈ A,

(iii) χ(f) 6= 0 if and only if (f,Q) = 1.

We have that the trivial character χ0(f) is defined to be χ0(f) = 1 if

(f,Q) = 1 and χ0(f) = 0 otherwise. The Dirichlet character modulo Q is a

homomorphism from (A/QA)∗ → C∗ and the number of Dirichlet characters

modulo Q is given by Φ(Q) = #((A/QA)∗). We have the following result for

Dirichlet characters modulo Q

Proposition 2.2.3 (Orthogonality Relations). Let χ and ψ two Dirichlet

characters modulo Q and let f and g be elements of A which are relatively

prime to Q. Then,

(i) ∑
f

χ(f)ψ(f) = Φ(Q)δ(χ, ψ), (2.2.4)
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(ii) ∑
χ

χ(f)χ(g) = Φ(Q)δ(f, g), (2.2.5)

where the first sum is over any set of representative for A/QA and the second

sum is over all Dirichlet characters modulo Q. And δ(χ, ψ) = 0 if χ 6= ψ and

δ(χ, ψ) = 1 if χ = ψ and similarly for δ(f, g).

Definition 2.2.4. Let χ be a Dirichlet character modulo Q ∈ A = Fq[T ]. The

Dirichlet L–function associated with χ is defined by

L(s, χ) =
∑

f monic

χ(f)

|f |s
, R(s) > 1. (2.2.6)

We have in this way that L(s, χ) converges absolutely for R(s) > 1 and

since the characters are multiplicative we can deduce that

L(s, χ) =
∏

P monic
irreducible

(
1− χ(P )

|P |s

)−1

, R(s) > 1. (2.2.7)

We can write the L–function associated with the trivial character as,

L(s, χ0) =
∏

P monic
irreducible

P |Q

(
1− 1

|P |s

)
ζA(s). (2.2.8)

This shows that L(s, χ0) can be analytically continued to the whole complex

plane and has a simple pole at s = 1.

We now present an important result concerning L-functions in function

fields that make the theory in this case very attractive,

Theorem 2.2.5. Let χ be a non–trivial Dirichlet character modulo Q. Then,

L(s, χ) is a polynomial in u = q−s of degree at most deg(Q)− 1.

And we have the following corollary from the theorem

Corollary 2.2.6. If χ is non–trivial, then L(s, χ) can be analytically continued

to an entire function for the whole complex plane C.
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At this point we can make a distinction between characters. For any monic

polynomial Q, we call a character of (A/QA)∗ even if χ(α) = 1 for all α ∈ F∗q.

Otherwise, χ is said to be an odd character. Proceeding in the same way

as done in the classical case, we have that L(s, χ) also satisfies a functional

equation (see [Weil-BNT])

Proposition 2.2.7. Let χ be an even Dirichlet character modulo Q. If we

denote

ξ(s, χ) =
q
s(−2+deg(Q))

2

1− q−s
L(s, χ).

Then,

ξ(s, χ) = cχξ(1− s, χ), |cχ| = 1. (2.2.9)

2.2.3 Quadratic Characters and the Corresponding L–

functions

Definition 2.2.8. Let D ∈ Fq[T ] be a square-free polynomial. We define the

quadratic character χD using the quadratic residue symbol for Fq[T ] by

χD(f) =

(
D

f

)
. (2.2.10)

So, if P ∈ A is a monic irreducible polynomial we have

χD(P ) =


0, if P | D,

1, if P - D and D is a square modulo P,

−1, if P - D and D is a non square modulo P.

We define the L–function corresponding to the quadratic character χD by

L(u, χD) :=
∏

P monic
irreducible

(1− χD(P )udegP )−1, |u| < 1/q (2.2.11)

where u = q−s. The L–function above can also be expressed as an infinite

series in the usual way

L(u, χD) =
∑
f∈A

f monic

χD(f)udegf = L(s, χD) =
∑
f∈A

f monic

χD(f)

|f |s
. (2.2.12)
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We can write (2.2.12) as

L(u, χD) =
∑
n≥0

∑
deg(f)=n
f monic

χD(f)un, (2.2.13)

and if we denote

AD(n) :=
∑

f monic
deg(f)=n

χD(f),

we can write (2.2.13) as ∑
n≥0

AD(n)un. (2.2.14)

By Theorem 2.2.5, if D is a non–square polynomial of positive degree, then

AD(n) = 0 for n ≥ deg(D) and in this case the L–function is in fact a polyno-

mial of degree at most deg(D)− 1.

We will now assume the primitivity condition that D is a square–free monic

polynomial of positive degree. Following the arguments presented in [Rud-

TPFHE] we have that L(u, χD) has a “trivial” zero at u = 1 if and only if

deg(D) is even, which enable us to define the “completed” L–function

L(u, χD) = (1− u)λL∗(u, χD), λ =

 1, deg(D) even,

0, deg(D) odd,
(2.2.15)

where L∗(u, χD) is a polynomial of even degree

2δ = deg(D)− 1− λ

satisfying the functional equation

L∗(u, χD) = (qu2)δL∗
(

1

qu
, χD

)
. (2.2.16)

2.2.4 Zeta functions associated with Curves

Let Fq be a fixed finite field of odd cardinality and A = Fq[T ] be the polynomial

ring over Fq in the variable T as earlier. Let C be any smooth, projective,

geometrically connected curve of genus g ≥ 1 defined over the finite field Fq.
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2.2. Dirichlet L–functions over the rational function field Fq(T )

The zeta function of the curve C was introduced by Artin [Artin] and is defined

as

ZC(u) := exp

(
∞∑
n=1

Nn(C)
un

n

)
, |u| < 1/q (2.2.17)

where Nn(C) := Card(C(Fq)) is the number of points on C with coordinates

in a field extension Fqn of Fq of degree n ≥ 1. The Weil conjectures states that

(see [Weil-CA,Weil-CAD])

Theorem 2.2.9 (The Weil Conjectures). Let C be a given curve of genus g

as above. Then we have,

(i)[Rationality] ZC(u) is a rational function of u = q−s. More precisely,

ZC(u) = ζC(s) =
PC(q−s)

(1− q−s)(1− q1−s)
, (2.2.18)

where PC(u) ∈ Z[u] is a polynomial of degree 2g called of L–polynomial of the

curve C, with PC(0) = 1.

(ii)[Functional Equation] Denote ξC(s) = q(g−1)sζC(s). Then for all s one has

ξC(s) = ξC(1− s). (2.2.19)

For the polynomial PC(u) the functional equation translates to

PC(u) = (qu2)gPC

(
1

qu

)
. (2.2.20)

(iii) [Riemann Hypothesis] All the roots of ζC(s) lie on the line R(s) = 1/2.

Equivalently, the inverse roots of PC(u) all have absolute value
√
q.

By the Riemann Hypothesis for curves over finite fields, proved by Weil

[Weil-CAD], one knows that all zeros of PC(u) lie on the circle |u| = q−1/2, i.e.,

PC(u) =

2g∏
j=1

(1− αju), with |αj| =
√
q for all j. (2.2.21)

By [Rosen, Proposition 14.6 and 17.7], the L–function L∗(u, χD) is the

Artin L–function attached to the unique nontrivial quadratic character of
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Fq(T )(
√
D(T )). An extremely important fact for this thesis is that the nu-

merator PC(u) of the zeta-function associated with the hyperelliptic curve

CD : y2 = D(T ) coincides with the completed Dirichlet L–function L∗(u, χD)

associated with the quadratic character χD as was found in Artin’s thesis. So

we can write L∗(u, χD) as

L∗(u, χD) =
2δ∑
n=0

A∗D(n)un, (2.2.22)

where A∗D(0) = 1 and A∗D(2δ) = qδ.

If D is a monic and square-free polynomial of positive degree, the zeta

function (2.2.18) of the hyperelliptic curve CD : y2 = D(T ) can be written as

ZCD(u) =
L∗(u, χD)

(1− u)(1− qu)
. (2.2.23)

2.2.5 Spectral Interpretation

The Riemann Hypothesis for curves over finite fields, proved by Weil [Weil-

CAD], shows that all zeros of ZC(u) and hence ofPC(u), lie on the circle |u| =

q−1/2.

So the polynomial PC(u) is the characteristic polynomial of an unitary

symplectic matrix ΘC ∈ USp(2g), defined up to conjugacy, and we can write

PC(u) = det(I − u√qΘCD). (2.2.24)

The eigenvalues of ΘC are of the form e(θC,j), j = 1, . . . , 2g, where e(θ) = e2πiθ.

For a fixed genus g, Katz and Sarnak [Katz-Sar99a] showed that the con-

jugacy classes (Frobenius classes) {ΘC : C ∈ H}, where H is an appropri-

ate family of curves, becomes equidistributed in the unitary symplectic group

USp(2g) (with respect to Haar measure) in the limit q →∞. That is, for any

continuous function F on the space of conjugacy classes of USp(2g),

lim
q→∞

1

#H
∑
C∈H

F (ΘC) =

∫
USp(2g)

F (A)dA, (2.2.25)
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where dA is the Haar measure and the sum indicates that C varies over a

family of curves H.

This result allows one to compute arithmetic quantities such as moments

of log(PC(u)) and the moments of PC(u) when C varies over a family of curves

H by using the corresponding computation from Random Matrix Theory for

USp(2g). For example, let Mg be the family of all k–isomorphism classes of

(smooth, projective and geometrically connected) curves of genus g (see, [Katz-

Sar99a, Theorem 10.7.15] and [Kea-Lin-Rud, Sections 4.1 and 4.2]) and for

u = q−1/2, the critical point in this case, one has

lim
q→∞

1

#Mg(k)

∑
C∈Mg(k)

(PC(q−1/2))s =

∫
USp(2g)

det(I − A)sdA. (2.2.26)

Keating and Snaith [Kea-Sna00b] computed the moments of the charac-

teristic polynomial in USp(2g) were they found the formula given in Theorem

1.5.5.

As said earlier the goal of this thesis is to explore the opposite limit, q fixed

and g →∞. In this case the matrices ΘC inhabit different spaces as g grows,

and we do not know how to formulate an equidistribution problem à la Deligne

for this case. For a description of these types of problems, the Katz–Sarnak

philosophy and the interaction of random matrices with function fields see the

excellent survey by Douglas Ulmer [Ulmer].

The investigation of problems involving the limit g →∞ and q fixed were

initiated by Faifman [Faifman] and Faifman–Rudnick [Fai-Rud] in the study

on the distribution of zeros of the zeta functions of hyperelliptic curves and by

Kurlberg–Rudnick [Kur-Rud] in the study of the fluctuations in the number

of points on a hyperelliptic curve. Rudnick [Rud-TPFHE] has studied the

mean value of traces of high powers of the Frobenius class as g → ∞ and

Bucur–David et.al. [BDFL] studied the variation of the trace of the Frobenius

endomorphism in the cyclic trigonal ensemble extending the results of Kurlberg

and Rudnick.
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2.2.6 The Hyperelliptic Ensemble H2g+1,q

Let Hd be the set of square–free monic polynomials of degree d in Fq[T ]. The

cardinality of Hd is

#Hd =

 (1− 1/q)qd, d ≥ 2,

q, d = 1,

to count the number of square–free monic polynomials of prescribed degree we

use that ∑
d>0

#Hd

qds
=

∑
f monic

squarefree

|f |−s =
ζA(s)

ζA(2s)

and equation (2.1.4) to obtain the above result, the full prove of this can be

found in [Rosen, Proposition 2.3]. In particular for g ≥ 1 we have that,

#H2g+1,q = (q − 1)q2g =
|D|
ζA(2)

. (2.2.27)

We can see H2g+1,q as a probability space (ensemble) with the uniform

probability measure (for more details see Appendix B). Thus the expected

value of any continuous function F on H2g+1,q is defined as

〈F (D)〉 :=
1

#H2g+1,q

∑
D∈H2g+1,q

F (D). (2.2.28)

Using the Möbius function µ of Fq[T ] defined in (2.1.7) we can sieve out

the square-free polynomials as is done over the integers via

∑
A2|D

µ(A) =

 1, D square−free,

0, otherwise.
(2.2.29)

And in this way we can write the expected value of any function F as

〈F (D)〉 =
1

#H2g+1,q

∑
D monic

deg(D)=2g+1

∑
A2|D

µ(A)F (D) (2.2.30)

=
1

(q − 1)q2g

∑
2α+β=2g+1

∑
B monic
degB=β

∑
A monic
degA=α

µ(A)F (A2B).
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2.3 Average Value Theorems of L–functions in

Function Fields

Theorem 2.3.1 (Hoffstein–Rosen [Hoff-Ros]). Let M be odd and positive. We

have that for s 6= 1
2

the following formula holds

q−M
∑

m monic
deg(m)=M

L(s, χm) =
ζA(2s)

ζA(2s+ 1)
−
(

1− 1

q

)
(q1−2s)

M+1
2 ζA(2s). (2.3.1)

For s = 1
2
, we have

q−M
∑

m monic
deg(m)=M

L(1
2
, χm) = 1 +

(
1− 1

q

)(
M − 1

2

)
. (2.3.2)

Now we state the next mean value theorem

Theorem 2.3.2 (Hoffstein–Rosen [Hoff-Ros]). Let M be even and positive.

The following sums are over all non–square monic polynomials of degree M .

For s 6= 1
2

or 1. Then we have,

q−M
∑

L(s, χm) =
ζA(2s)

ζA(2s+ 1)
−
(

1− 1

q

)
(q1−2s)

M
2 ζA(2s)

− q−
M
2

(
ζA(2s)

ζA(2s+ 1)
−
(

1− 1

q

)
(q1−s)MζA(s)

)
. (2.3.3)

For s = 1 we have,

q−M
∑

L(1, χm) =
ζA(2)

ζA(3)
− q−

M
2

(
2 +

(
1− 1

q

)
(M − 1)

)
. (2.3.4)

Now quoting Rosen (Chapter 17 [Rosen]) ‘‘...a more difficult problem is

to consider only polynomials D that are square–free. In this case, OD is the

integral closure of A = Fq[T ] in K = k(
√
D). In the language of binary

quadratic forms, we would be restricting the average by consider forms with

fundamental discriminants. Averaging in this case is surprisingly difficult”.

But Hoffstein and Rosen succeeded in this task by obtaining the following

result
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Theorem 2.3.3 (Hoffstein–Rosen [Hoff-Ros]). Let

P (s) =
∏
P

(
1− 1

|P |2
− 1

|P |4s
+

1

|P |4s+1

)
. (2.3.5)

Then for any ε > 0 we have

∑
deg(m)=2n+1
m square−free

L(1
2
, χm) = q2n+2P

(
1

2

)
(d3 + (1− q−1)(n+ 1)) +O(qn(1 + ε)),

(2.3.6)

where the d3 is the constant term in a certain Laurent expansion.

In a recent paper A. Bucur and A. Diaconu [Buc-Diac] established the

following result

Theorem 2.3.4 (Bucur–Diaconu). As q →∞, we have

∑
d∈A

d monic
deg(d)=2g

L(1
2
, χd)

4 ∼ g(1 + g)2(2 + g)2(3 + g)(1 + 2g)(3 + 2g)2(5 + 2g)

75600
q2g.

(2.3.7)

Note that Theorem 2.3.4 is the fourth power moment for Quadratic Dirich-

let L–Functions as q →∞ and g is fixed. Therefore, this is the opposite limit

discussed in this thesis and thus we are led to think that the right thing to do

is to consider and impose the condition that d is square–free and then invoke

the equidistribution results in Katz–Sarnak [Katz-Sar99a, Theorem 9.2.6] to

deduce that all moments of L(1
2
, χd) are given by RMT calculations. However,

the result of Bucur and Diaconu (2.3.7), is much deeper, since it can be written

as ∑
d∈A

d monic
deg(d)=2g

L(1
2
, χd)

4 =
1

2πi

∫
|y|=q−3

Zeven(y)dy

yg+1
, (2.3.8)

where Zeven(y) has the Laurent expansion

Zeven(y) =
C−11

(1− q2y)11
+ · · ·+ C1

(1− q2y)
+ C0 + · · · (2.3.9)
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with C−j = gj +O(q−1/2) and

g1, . . . , g11 := 0, 0, 0,−1, 38,−394, 1765,−4032, 4928,−3072, 768. (2.3.10)

So they are able to to show that,

∑
d∈A

d monic
deg(d)=2g

L(1
2
, χd)

4 = q2g

11∑
j=1

(
g + j − 1

g

)
C−j +

1

2πi

∫
|y|=q−8/5

Zeven(y)dy

yg+1
,

(2.3.11)

where the integral can be bounded.

To conclude, they gave a formula without the need to take the g or q limits

and from their formula for the fourth power moment is possible to take the q

or g limit at the end, after all calculations. Therefore, can be the case that

instead take the q limit as above we are interested in take the g limit and

for this situation we cannot invoke the powerful Katz–Sarnak equidistribution

results, but the formula presented by Bucur and Diaconu allow us to obtain

the asymptotic for the fourth moment in the g limit (note that the g limit is

not presented in their paper). To establish the result above Bucur and Diaconu

make use of the Multiple Dirichlet Series machinery and the Weyl group action

of a particular Kac-Moody algebra to handle the infinite group of functional

equations.
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Chapter 3

The Mean Value of L(1
2, χ) in the

Hyperelliptic Ensemble

In this chapter we obtain an asymptotic formula for the first moment of

quadratic Dirichlet L–functions over the rational function field at the cen-

tral point s = 1
2
. Specifically, we compute the expected value of L(1

2
, χD)

for the ensemble H2g+1,q of hyperelliptic curves of genus g over a fixed finite

field as g → ∞. Our approach relies on the use of the analogue of the ap-

proximate functional equation for such L–functions and our formula includes

the main lower order terms. The results presented in this chapter are the

function field analogues of those obtained previously by Jutila [Jutila] in the

number–field setting and are consistent with recent general conjectures for

the moments of L–functions motivated by Random Matrix Theory. The main

theorem presented in this chapter also appears in the paper by Andrade and

Keating [And-Kea11].

In other words, we prove in this chapter the function field analogue of the

following theorem

Theorem 3.0.5 (Jutila). Let L(s, χd) be the quadratic Dirichlet L–function

associated with the quadratic character χd(n) as defined in Section 1.2.3. Then
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we have,

∑
0<d≤D

L(1
2
, χd)

=
P (1)

4ζ(2)
D

{
log(D/π) +

Γ
′

Γ
(1/4) + 4γ − 1 + 4

P
′

P
(1)

}
+O(D3/4+ε), (3.0.1)

where

P (s) =
∏
p

(
1− 1

(p+ 1)ps

)
,

and the sum is taken over fundamental discriminants d.

Recall from Chapter 2 that quadratic Dirichlet L–functions for function

fields consist of those L–functions with Dirichlet series and Euler product

L(s, χD) =
∑

f monic

χD(f)

|f |s
and L(s, χD) =

∏
P monic

irreducible

(
1− χD(P )

|P |s

)−1

(3.0.2)

respectively, where χD(f) is the quadratic character defined by the Jacobi

Symbol χD(f) = (D
f

), and for our purpose D ∈ H2g+1,q.

Further, remember that the L–function associated with the hyperelliptic

curve CD : y2 = D(T ), where D ∈ H2g+1,q satisfies the functional equation

given by

L(s, χD) = |D|
1
2
−sX (s)L(1− s, χD), (3.0.3)

where

X (s) = q−
1
2

+s. (3.0.4)

3.1 Statement of the Theorem

Based on the works of Conrey and Soundararajan [Conr-Sound], Jutila [Jutila]

and Matthew Young [Young-FMQDL] we prove the following theorem which

can be seen as the function field analogue of the Jutila’s result (3.0.1).

49



Chapter 3. The Mean Value of L(1
2
, χ) in the Hyperelliptic Ensemble

Theorem 3.1.1. Let q be the fixed cardinality of the ground field Fq and as-

sume for simplicity that q ≡ 1 (mod 4). Then

∑
D∈H2g+1,q

L
(

1
2
, χD

)
=

P (1)

2ζA(2)
|D|
{

logq |D|+ 1 +
4

log q

P
′

P
(1)

}
+O

(
|D|3/4+

logq 2

2

)
, (3.1.1)

where

P (s) =
∏

P monic
irreducible

(
1− 1

(|P |+ 1)|P |s

)
, (3.1.2)

|f | = qdeg(f) for any polynomial f ∈ Fq[T ] (so |D| = q2g+1), and

ζA(s) =
1

1− q1−s (3.1.3)

is the zeta function associated to A = Fq[T ].

A direct corollary of the Theorem 3.1.1 using (2.2.27) and computing the

limit as g →∞ is

Corollary 3.1.2. Under the same assumptions of Theorem 3.1.1 we have that,

1

#H2g+1,q

∑
D∈H2g+1,q

L(1
2
, χD) ∼ 1

2
P (1)(logq |D|) =

1

2
P (1)(2g + 1) (3.1.4)

as g →∞.

Corollary 3.1.3. From Theorem 3.1.1 we have that,

L(1
2
, χD) 6= 0, (3.1.5)

for infinitely many square–free monic polynomials D ∈ A of degree 2g + 1.

Previously, Hoffstein and Rosen [Hoff-Ros] obtained an asymptotic formula

for the first moment of Dirichlet L–functions over function fields (see Theorem

2.3.3) making use of Eisentein series for the metaplectic two–fold cover of

GL(2, k∞), where k∞ is the completion of k = Fq(T ) at the prime at infinity.

One important difference between Hoffstein and Rosen’s result and The-

orem 3.1.1 is that we sum over square–free and monic polynomials, which
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3.2. “Approximate” Functional Equation

means that we are averaging over positive and fundamental discriminants in

this setting. The two results have the same general form, but are different in

their details. Our calculation is complementary to that developed in [Hoff-

Ros], being more similar to the classical methods employed in [Jutila] using

the analytic techniques developed by [Fai-Rud], [Kur-Rud] and [Rud-TPFHE]

to deal with the function field case.

3.2 “Approximate” Functional Equation

The starting point in the proof of Theorem 3.1.1 is a representation for L(s, χD),

which can be viewed as the analogue of the approximate functional equation

for the Riemann zeta function (equation 4.12.4 in [Tit]) or for the quadratic

Dirichlet L–function (Lemma 3 in [Jutila]). In our case the formula is an

identity rather than an approximation.

Lemma 3.2.1 (“Approximate” Functional Equation). Let χD be a quadratic

character, where D ∈ H2g+1,q. Then

L∗(q−1/2, χD) = L(q−1/2, χD)

=

g∑
n=0

∑
f1 monic

deg(f1)=n

χD(f1)q−n/2 +

g−1∑
m=0

∑
f2 monic

deg(f2)=m

χD(f2)q−m/2. (3.2.1)

Proof. Using the ideas presented by Conrey et.al. in [CFKRS05] we substitute

L∗(u, χD) =
∑2g

n=0 anu
n into the functional equation (2.2.20)

2g∑
n=0

anu
n = qgu2g

2g∑
m=0

am

(
1

qu

)m
= qgu2g

2g∑
m=0

amq
−mu−m

=

2g∑
m=0

amq
g−mu2g−m =

2g∑
k=0

a2g−kq
k−guk.

Therefore,
2g∑
n=0

anu
n =

2g∑
k=0

a2g−kq
k−guk.
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Equating coefficients we have that

an = a2g−nq
n−g or a2g−n = anq

g−n,

and so we can write the polynomial L∗(u, χD) as

2g∑
n=0

anu
n =

g∑
n=0

anu
n +

g−1∑
m=0

a2g−mu
2g−m

=

g∑
n=0

anu
n +

g−1∑
m=0

amq
g−mu2g−m

=

g∑
n=0

anu
n + qgu2g

g−1∑
m=0

amq
−mu−m. (3.2.2)

Writing an =
∑

f monic
deg(f)=n

χD(f) and u = q−1/2 in (3.2.2) proves the lemma.

We can write the polynomial L∗(u, χD) using the variable s and so (3.2.2)

becomes

L(u, χD) = L(s, χD) =
∑

f1 monic
deg(f1)≤g

χD(f1)

|f1|s
+ (q1−2s)g

∑
f2 monic

deg(f2)≤g−1

χD(f2)

|f2|1−s
. (3.2.3)

3.3 Setting Up The Problem

The basic quantity of study can be viewed from (2.2.22) and (2.2.23), as being

∑
D∈H2g+1,q

L(q−1/2, χD) =
∑

D∈H2g+1,q

2g∑
n=0

∑
f monic

deg(f)=n

χD(f)q−n/2. (3.3.1)

Using the Lemma 3.2.1 we can save g terms and write (3.3.1) as

∑
D∈H2g+1,q

L(q−1/2, χD)

=
∑

D∈H2g+1,q

g∑
n=0

∑
f1 monic

deg(f1)=n

χD(f1)

qn/2
+

∑
D∈H2g+1,q

g−1∑
m=0

∑
f2 monic

deg(f2)=m

χD(f2)

qm/2
. (3.3.2)

As both terms on the right–hand side of (3.3.2) are similar we need only worry

about computing one of them to obtain the final result.
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3.4. The Main Term Calculation

3.3.1 Averaging the Approximate Functional Equation

We are interested in obtaining an asymptotic formula for the first term on the

RHS of (3.3.2) and so we need to compute

∑
D∈H2g+1,q

g∑
n=0

∑
f monic

deg(f)=n

χD(f)q−n/2

=

g∑
n=0

q−n/2
∑

D∈H2g+1,q

∑
f monic

deg(f)=n
f=2=l2

χD(f) +

g∑
n=0

q−n/2
∑

D∈H2g+1,q

∑
f monic

deg(f)=n
f 6=2

χD(f)

=

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∑
D∈H2g+1,q

χD(l2) +

g∑
n=0

q−n/2
∑

f monic
deg(f)=n
f 6=2

∑
D∈H2g+1,q

χD(f)

=

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∑
D∈H2g+1,q

(D,l)=1

1 +

g∑
n=0

q−n/2
∑

f monic
deg(f)=n
f 6=2

∑
D∈H2g+1,q

χD(f), (3.3.3)

where the first term on the RHS of the final expression corresponds to con-

tributions of squares to the average and the second term to the non-square

contributions.

Basically, the problem is the following: for the square contributions we

need to count square–free polynomials which are coprime to a fixed monic

polynomial and to perform the summation over monic polynomials l and over

integers n up to g, and for the non–square contributions the difficulty is to

average the non–trivial quadratic character.

3.4 The Main Term Calculation

In this section we will derive an asymptotic formula for

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∑
D∈H2g+1,q

(D,l)=1

1, (3.4.1)

which corresponds to the contributions of squares to the average. As in the

number field case, the contribution of squares gives the main term of the first
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moment. The principal result in this section is

Proposition 3.4.1. With the same notation as in Theorem 3.1.1,

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∑
D∈H2g+1,q

(D,l)=1

1 =

P (1)

ζA(2)
|D|

([g/2] + 1) +
∑

P monic
irreducible

degP

|P |(|P |+ 1)− 1

+O(gq
3
2
g). (3.4.2)

We will need some preliminary lemmas.

3.4.1 Sieving out Square-Free and Coprime Polynomi-

als.

In this section we will need from following proposition presented in Rosen

[Rosen, Proposition 2.4]

Proposition 3.4.2. We have that,

Φ(f) = |f |
∏
P |f

(1− |P |−1). (3.4.3)

We will prove here the following proposition

Proposition 3.4.3.

∑
D∈H2g+1,q

(D,l)=1

1 =
|D|

ζA(2)
∏

P |l(1 + |P |−1)
+O

(√
|D|Φ(l)

|l|

)
. (3.4.4)

We will need the following lemmas

Lemma 3.4.4. Let Vd = {D ∈ Fq[T ] : D monic, deg(D) = d}. Then,

#{D ∈ Vd : (D, l) = 1} = qd
Φ(l)

|l|
. (3.4.5)
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Proof.

#{D ∈ Vd : (D, l) = 1} =
∑

D monic
deg(D)=d
(D,l)=1

1 =
∑

D monic
deg(D)=d

∑
h|(D,l)

µ(h)

=
∑
h|l

µ(h)
∑

D monic
deg(D)=d

h|D

1 =
∑
h|l

µ(h)
∑

m monic
deg(m)=d−degh

1

=
∑
h|l

µ(h)qd−deg(h) = qd
∑
h|l

µ(h)

|h|

= qd
∏
P
P |l

(
1− 1

|P |

)
= qd

Φ(l)

|l|
(3.4.6)

where we used Proposition 3.4.2 in (3.4.6).

Lemma 3.4.5. We have that,

∑
Q monic

deg(Q)> 2g+1
2

(Q,l)=1

µ(Q)

|Q|2
� q−1/2q−g. (3.4.7)

Proof.

∑
Q monic

deg(Q)> 2g+1
2

(Q,l)=1

µ(Q)

|Q|2
≤

∑
Q monic

deg(Q)> 2g+1
2

(Q,l)=1

1

|Q|2

=
∑

n> 2g+1
2

∑
Q monic

deg(Q)=n

1

|Q|2

=
∑

n> 2g+1
2

1

qn
� q−1/2q−g. (3.4.8)

Lemma 3.4.6. We have that,

∑
Q monic

deg(Q)≤ 2g+1
2

(Q,l)=1

µ(Q)

|Q|2
=

1

ζA(2)

1∏
P |l(1− 1/|P |2)

+O(q−1/2q−g). (3.4.9)
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Proof. ∑
Q monic

deg(Q)≤ 2g+1
2

(Q,l)=1

µ(Q)

|Q|2
=

∑
Q monic
(Q,l)=1

µ(Q)

|Q|2
−

∑
Q monic

deg(Q)> 2g+1
2

(Q,l)=1

µ(Q)

|Q|2

=
∏
P -l

(
1− 1

|P |2

)
−

∑
Q monic

deg(Q)> 2g+1
2

(Q,l)=1

µ(Q)

|Q|2
, (3.4.10)

and ∏
P -l

(
1− 1

|P |2

)
=

∏
P

(
1− 1

|P |2

)∏
P |l

(
1− 1

|P |2

)−1

=
1

ζA(2)

1∏
P |l(1− 1/|P |2)

. (3.4.11)

Therefore,∑
Q monic

deg(Q)≤ 2g+1
2

(Q,l)=1

µ(Q)

|Q|2
=

1

ζA(2)

1∏
P |l(1− 1/|P |2)

−
∑

Q monic

deg(Q)> 2g+1
2

(Q,l)=1

µ(Q)

|Q|2
, (3.4.12)

and using the estimate of Lemma 3.4.5 proves the result.

Proof of Proposition 3.4.3. Following the ideas presented in the proof of Lemma

4.2 in [BDFL] we have that∑
D∈H2g+1,q

(D,l)=1

1 =
∑

D∈V2g+1

(D,l)=1

∑
Q2|D

µ(Q) =
∑

Q monic

deg(Q)≤ 2g+1
2

(Q,l)=1

µ(Q)
∑

D∈V2g+1−2deg(Q)

(D,l)=1

1

=
∑

Q monic

deg(Q)≤ 2g+1
2

(Q,l)=1

µ(Q)#{D ∈ V2g+1−2deg(Q) : (D, l) = 1}.

(3.4.13)

By Lemma 3.4.4, we have∑
D∈H2g+1,q

(D,l)=1

1 =
∑

Q monic

deg(Q)≤ 2g+1
2

(Q,l)=1

µ(Q)q2g+1−2deg(Q) Φ(l)

|l|

= |D|Φ(l)

|l|
∑

Q monic

deg(Q)≤ 2g+1
2

(Q,l)=1

µ(Q)

|Q|2
. (3.4.14)
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Invoking Lemma 3.4.6 we obtain,∑
D∈H2g+1,q

(D,l)=1

1 = |D|Φ(l)

|l|

(
1

ζA(2)

1∏
P |l(1− 1/|P |2)

+O(q−1/2q−g)

)

= |D|Φ(l)

|l|
1

ζA(2)

1∏
P |l(1− 1/|P |2)

+O

(
|D|Φ(l)

|l|
q−1/2q−g

)
,

and using
Φ(l)

|l|
=
∏
P |l

(1− |P |−1), we end up with

∑
D∈H2g+1,q

(D,l)=1

1 =
|D|

ζA(2)
∏

P |l(1 + |P |−1)
+O

(√
|D|Φ(l)

|l|

)
, (3.4.15)

which proves Proposition 3.4.3.

3.4.2 A Sum Over Monic Polynomials.

In this section we establish the following two results:

Lemma 3.4.7. We have that,∏
P
P |l

(1 + |P |−1)−1 =
∑

d monic
d|l

µ(d)
∏
P |d

1

|P |+ 1
. (3.4.16)

Proof. Obviously, ∏
P
P |l

(1 + |P |−1)−1 =
∏
P
P |l

(
1− 1

|P |+ 1

)
.

Let P1, . . . , Pm be the primes that divide l. Then∏
P
P |l

(
1− 1

|P |+ 1

)
=

(
1− 1

|P1|+ 1

)(
1− 1

|P2|+ 1

)
· · ·
(

1− 1

|Pm|+ 1

)

= 1−
(

1

|P1|+ 1
+ · · ·+ 1

|Pm|+ 1

)
+

(
1

|P1|+ 1

1

|P2|+ 1
+ · · ·

)
− · · ·

=
∑

d monic
d|l

µ(d)
∏
P |d

1

|P |+ 1
, (3.4.17)

which proves the lemma.
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Lemma 3.4.8. We have that,∑
l monic

deg(l)=n/2

∏
P |l

(1 + |P |−1)−1 = qn/2
∑

d monic
deg(d)≤n/2

µ(d)

|d|
∏
P |d

1

|P |+ 1
. (3.4.18)

Proof. Using Lemma 3.4.7 we have,∑
l monic

deg(l)=n/2

∏
P |l

(1 + |P |−1)−1 =
∑

l monic
deg(l)=n/2

∑
d monic
d|l

µ(d)
∏
P |d

1

|P |+ 1

=
∑

d monic
deg(d)≤n/2

∑
l monic

deg(l)=n/2
d|l

µ(d)
∏
P |d

1

|P |+ 1
=

∑
d monic

deg(d)≤n/2

µ(d)
∏
P |d

1

|P |+ 1

∑
l monic

deg(l)=n/2
d|l

1

=
∑

d monic
deg(d)≤n/2

µ(d)
∏
P |d

1

|P |+ 1
qn/2−deg(d) = qn/2

∑
d monic

deg(d)≤n/2

µ(d)

|d|
∏
P |d

1

|P |+ 1
.

3.4.3 Auxiliary Lemmas

To prove Proposition 3.4.1, which is the main result of this section, we will need

some additional lemmas, the first one is quoted from Rosen [Rosen, Proposition

2.7]

Lemma 3.4.9. We have that,∑
deg(f)=n
f monic

Φ(f) = q2n(1− q−1). (3.4.19)

Lemma 3.4.10. We have that,

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

√
|Q|Φ(l)

|l|
=
√
|Q|(1− q−1)([g/2] + 1). (3.4.20)

Proof.

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

√
|Q|Φ(l)

|l|
=

√
|Q|

g∑
n=0
2|n

q−n
∑

l monic
deg(l)=n/2

Φ(l)

=
√
|Q|

g∑
n=0
2|n

(1− q−1),
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where we have used Lemma 3.4.9 to obtain the last equation. Hence√
|Q|

g∑
n=0
2|n

(1− q−1) =
√
|Q|(1− q−1)

g∑
n=0
2|n

1,

which proves the lemma, since n is even.

So, from this lemma, we can conclude that

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

√
|Q|Φ(l)

|l|
= O(gqg), (3.4.21)

which is a result that will be of use later.

Using the Euler product formula we can prove the following lemma

Lemma 3.4.11. We have that,∑
d monic

µ(d)

|d|
∏
P |d

1

|P |+ 1
=
∏
P

(
1− 1

|P |(|P |+ 1)

)
. (3.4.22)

There are two additional lemmas which will be important in establishing

the formula in Proposition 3.4.1.

Lemma 3.4.12. We have that,

([g/2] + 1)
∑

d monic
deg(d)>[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1
= O(gq−g/2). (3.4.23)

Proof. ∑
d monic

deg(d)>[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1
≤

∑
d monic

deg(d)>[g/2]

µ2(d)

|d|
∏
P |d

1

|P |

≤
∑

d monic
deg(d)>[g/2]

|d|−2 =
∑

h>[g/2]

|d|−2
∑

d monic
deg(d)=h

1

=
∑

h>[g/2]

q−h � q−[g/2] � q−g/2. (3.4.24)

So,

([g/2] + 1)
∑

d monic
deg(d)>[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1
� gq−g/2.
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Lemma 3.4.13. We have that,∑
d monic

deg(d)>[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1
deg(d) = O(gq−g/2). (3.4.25)

Proof. Using the same reasoning as in Lemma 3.4.12

∑
d monic

deg(d)>[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1
deg(d)

≤
∑

d monic
deg(d)>[g/2]

µ2(d)

|d|
∏
P |d

1

|P |
deg(d) =

∑
d monic

deg(d)>[g/2]

|d|−2deg(d)

=
∑

h>[g/2]

∑
d monic

deg(d)=h

hq−2h =
∑

h>[g/2]

hq−h � [g/2]q−[g/2] � gq−g/2.

Where we have used the following formula given in [Gra-Ryz]

∞∑
h=j+1

hq−h =
q−1−j(−jq + q2 + jq2)

(−1 + q)2
. (3.4.26)

Next, we will establish the following formula

Proposition 3.4.14. We have that,

∑
d monic

µ(d)

|d|
∏
P |d

1

|P |+ 1
deg(d)

= −
∏
P

(
1− 1

|P |(|P |+ 1)

) ∑
P monic

irreducible

deg(P )

|P |(|P |+ 1)− 1
. (3.4.27)

Proof. Let,

f(s) =
∑

d monic

deg(d)
µ(d)

|d|s
∏
P |d

1

|P |+ 1
(3.4.28)

and

g(s) =
∑

d monic

µ(d)

|d|s
∏
P |d

1

|P |+ 1
. (3.4.29)

A simple calculation shows that

g′(s) = −f(s) log q (3.4.30)
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and by Lemma 3.4.11

g(s) =
∏
P

(
1− 1

|P |s(|P |+ 1)

)
. (3.4.31)

Computing g′(s) using (3.4.31) and the product rule gives us

g′(s) = g(s) log q
∑

P monic
irreducible

deg(P )

|P |s(|P |+ 1)− 1
. (3.4.32)

Combining (3.4.30) and (3.4.32) we have that

f(s) = −g(s)
∑

P monic
irreducible

deg(P )

|P |s(|P |+ 1)− 1
. (3.4.33)

Putting s = 1 in the last formula, proves the theorem.

Now we are ready to give a proof of our main result of this section.

Proof of Proposition 3.4.1. Let

B(n, l,D) =

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∑
D∈H2g+1,q

(D,l)=1

1. (3.4.34)

By Proposition 3.4.3 we have that

B(n, l,D) =
|D|
ζA(2)

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∏
P |l

(1 + |P |−1)−1

+ O

 g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

√
|D|Φ(l)

|l|


and using (3.4.21) we can reduce B(n, l,D) to

B(n, l,D) =
|D|
ζA(2)

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∏
P |l

(1 + |P |−1)−1 +O(gqg). (3.4.35)
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Using Lemma 3.4.8 we have that

B(n, l,D) =
|D|
ζA(2)

g∑
n=0
2|n

q−n/2qn/2
∑

d monic
deg(d)≤n/2

µ(d)

|d|
∏
P |d

1

|P |+ 1
+O(gqg)

=
|D|
ζA(2)

[g/2]∑
m=0

∑
d monic

deg(d)≤m

µ(d)

|d|
∏
P |d

1

|P |+ 1
+O(gqg)

=
|D|
ζA(2)

∑
d monic

deg(d)≤m

µ(d)

|d|
∏
P |d

1

|P |+ 1

∑
deg(d)≤m≤[g/2]

1 +O(gqg)

=
|D|
ζA(2)

∑
d monic

deg(d)≤[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1
([g/2] + 1− deg(d)) +O(gqg).

(3.4.36)

Hence

B(n, l,D) =
|D|
ζA(2)

([g/2] + 1)

 ∑
d monic

µ(d)

|d|
∏
P |d

1

|P |+ 1


− |D|

ζA(2)

([g/2] + 1)

 ∑
d monic

deg(d)>[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1




− |D|
ζA(2)

 ∑
d monic

µ(d)

|d|
∏
P |d

1

|P |+ 1
deg(d)


+

|D|
ζA(2)


∑

d monic
deg(d)>[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1
deg(d)

+O(gqg).

(3.4.37)

The main term comes from the two sums over all monic polynomials. The

sums over monic polynomials with deg(d) > [g/2] can be bounded. So, we can

write B(n, l,D) as

B(n, l,D) = (Main-Term) + (Error-Term) +O(gqg). (3.4.38)

Combining Lemma 3.4.11, Lemma 3.4.12, Lemma 3.4.13 and Proposition 3.4.14
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we have,

B(n, l,D) =
|D|
ζA(2)

([g/2] + 1)P (1) +
|D|
ζA(2)

P (1)
∑

P monic
irreducible

deg(P )

|P |(|P |+ 1)− 1

+O(gq
3
2
g)

=
P (1)

ζA(2)
|D|

([g/2] + 1) +
∑

P monic
irreducible

deg(P )

|P |(|P |+ 1)− 1

+O(gq
3
2
g),

which completes the proof of the proposition.

3.5 Estimating the Contributions of Non–Squares

to the Average.

We will present in this section an estimate for the second term of (3.3.3) which

allows us to give an asymptotic formula for the first term of (3.3.2) where q ≡ 1

(mod 4) is fixed and g →∞. Our main result in this section is

Proposition 3.5.1. We have that,

g∑
n=0

q−n/2
∑

f monic
deg(f)=n
f 6=2

∑
D∈H2g+1,q

χD(f) = O
(

2gq
3
2
g+ 3

4

)
. (3.5.1)

For this we will need the following lemmas (c.f. [Fai-Rud])

Lemma 3.5.2. Let χ be a nontrivial Dirichlet character modulo f . Then for

n < deg(f), ∣∣∣∣∣∣
∑

deg(B)=n

χ(B)

∣∣∣∣∣∣ ≤
(

deg(f)− 1

n

)
qn/2 (3.5.2)

(the sum over all monic polynomials of degree n).

Proof. This is a direct consequence of the Riemann Hypothesis for function

fields. Comparing the series expansion of L(u, χ), which is a polynomial of
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degree at most deg(f)− 1, with the expression in terms of the inverse zeros:

∑
0≤n<deg(f)

 ∑
deg(B)=n

χ(B)

un =

deg(f)−1∏
j=1

(1− αju)

to get ∑
deg(B)=n

χ(B) = (−1)n
∑

S⊂{1,...,deg(f)−1}
#S=n

∏
j∈S

αj,

and then use |αj| ≤
√
q for all j.

Remark 3.5.3. Note that for n ≥ deg(f) the character sum vanishes.

Now we apply this result to quadratic characters.

Lemma 3.5.4. If f ∈ Fq[T ] is not a square, then∣∣∣∣∣∣
∑

D∈H2g+1,q

χD(f)

∣∣∣∣∣∣� qg+1/22degf−1. (3.5.3)

Proof. We use (2.2.29) to pick out the square–free monic polynomials. Thus

the sum over all square–free monic polynomials is given by

∑
D∈H2g+1,q

χD(f) =
∑

deg(D)=2g+1

∑
A2|D

µ(A)

(
D

f

)

=
∑

deg(A)≤g

µ(A)

(
A

f

)2 ∑
deg(B)=2g+1−2deg(A)

(
B

f

)
.

(3.5.4)

To deal with the inner sum, note that (•/f) is a nontrivial character since f

is not a square, so we can use Lemma 3.5.2 to obtain∣∣∣∣∣∣
∑

deg(B)=2g+1−2deg(A)

(
B

f

)∣∣∣∣∣∣ ≤
(

deg(f)− 1

2g + 1− 2deg(A)

)
qg+1/2−deg(A)
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if 2g + 1− 2deg(A) < deg(f). The sum is zero otherwise. Hence we have∣∣∣∣∣∣
∑

D∈H2g+1,q

χD(f)

∣∣∣∣∣∣ ≤
∑

deg(A)≤g

∣∣∣∣∣∣
∑

deg(B)=2g+1−2deg(A)

(
B

f

)∣∣∣∣∣∣
≤

∑
g+1/2−(deg(f)/2)<deg(A)≤g

(
deg(f)− 1

2g + 1− 2deg(A)

)
qg+1/2

qdeg(A)

= qg+1/2
∑

g+1/2−(deg(f)/2)<j≤g

(
deg(f)− 1

2g + 1− 2j

)
≤ 2deg(f)−1qg+1/2.

This completes the proof of Lemma 3.5.4.

Proof of Proposition 3.5.1. Using Lemma 3.5.4, we have that,

g∑
n=0

q−n/2
∑

f monic
deg(f)=n
f 6=2

∑
D∈H2g+1,q

χD(f) ≤
g∑

n=0

q−n/2
∑

f monic
deg(f)=n

2degf−1qg+1/2

=

g∑
n=0

q−n/22n−1qg+1/2qn

� qg
g∑

n=0

(q1/22)n

� qg(2q1/2)g+1

� q
3
2
g+ 3

4 2g. (3.5.5)

3.6 Proof of the Main Theorem

Proof of Theorem 3.1.1. Now we are in a position to prove Theorem 3.1.1. For

this we make use of Proposition 3.4.1 and Proposition 3.5.1, which give us

∑
D∈H2g+1,q

g∑
n=0

∑
f1 monic

deg(f1)=n

χD(f1)q−n/2

=
P (1)

ζA(2)
|D|

{
([g/2] + 1) +

∑
P

deg(P )

|P |(|P |+ 1)− 1

}
+O

(
2gq

3
2
g+ 3

4

)
. (3.6.1)
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For the dual sum in (3.3.2) we get, similarly, that

∑
D∈H2g+1,q

g−1∑
m=0

∑
f2 monic

deg(f2)=m

χD(f2)q−m/2

=
P (1)

ζA(2)
|D|

{([
g − 1

2

]
+ 1

)
+
∑
P

deg(P )

|P |(|P |+ 1)− 1

}
+O

(
2gq

3
2
g+ 3

4

)
.

(3.6.2)

So, adding (3.6.1) with (3.6.2), we see that,

∑
D∈H2g+1,q

L(q−1/2, χD) =

P (1)

2ζA(2)
|D|

{
logq |D|+ 1 + 4

∑
P

deg(P )

|P |(|P |+ 1)− 1

}
+O

(
2gq

3
2
g+ 3

4

)
(3.6.3)

and using the fact that |D| = q2g+1 and that

4

log q

P
′

P
(1) = 4

∑
P monic

irreducible

deg(P )

|P |(|P |+ 1)− 1
,

we have precisely the statement of Theorem 3.1.1.

Note that if we let q → ∞ the error term in the Theorem 3.1.1 becomes

O(|D|3/4+ε), which now appears precisely in the same form as the error term

in Jutila’s result for the number field case.
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Chapter 4

A Mean Value Theorem over

Monic Irreducible Polynomials

in Fq[T ]

In this chapter, we will mimic the calculations of Chapter 3 to establish the

function field analogue of the following result due to Jutila [Jutila]

Theorem 4.0.1 (Jutila). We have that,∑
p≤X

p≡3( mod 4)
p prime

(log p)L(1
2
, χp)

=
1

4
X

{
log(X/π) +

Γ
′

Γ

(
3

4

)
+ 4γ − 1

}
+O(X(logX)−A), (4.0.1)

where the implied constant is not effectively calculable. The following estimate

is effective: ∑
p≤X

p≡3( mod 4)
p prime

(log p)L(1
2
, χp) =

1

4
X logX +O(X(logX)ε), (4.0.2)

where γ is the Euler–Mascheroni constant.

The function field analogue of this theorem which we established in this

chapter is

67



Chapter 4. A Mean Value Theorem over Monic Irreducible Polynomials in
Fq[T ]

Theorem 4.0.2. Let Fq be a finite field where q ≡ 1(mod4) is fixed. And let

P ∈ Fq[T ] be a monic irreducible polynomial such that deg(P ) = 2M+1. Then

we have,

∑
P monic

irreducible
deg(P )=2M+1

(log |P |)L(1
2
, χP )

=
|P |
2

{
log |P |+ log q − log |P |+ log q

|P |

}
+O(|P |3/4+ε). (4.0.3)

We now present a direct corollary from Theorem 4.0.2

Corollary 4.0.3. Under the same hypothesis of the above theorem, we have

that,

L(1
2
, χP ) 6= 0 (4.0.4)

for infinitely many monic irreducible polynomials P of degree odd.

4.1 Setting Up the Problem

Let P be a monic irreducible polynomial of degree odd, i.e., deg(P ) = 2M + 1

and let CP be a smooth, projective and geometrically connected curve of genus

g ≥ 1 defined over the finite field Fq. The zeta–function associated with the

model CP : y2 = P (x) is a rational function of the form

ZCP (u) =
L(u, χP )

(1− u)(1− qu)
, |u| < 1/q (4.1.1)

where L(u, χP ) is a polynomial of degree 2g = 2M and L(u, χP ) ∈ Z[u] with

L(0, χP ) = 1 and satisfies the functional equation

L(u, χP ) = (qu2)gL
(

1

qu
, χP

)
. (4.1.2)

Using the same ideas, as we did in Chapter 3, we can write L(u, χP ) as

follows
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L(q−
1
2 , χP ) = L(1

2
, χP )

=
M∑
n=0

∑
f1 monic

deg(f1)=n

χP (f1)q−n/2 +
M−1∑
m=0

∑
f2 monic

deg(f2)=m

χP (f2)q−m/2. (4.1.3)

Our main goal in this chapter is to establish an asymptotic formula for

∑
P monic

irreducible
deg(P )=2M+1

(log |P |)L(1
2
, χP ) (4.1.4)

in the limit M →∞. And we will do this by using (4.1.3).

Now we present the details of the calculation for the average of the first

term in the right–hand side of (4.1.3) and since we have that the terms are

similar we need only worry about computing one of them to obtain the final

result. Therefore, we want an asymptotic formula for

∑
P monic

irreducible
deg(P )=2M+1

(log |P |)
M∑
n=0

∑
f monic

deg(f)=n

χP (f)q−n/2

= (2M+1)(log q)
∑

P monic
irreducible

deg(P )=2M+1

M∑
n=0

∑
f monic

deg(f)=n

χP (f)q−n/2

= (2M+1)(log q)

×

( ∑
P monic

irreducible
deg(P )=2M+1

M∑
n=0

∑
f monic

deg(f)=n
f=�

χP (f)

qn/2
+

∑
P monic

irreducible
deg(P )=2M+1

M∑
n=0

∑
f monic

deg(f)=n
f 6=�

χP (f)

qn/2

)
. (4.1.5)

The first term (the square contributions) will provide us with the main term

and the second term in (4.1.5) (the nonsquare contributions) will be bounded

using the Riemann Hypothesis for curves [Weil-CAD].
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4.2 The Main Term Calculation

In this section we will establish the main term of Theorem 4.0.2. For this

we will prove two auxiliary propositions about the square contribution for

the average and the main tool used will be the Polynomial Prime Number

Theorem. Note that our result also includes the main lower order terms.

Proposition 4.2.1. We have that,

∑
P monic

irreducible
deg(P )=2M+1

M∑
n=0

∑
f monic

deg(f)=n
f=�

χP (f)q−n/2

=

([
M

2

]
+ 1

)(
|P |

logq |P |
− 1

logq |P |

)
+O

(√
|P |
([

M

2

]
+ 1

))
. (4.2.1)

Proof. We start writing

∑
P monic

irreducible
deg(P )=2M+1

M∑
n=0

∑
f monic

deg(f)=n
f=m2

χP (f)q−n/2 =
M∑
n=0

q−n/2
∑

f monic
deg(f)=n
f=m2

∑
P monic

irreducible
deg(P )=2M+1

χP (f)

=
M∑
n=0
2|n

q−n/2
∑

m monic
deg(m)=n/2

∑
P monic

irreducible
deg(P )=2M+1

χP (m2) =
M∑
n=0
2|n

q−n/2
∑

m monic
deg(m)=n/2

∑
P monic

irreducible
deg(P )=2M+1

(P,m)=1

1

=
M∑
n=0
2|n

q−n/2
∑

m monic
deg(m)=n/2

( ∑
P monic

irreducible
deg(P )=2M+1

1−
∑

P monic
irreducible

deg(P )=2M+1
P |m

1

)

=
M∑
n=0
2|n

q−n/2
∑

m monic
deg(m)=n/2

∑
P monic

irreducible
deg(P )=2M+1

1−
M∑
n=0
2|n

q−n/2
∑

m monic
deg(m)=n/2

∑
P monic

irreducible
deg(P )=2M+1

P |m

1,

(4.2.2)

and making use of the Polynomial Prime Number Theorem 2.1.5 we obtain
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that (4.2.2) is,

=
M∑
n=0
2|n

q−n/2
∑

m monic
deg(m)=n/2

(
q2M+1

2M + 1
+O

(
q

2M+1
2

))

−
M∑
n=0
2|n

q−n/2
∑

P monic
irreducible

deg(P )=2M+1

∑
m monic

deg(m)=n/2
P |m

1

=
M∑
n=0
2|n

q−n/2
∑

m monic
deg(m)=n/2

q2M+1

2M + 1
−

M∑
n=0
2|n

q−n/2
∑

P monic
irreducible

deg(P )=2M+1

∑
a monic

deg(a)=
n
2
−2M−1

1

+O

(
M∑
n=0
2|n

q−n/2
∑

m monic
deg(m)=n/2

q
2M+1

2

)

=
q2M+1

2M + 1

M∑
n=0
2|n

1−
M∑
n=0
2|n

q−n/2qn/2q−2M−1
∑

P monic
irreducible

deg(P )=2M+1

1+O

(
q

2M+1
2

M∑
n=0
2|n

1

)

=
q2M+1

2M + 1

[M2 ]∑
n=0

1− q−2M−1

[M2 ]∑
n=0

(
q2M+1

2M + 1
+O

(
q

2M+1
2

))
+O

(
q

2M+1
2

[M2 ]∑
n=0

1

)

=
q2M+1

2M + 1

([
M

2

]
+ 1

)
−q
−2M−1q2M+1

2M + 1

([
M

2

]
+ 1

)

+O

(
q

2M+1
2 q−2M−1

([
M

2

]
+ 1

))
+O

(
q

2M+1
2

[M2 ]∑
n=0

1

)

=
q2M+1

2M + 1

([
M

2

]
+ 1

)
− 1

2M + 1

([
M

2

]
+ 1

)
+O

(
q

2M+1
2

([
M

2

]
+ 1

))
,

which proves the proposition.

Similarly, we are able to prove the following proposition about the dual

sum
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Proposition 4.2.2. Under the same conditions of the above proposition we

have,

∑
P monic

irreducible
deg(P )=2M+1

M−1∑
n=0

∑
f monic

deg(f)=n
f=�

χP (f)q−n/2

=

([
M − 1

2

]
+ 1

)(
|P |

logq |P |
− 1

logq |P |

)
+O

(√
|P |
([

M − 1

2

]
+ 1

))
.

(4.2.3)

Putting the propositions 4.2.1 and 4.2.2 together and multiplying the result

by log |P | we obtain the main term given in the statement of Theorem 4.0.2

Main-Term =
log q

2
|P |
{

logq |P |+ 1−
logq |P |+ 1

|P |

}
+O

(
log |P |

√
|P |
([

M

2

]
+ 1

))
. (4.2.4)

4.3 Bounding Character Sums Over Primes

In this section we establish the following estimate

Proposition 4.3.1. We have that,

∑
P monic

irreducible
deg(P )=2M+1

M∑
n=0

∑
f monic

deg(f)=n
f 6=�

χP (f)q−n/2 = O

(
q

3M
2

)
. (4.3.1)

To establish this estimate we will relate
∑

P

(
f
P

)
for a fixed nonsquare f to

a quantity bounded by the Riemann Hypothesis for function fields. The result

that we will use for the proof of this proposition is

Theorem 4.3.2 (c.f. [Rud-TPFHE]). Assume that B is monic, of positive

degree and not a perfect square. Then we have the following bound for the
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character sum over prime polynomials:

∣∣∣∣∣ ∑
P monic

irreducible
deg(P )=n

(
B

P

) ∣∣∣∣∣� deg(B)

n
qn/2. (4.3.2)

Proof. Remembering that we can write,

L(u, χP ) = det(I − u√qΘCP ), (4.3.3)

where ΘCP ∈ USp(2M), then we have the following explicit formula

−trΘn
CP

=
1

qn/2

∑
f monic

deg(f)=n

Λ(f)χP (f). (4.3.4)

Now we can write B = DC2 where D is square–free polynomial, of positive de-

gree and, together with (4.3.4) and the unitarity of ΘCP (which is the Riemann

Hypothesis for curves) assures us the expected result.

Proof of Proposition 4.3.1.

∑
P monic

irreducible
deg(P )=2M+1

M∑
n=0

∑
f monic

deg(f)=n
f 6=�

χP (f)q−n/2 =
M∑
n=0

q−n/2
∑

f monic
deg(f)=n
f 6=�

∑
P monic

irreducible
deg(P )=2M+1

χP (f)

=
M∑
n=0

q−n/2
∑

f monic
deg(f)=n
f 6=�

∑
P monic

irreducible
deg(P )=2M+1

(
P

f

)
. (4.3.5)

Using the quadratic reciprocity law for Fq[T ] (see Chapter 2) we have that(
P

f

)
=

(
f

P

)
(−1)

(q−1)
2

(2M+1)n, (4.3.6)

and as (−1)
(q−1)

2
(2M+1)n has the same sign for all P such that deg(P ) = 2M+1

and f monic, then we have∣∣∣∣∣ ∑
P monic

irreducible
deg(P )=2M+1

(
P

f

) ∣∣∣∣∣ =

∣∣∣∣∣ ∑
P monic

irreducible
deg(P )=2M+1

(
f

P

) ∣∣∣∣∣. (4.3.7)
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So we can write,

M∑
n=0

q−n/2
∑

f monic
deg(f)=n
f 6=�

∑
P monic

irreducible
deg(P )=2M+1

(
P

f

)
≤

M∑
n=0

q−n/2
∑

f monic
deg(f)=n
f 6=�

∣∣∣∣∣ ∑
P monic

irreducible
deg(P )=2M+1

(
f

P

) ∣∣∣∣∣.
(4.3.8)

Using now the Theorem 4.3.2 we have that the quantity in (4.3.8) is,

�
M∑
n=0

q−n/2
∑

f monic
deg(f)=n
f 6=�

n

2M + 1
q

2M+1
2 �

M∑
n=0

q−n/2
∑

f monic
deg(f)=n
f 6=�

nq
2M+1

2

�
M∑
n=0

nqn/2q
2M+1

2

= q
2M+1

2

M∑
n=0

nqn/2, (4.3.9)

and making use of the arithmetic-geometric progression formula given by the

equation 0.113 in [Gra-Ryz]

n−1∑
k=0

(a+ kr)qk =
a− [a+ (n− 1)r]qn

1− q
+
rq(1− qn−1)

(1− q)2
,

we have that
M∑
n=0

q−n/2
∑

f monic
deg(f)=n
f 6=�

∑
P monic

irreducible
deg(P )=2M+1

(
P

f

)
� q

2M+1
2 (
√
q + (

√
q)M+1)

� (
√
q)3M+2

� q
3M
2 , (4.3.10)

which concludes the proof of the proposition, as desired.

4.4 Proof of the Main Theorem

Now we are in a position to prove the main theorem of this chapter.

Proof of Theorem 4.0.2.∑
P monic

irreducible
deg(P )=2M+1

(log |P |)L(1
2
χP ) = (2M + 1)(log q)

∑
P monic

irreducible
deg(P )=2M+1

L(1
2
, χP ). (4.4.1)
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Using (4.2.4) and Proposition 4.3.1 we have that

(2M + 1)(log q)
∑

P monic
irreducible

deg(P )=2M+1

L(1
2
, χP )

= (2M+1)(log q)

(
|P |

logq |P |
(M + 1)− 1

logq |P |
(M + 1)

)

+ (2M + 1)(log q)O

(√
|P |
([

M

2

]
+ 1

))
+O

(
(2M + 1)(log q)q

3M
2

)

= (log q)(|P |(M+1)−(M+1))+O(|P |3/4 logq |P |).

(4.4.2)

Making the following substitution

(M + 1) =
logq |P |

2
+

1

2
, (4.4.3)

in the above equation, we have that (4.4.2) becomes

log q

2
|P |
{

logq |P |+ 1−
logq |P |+ 1

|P |

}
+O(|P |3/4+ε), (4.4.4)

which is precisely the statement of our main theorem in this chapter, since

(log q)(logq |P |) = log |P |. (4.4.5)
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Chapter 5

Asymptotic Averages for the

Class Numbers over Function

Fields

In this chapter, we investigate the class number problem in the context of

function fields making use of the techniques developed in Chapters 3 and 4.

5.1 The Class Number in the Number Field

Setting

The class number problem begins with Gauss, which in his famous Disqui-

sitiones Arithmeticae [Gauss-DA] presented two conjectures concerning the

average values of these mysterious numbers that are associated with binary

quadratic forms ax2 + 2bxy + cy2 where a, b, c ∈ Z. For completeness, clar-

ity and to put our problem in the right context we will restate the Gauss’s

conjectures.

Let D = 4(b2− ac) be the discriminant of the quadratic form ax2 + 2bxy+

cy. Gauss considered only even discriminants (due to the restriction of the

coefficient of xy be even) and then he defined an equivalence relation between
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5.1. The Class Number in the Number Field Setting

the quadratic forms as follows: We say that two quadratic forms are equivalent

if it is possible to transform the first form into the second through an invertible

integral linear change of variables. This is an equivalence relation on the set of

quadratic forms and the equivalence classes will be called classes of quadratic

forms. Gauss showed that the number of equivalence classes of quadratic forms

with discriminant D is finite. Let hD denote this number, we also call hD the

class number. We now present Gauss’s conjectures concerning mean values

of hD quoted from [Hoff-Ros].

Conjecture 5.1.1 (Gauss). Let hD be the class number as above. Then we

have,

1. Let D = −4k run over all negative discriminants with k ≤ X. Then

∑
1≤k≤X

hD ∼
4π

21ζ(3)
X

3
2 . (5.1.1)

2. Let D = 4k run over all positive discriminants such that k ≤ X. Then

∑
1≤k≤X

hDRD ∼
4π2

21ζ(3)
X

3
2 , (5.1.2)

where RD = log(εD) with εD the regulator of the real quadratic number

field Q(
√
D).

The first conjecture (5.1.1) was proved by Lipschitz [Lipschitz] and the

second one (5.1.2) by Siegel [Siegel]. We can reformulate the above conjectures

in terms of orders O in the quadratic number fields as follows: Let D ≡

0, 1(mod4) such that D is not a perfect square. Then D = D0m
2 where

D0,m ∈ Z and we have either D0 is square–free and D0 ≡ 1(mod4) or D0 =

4m0 with m0 ≡ 2, 3(mod4) and square-free. Now, if m = 1, we call D a

fundamental discriminant, as was done in Section 1.2.3. Consider the quadratic

number field Q(
√
D), then there is a unique order OD ⊂ OD0 (called maximal

order) where the maximal order has discriminant D0 and such that [OD0 :

OD] = m. In this case, let hD denote the strict class number of OD and

77



Chapter 5. Asymptotic Averages for the Class Numbers over Function Fields

for D > 0, let εD denote the smallest unit in OD such that εD > 1 and

NQ(
√
D)/Q(εD) = 1 with RD = log(εD). In other words, the class number hD

is related and can be seen in terms of the size of invertible fractional ideals

of O modulo principal ideals, i.e, the Picard group of O, which we denote by

Pic(O).

Siegel also showed the following result on the class numbers, where the

average is taken over all discriminants

Theorem 5.1.2 (Siegel). We have,

1. ∑
1<−D≤X

hD =
π

18ζ(3)
X3/2 +O(X logX), (5.1.3)

2. ∑
1<D≤X

hDRD =
π2

18ζ(3)
X3/2 +O(X logX). (5.1.4)

Let ψD(n) =
(
D
n

)
, be the Kronecker’s symbol and L(s, ψD) the Dirichlet

series associated with ψD(n), then can be deduced from Siegel’s paper that∑
1<±D≤X

L(1, ψD) =
1

2

ζ(2)

ζ(3)
X +O(X1/2 logX). (5.1.5)

Now, using the following result due to Dirichlet

L(1, ψD) =


2πhD

wD
√
D

if D < 0,

hDRD√
D

if D > 0,

together with the average of the L–function at s = 1 and partial summation

we have that Theorem 5.1.2 can be deduced. Note that wD = 2 except when

D = −4 or −6, when wD = 4 and 6 respectively.

5.2 The Function Field Case

We now move to the function field analogue of the class number problem.

As usual, we will make the natural change from Z and Q to A = Fq[T ] and
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k = Fq(T ) respectively, where A is the polynomial ring over Fq and k is the

rational function field over Fq. From now on we assume that the cardinality

of Fq is odd and fixed with q ≡ 1(mod4).

Now we mimic the discussion made in the previous section for the function

field case. Let K = k(
√
m), where m ∈ A is a non–square polynomial. So

we can write, m = Dm2
1, where D is a square–free polynomial. Let Om =

A + A
√
m ⊂ K, then Om is an A–order in K. The Picard group of Om,

Pic(Om), is in this setting, in the same way as it is in the number field case, the

group of invertible fractional ideals of Om modulo principal fractional ideals.

And the class number hm is now defined to be hm = |Pic(Om)|.

Let K/k be a quadratic extension and call OK the integral closure of A in

K. Consider that D ∈ A is a square–free polynomial and put OK as OD =

A
[√

D
]
. So in this case, OD is a Dedekind domain and Pic(OD) = Cl(OD),

where Cl(OD) is the class group of OD. We will denote the class number for

this case as hD, and by [Rosen, Proposition 14.2] we have that hD is finite.

Hoffstein and Rosen [Hoff-Ros] succeeded in compute the average value of

the class number hD when the average is taken over all monic polynomials D

of a fixed degree, they showed that

Theorem 5.2.1 (Hoffstein and Rosen). If M is odd and positive. Then,

1

qM

∑
D monic

deg(D)=M

hD =
ζA(2)

ζA(3)
q
M−1

2 − q−1. (5.2.1)

The theorem above can be seen as the function field analogue of the Siegel’s

theorem. They also showed in the same paper the following result

Theorem 5.2.2. Let M be even and positive and the following sum is over all

non–square monic polynomials of degree M . Then we have,

1

qM

∑
hDRD

= (q − 1)−1

(
ζA(2)

ζA(3)
qM/2 −

(
2 +

(
1− 1

q

)
(M − 1)

))
. (5.2.2)
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A problem which is more difficult and we consider in this chapter is to cal-

culate the average value of the class numbers over fundamental discriminants,

i.e., D monic and square–free. We should note that the calculations presented

in this chapter follow the same philosophy of the calculations presented in

Chapter 3, where we fix the number of elements of the finite field and compute

the limit as deg(D)→∞ to obtain our asymptotic formulas.

5.3 Statement of Results

As we said earlier, the class numbers hD is equal to the |Pic(OD)|, where

Pic(OD) is the Picard group of OD. But we also should note that if D ∈

H2g+1,q, then the equation y2 = D(T ) defines a hyperelliptic curve CD over Fq
of genus g and the number hD is closely related to the set of the Fq–rational

points on its Jacobian, Jac(CD), and so our result also has a geometric appeal.

With this in mind, the main theorems of this chapter which we will establish

in the subsequent sections are

Theorem 5.3.1. Let D ∈ H2g+1,q. Then we have,

1

#H2g+1,q

∑
D∈H2g+1,q

hD ∼
√
|D|
√
q
ζA(2)P (2), (5.3.1)

as deg(D)→∞, i.e., g →∞. Where

P (s) =
∏

P monic
irreducible

(
1− 1

(|P |+ 1)|P |s

)
. (5.3.2)

Theorem 5.3.2. Let P ∈ A be a monic irreducible polynomial of degree 2M+1

and hP be the associated class number. Then we have,

1

Πq(2M + 1)

∑
P monic

irreducible
deg(P )=2M+1

hP ∼
1
√
q
ζA(2)

√
|P |, (5.3.3)

as M →∞. Where Πq(M) is the number of monic irreducible polynomials of

degree M .

The Theorem 5.3.1 also appears in [Andrade].
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5.4 Preparation for the Proof of Main Theo-

rems

In this section, we establish the following propositions

Proposition 5.4.1. Let Fq be a fixed finite field with q ≡ 1 (mod 4). Then∑
D∈H2g+1,q

L(1, χD)

= |D|
{
P (2)− P (1)

(
1

q[g/2]+1
+

1

ζA(2)2qg[(g−1)/2]

)}
+O((2q)g), (5.4.1)

where |D| = q2g+1 and

P (s) =
∏

P monic
irreducible

(
1− 1

(|P |+ 1)|P |s

)
. (5.4.2)

As a corollary of the Proposition 5.4.1 we have that,

Corollary 5.4.2.

1

#H2g+1,q

∑
D∈H2g+1,q

L(1, χD) ∼ ζA(2)P (2) (5.4.3)

as deg(D)→∞, i.e., g →∞.

Proof. Using the Theorem 5.4.1 together with the formula (2.2.27) for the

number of elements in the hyperelliptic ensemble H2g+1,q and computing the

limit as g →∞, we can conclude the asymptotic formula above.

We also establish the following result

Proposition 5.4.3. We have that,∑
P monic

irreducible
deg(P )=2M+1

L(1, χP )

=
1

(2M + 1)

1

(q − 1)

(
q2M+1

(
q−[M/2]

(
q1+[M/2] − 1

))
− q−[M/2]

(
q1+[M/2] − 1

)
+ qM+1

(
q

1+

[
M−1

2

]
− 1

)
− q−M

(
q

1+

[
M−1

2

]
− 1

))
+O

(
qMM2

2M + 1

)
.

(5.4.4)
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As a corollary of the Proposition 5.4.3 we have that,

Corollary 5.4.4.

1

Πq(2M + 1)

∑
P monic

irreducible
deg(P )=2M+1

L(1, χP ) ∼ |P |
logq |P |

ζA(2) (5.4.5)

as deg(P ) = M →∞.

Proof. Using the Proposition 5.4.3 together with the Polynomial Prime Num-

ber Theorem given in Section 2.1.2 and computing the limit as M → ∞, we

can conclude the asymptotic formula above.

The starting point for the proof of the main results is the following repre-

sentation for L(s, χD)

L(s, χD) =
∑

f1 monic
deg(f1)≤g

χD(f1)

|f1|s
+ (q1−2s)g

∑
f2 monic

deg(f2)≤g−1

χD(f2)

|f2|1−s
. (5.4.6)

5.4.1 Proof of Proposition 5.4.1

Preliminary Lemmas

We will require some auxiliary lemmas. We begin with a bound for nontrivial

character sums using the Lemma 3.5.2, which is a consequence of the Riemann

Hypothesis for function fields.

Lemma 5.4.5. We have that,

1. ∑
D∈H2g+1,q

g∑
n=0

q−n
∑

f monic
deg(f)=n
f 6=�

χD(f)� (2q)g. (5.4.7)

2.

q−g
∑

D∈H2g+1,q

g−1∑
m=0

∑
f monic

deg(f)=m
f 6=�

χD(f)� (2q)g. (5.4.8)

82



5.4. Preparation for the Proof of Main Theorems

Proof. We will establish the Part (1) of this Lemma. For Part (2) we have

that the proof is analogous. We start with

∑
D∈H2g+1,q

g∑
n=0

q−n
∑

f monic
deg(f)=m
f 6=�

χD(f)

=

g∑
n=0

q−n
∑

f monic
deg(f)=n
f 6=�

∑
D monic

deg(D)=2g+1

∑
A monic
A2|D

µ(A)

(
D

f

)

=

g∑
n=0

q−n
∑

f monic
deg(f)=n
f 6=�

∑
A monic
deg(A)≤g

µ(A)

(
A

f

)2 ∑
B monic

deg(B)=2g+1−2deg(A)

(
B

f

)
.

Now we note that (B/f) is a nontrivial character since f 6= �. So we can

invoke the Lemma 3.5.2 to get the following bound∣∣∣∣∣ ∑
B monic

deg(B)=2g+1−2deg(A)

(
B

f

) ∣∣∣∣∣ ≤
(

deg(f)− 1

2g + 1− 2deg(A)

)
qg+

1
2
−deg(A) (5.4.9)

if 2g + 1− 2deg(A) < deg(f), and the sum is zero otherwise. So we have,

∑
D∈H2g+1,q

g∑
n=0

q−n
∑

f monic
deg(f)=n
f 6=�

χD(f)

≤
g∑

n=0

q−n
∑

f monic
deg(f)=n
f 6=�

∑
A monic
deg(A)≤g

µ(A)

∣∣∣∣∣ ∑
B monic

deg(B)=2g+1−2deg(A)

(
B

f

) ∣∣∣∣∣
≤

g∑
n=0

q−n
∑

f monic
deg(f)=n
f 6=�

g∑
j=g+

1
2
−

deg(f)
2

∑
A monic
deg(A)=j

(
deg(f)− 1

2g + 1− 2deg(A)

)
qg+

1
2
−deg(A)

� qg
g∑

n=0

q−n
∑

f monic
deg(f)=n

g∑
j=g+

1
2
−

deg(f)
2

(
deg(f)− 1

2g + 1− 2j

)

� qg
g∑

n=0

q−n
∑

f monic
deg(f)=n

2deg(f)−1 = qg
g∑

n=0

2n � qg2g.
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We will now state and prove our next two lemmas.

Lemma 5.4.6. For |D| = q2g+1 we have that,

|D|
∑

d monic
deg(d)>[g/2]

µ(d)

|d|2
∏

P monic
irreducible

P |d

1

|P |+ 1
� qg. (5.4.10)

Proof.

|D|
∑

d monic
deg(d)>[g/2]

µ(d)

|d|2
∏
P |d

1

|P |+ 1
≤ |D|

∑
d monic

deg(d)>[g/2]

1

|d|2
∏
P |d

1

|P |

= |D|
∑

h>[g/2]

q−2h � |D|q−g

� qg.

Lemma 5.4.7. We have that,

|D|
ζA(2)

∑
d monic

deg(d)≤[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1

(
q−deg(d)

1− q−1

)

= |D|
∏

P monic
irreducible

(
1− 1

(|P |+ 1)|P |2

)
+O(qg). (5.4.11)

Proof.

|D|
ζA(2)

∑
d monic

deg(d)≤[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1

(
q−deg(d)

1− q−1

)

= |D|
∑

d monic

µ(d)

|d|2
∏
P |d

1

|P |+ 1
− |D|

∑
d monic

deg(d)>[g/2]

µ(d)

|d|2
∏
P |d

1

|P |+ 1
. (5.4.12)

Writing the sum over all monic polynomials d as an Euler product and using

the Lemma 5.4.6 in the sum over d such that deg(d) > [g/2] we obtain the

desired lemma.

Using the same ideas used in the proof of Lemmas 5.4.6 and 5.4.7 we can

also prove the following lemmas.

84



5.4. Preparation for the Proof of Main Theorems

Lemma 5.4.8. We have,

1.

|D|
∑

d monic
deg(d)>[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1
� q

3
2
g. (5.4.13)

2.
|D|q−gq[(g−1)/2]+1

ζA(2)(1− q)
∑

d monic
deg(d)>[(g−1)/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1
� qg. (5.4.14)

Lemma 5.4.9. We have that,

1.

|D|
ζA(2)

∑
d monic

deg(d)≤[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1

(
q−[g/2]−1

1− q−1

)

= |D|q−[g/2]−1
∏

P monic
irreducible

(
1− 1

|P |(|P |+ 1)

)
+O(qg). (5.4.15)

2.

|D|q−g

ζA(2)

∑
d monic

deg(d)≤[(g−1)/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1

(
q[(g−1)/2]+1

1− q

)

=
|D|q−gq[(g−1)/2]+1

ζA(2)(1− q)
∏

P monic
irreducible

(
1− 1

|P |(|P |+ 1)

)
+O(qg). (5.4.16)

We present now our last lemma,

Lemma 5.4.10. We have,

|D|q−g

ζA(2)(1− q)
∑

d monic
deg(d)≤[(g−1)/2]

µ(d)
∏
P |d

1

|P |+ 1
� gqg. (5.4.17)

Proof. We have that,

|D|q−g

ζA(2)(1− q)
∑

d monic
deg(d)≤[(g−1)/2]

µ(d)
∏
P |d

1

|P |+ 1
� |D|q−g

∑
d monic

deg(d)≤[(g−1)/2]

1

|d|

� |D|q−g([(g − 1)/2] + 1)

� gqg.
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Proof of Proposition 5.4.1. Our argument in this section follows closely the

calculations presented in Chapter 3. From (5.4.6), our main goal is to obtain

an asymptotic formula for

∑
D∈H2g+1,q

L(1, χD)

=
∑

D∈H2g+1,q

g∑
n=0

∑
f monic

deg(f)=n

χD(f)q−n + q−g
∑

D∈H2g+1,q

g−1∑
m=0

∑
f monic

deg(f)=m

χD(f). (5.4.18)

We begin by establishing an asymptotic formula for the first term in the

right–hand side of (5.4.18).

∑
D∈H2g+1,q

g∑
n=0

∑
f monic

deg(f)=n

χD(f)q−n

=

g∑
n=0

q−n
∑

D∈H2g+1,q

∑
f monic

deg(f)=n
f=l2

χD(f) +

g∑
n=0

q−n
∑

D∈H2g+1,q

∑
f monic

deg(f)=n
f 6=�

χD(f) (5.4.19)

Making use of the first part of Lemma 5.4.5 we can write (5.4.19) as∑
D∈H2g+1,q

g∑
n=0

∑
f monic

deg(f)=n

χD(f)q−n =

g∑
n=0

q−n
∑

D∈H2g+1,q

∑
f monic

deg(f)=n
f=l2

χD(f) +O((2q)g).

(5.4.20)

For the square terms f = l2, we can use Proposition 3.4.3 and we end up with

g∑
n=0

q−n
∑

D∈H2g+1,q

∑
f monic

deg(f)=n
f=l2

χD(f)

=
|D|
ζA(2)

[g/2]∑
m=0

q−m
∑

d monic
deg(d)≤m

µ(d)

|d|
∏
P |d

1

|P |+ 1
+O(qg/2)

=
|D|
ζA(2)

∑
d monic

deg(d)≤[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1

(
(q−1)deg(d) − (q−1)[g/2]+1

1− q−1

)
+O(qg/2).
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=
|D|
ζA(2)

∑
d monic

deg(d)≤[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1

(
q−deg(d)

1− q−1

)

− |D|
ζA(2)

∑
d monic

deg(d)≤[g/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1

(
q−[g/2]+1

1− q−1

)
+O(qg/2). (5.4.21)

Now for the first term of (5.4.21) we can use Lemma 5.4.7 and for the

second term we can use Lemma 5.4.9 and so we end up with the following

formula for the square terms

g∑
n=0

q−n
∑

D∈H2g+1,q

∑
f monic

deg(f)=n
f=l2

χD(f) = |D|
∏

P monic
irreducible

(
1− 1

|P |2(|P |+ 1)

)

− |D|q−[g/2]−1
∏

P monic
irreducible

(
1− 1

|P |(|P |+ 1)

)
+O(qg). (5.4.22)

Substituting (5.4.22) in (5.4.20) we have that,

∑
D∈H2g+1,q

g∑
n=0

∑
f monic

deg(f)=n

χD(f)q−n = |D|
∏

P monic
irreducible

(
1− 1

|P |2(|P |+ 1)

)

− |D|q−[g/2]−1
∏

P monic
irreducible

(
1− 1

|P |(|P |+ 1)

)
+O((2q)g). (5.4.23)

For the second term in the right–hand side of (5.4.18) we will mimic the

calculations above to end up with,

q−g
∑

D∈H2g+1,q

g−1∑
m=0

∑
f monic

deg(f)=m

χD(f)

=
|D|q−g

ζA(2)

∑
d monic

deg(d)≤[(g−1)/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1

∑
deg(d)≤n≤[(g−1)/2]

qn+O(q[(g−1)/2])

+O((2q)g)
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=
|D|q−g

ζA(2)

∑
d monic

deg(d)≤[(g−1)/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1

(
qdeg(d)

1− q

)

− |D|q
−g

ζA(2)

∑
d monic

deg(d)≤[(g−1)/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1

(
q[(g−1)/2]+1

1− q

)
+O((2q)g), (5.4.24)

where the error O((2q)g) arises when we consider f 6= � and using part (2) of

Lemma 5.4.5.

For the first term in (5.4.24) we use the bound given in Lemma 5.4.10 and

for the second term we have,

|D|q−g

ζA(2)

∑
d monic

deg(d)≤[(g−1)/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1

(
q[(g−1)/2]+1

1− q

)

=
|D|q−g

ζA(2)

 ∑
d monic

µ(d)

|d|
∏
P |d

1

|P |+ 1

(
q[(g−1)/2]+1

1− q

)
−|D|q

−g

ζA(2)

 ∑
d monic

deg(d)>[(g−1)/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1

(
q[(g−1)/2]+1

1− q

) .

(5.4.25)

And we can use part (2) of the Lemma 5.4.9, and so we have that,

|D|q−g

ζA(2)

∑
d monic

deg(d)≤[(g−1)/2]

µ(d)

|d|
∏
P |d

1

|P |+ 1

(
q[(g−1)/2]+1

1− q

)

=
|D|q−gq[(g−1)/2]+1

ζA(2)(1− q)
∏

P monic
irreducible

(
1− 1

|P |(|P |+ 1)

)
+O((2q)g). (5.4.26)

So, we can conclude that,

q−g
∑

D∈H2g+1,q

g−1∑
m=0

∑
f monic

deg(f)=m

χD(f)

= −|D|q
−gq[(g−1)/2]+1

ζA(2)(1− q)
∏

P monic
irreducible

(
1− 1

|P |(|P |+ 1)

)
+O((2q)g). (5.4.27)
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Putting together the equations (5.4.23) and (5.4.27) and factoring |D| we

have that the proof is complete.

5.4.2 Proof of Proposition 5.4.3

Remember that the L–function associated to the character χP (f), where P ∈

A is a monic irreducible polynomial of degree odd, is the same as the L–

polynomial of the zeta function associated to the curve CP : y2 = P (T ), where

deg(P ) = 2M+1. Therefore, we have the following representation for L(s, χP )

L(s, χP ) =
∑

f1 monic
deg(f1)≤M

χP (f1)

|f1|s
+ (q1−2s)M

∑
f2 monic

deg(f2)≤M−1

χP (f2)

|f2|1−s
. (5.4.28)

Preliminary Lemmas

Let us now introduce some preliminary lemmas which are similar to those

proven in Chapter 4. Note that the main tool used in the following pages is

the Polynomial Prime Number Theorem, which says that

πA(n) =
qn

n
+O(qn/2), (5.4.29)

where πA(n) is the number of monic irreducible polynomials of degree n. Now

we are in a position to present our first auxiliary lemma.
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Lemma 5.4.11. We have that,

M∑
n=0
2|n

q−n
∑

l monic
deg(l)=n/2

∑
P monic

irreducible
deg(P )=2M+1

(P,l)=1

1

=
q2M+1

2M + 1

(
q−[M/2]

(
−1 + q1+[M/2]

)
−1 + q

)
− 1

2M + 1

(
q−[M/2]

(
−1 + q1+[M/2]

)
−1 + q

)
+O(qM).

(5.4.30)

Proof. We start by writing

∑
P monic

irreducible
deg(P )=2M+1

M∑
n=0

∑
f monic

deg(f)=n
f=l2

χP (f)q−n =
M∑
n=0

q−n
∑

f monic
deg(f)=n
f=l2

∑
P monic

irreducible
deg(P )=2M+1

χP (f)

=
M∑
n=0
2|n

q−n
∑

l monic
deg(l)=n/2

∑
P monic

irreducible
deg(P )=2M+1

χP (l2) =
M∑
n=0
2|n

q−n
∑

l monic
deg(l)=n/2

∑
P monic

irreducible
deg(P )=2M+1

(P,l)=1

1

=
M∑
n=0
2|n

q−n
∑

l monic
deg(l)=n/2

( ∑
P monic

irreducible
deg(P )=2M+1

1−
∑

P monic
irreducible

deg(P )=2M+1
P |l

1

)
,

(5.4.31)

and so we can write the above quantity as

∑
P monic

irreducible
deg(P )=2M+1

M∑
n=0

∑
f monic

deg(f)=n
f=l2

χP (f)q−n

=
M∑
n=0
2|n

q−n
∑

l monic
deg(l)=n/2

∑
P monic

irreducible
deg(P )=2M+1

1−
M∑
n=0
2|n

q−n
∑

l monic
deg(l)=n/2

∑
P monic

irreducible
deg(P )=2M+1

P |l

1,

(5.4.32)

and making use of the Polynomial Prime Number Theorem 2.1.5 we obtain
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that (5.4.32) is

=
M∑
n=0
2|n

q−n
∑

l monic
deg(l)=n/2

(
q2M+1

2M + 1
+O

(
q

2M+1
2

))

−
M∑
n=0
2|n

q−n
∑

P monic
irreducible

deg(P )=2M+1

∑
l monic

deg(l)=n/2
P |l

1

=
M∑
n=0
2|n

q−n
∑

l monic
deg(l)=n/2

q2M+1

2M + 1
−

M∑
n=0
2|n

q−n
∑

P monic
irreducible

deg(P )=2M+1

∑
a monic

deg(a)=
n
2

=−2M−1

1

+O

(
M∑
n=0
2|n

q−n
∑

l monic
deg(l)=n/2

q
2M+1

2

)

=
q2M+1

2M + 1

M∑
n=0
2|n

q−n/2 −
M∑
n=0
2|n

q−n/2q−2M−1
∑

P monic
irreducible

deg(P )=2M+1

1 +O

(
q

2M+1
2

M∑
n=0
2|n

q−n/2

)

=
q2M+1

2M + 1

[M2 ]∑
n=0

q−n−q−2M−1

[M2 ]∑
n=0

q−n
(
q2M+1

2M + 1
+O

(
q

2M+1
2

))

+O

(
qM

[M2 ]∑
n=0

q−n

)

=
q2M+1

2M + 1

(
q−[M/2](−1+q1+[M/2])

−1 + q

)
− 1

2M + 1

(
q−[M/2](−1+q1+[M/2])

−1 + q

)

+O
(
qM
)
+O

(
q−Mq−[M/2](−1+q1+[M/2])

)
.

(5.4.33)

which proves the proposition.
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Lemma 5.4.12. We have that,

M∑
n=0

q−n
∑

f monic
deg(f)=n
f 6=�

∑
P monic

irreducible
deg(P )=2M+1

χP (f) = O

(
qMM2

2M + 1

)
. (5.4.34)

Proof. Using Theorem 4.3.2 we have that,

M∑
n=0

q−n
∑

f monic
deg(f)=n
f 6=�

∑
P monic

irreducible
deg(P )=2M+1

χP (f) �
M∑
n=0

q−n
∑

f monic
deg(f)=n

n

2M + 1
qM

=
qM

2M + 1

M∑
n=0

n

=
qM(M2 +M)

2M + 1

� qMM2

2M + 1
. (5.4.35)

Lemma 5.4.13. We have that,∑
P monic

irreducible
deg(P )=2M+1

M∑
n=0

∑
f monic

deg(f)=n

χP (f)q−n

=
q2M+1

2M + 1

(
q−[M/2]

(
−1 + q1+[M/2]

)
−1 + q

)
− 1

2M + 1

(
q−[M/2]

(
−1 + q1+[M/2]

)
−1 + q

)

+O

(
qMM2

2M + 1

)
.

(5.4.36)

Proof. Follows directly from Lemmas 5.4.11 and 5.4.12.

Lemma 5.4.14. We have that,

q−M
∑

P monic
irreducible

deg(P )=2M+1

M−1∑
n=0
2|n

∑
l monic

deg(l)=n/2

χP (l2)

=
qM+1

2M + 1

−1 + q
1+

[
M−1

2

]
−1 + q

− q−M

2M + 1

−1 + q
1+

[
M−1

2

]
−1 + q

+O

(
q

[
M−1

2

])
.

(5.4.37)
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Proof. We can write

q−M
∑

P monic
irreducible

deg(P )=2M+1

M−1∑
n=0

∑
f monic

deg(f)=n
f=l2

χP (f)

= q−M
M−1∑
n=0
2|n

∑
l monic

deg(l)=n/2

( ∑
P monic

irreducible
deg(P )=2M+1

1−
∑

P monic
irreducible

deg(P )=2M+1
P |l

1

)

=
qM+1

2M + 1

[
M−1

2

]∑
n=0

qn− q−M

2M + 1

[
M−1

2

]∑
n=0

qn+O

(
q

1+

[
M−1

2

])

+O

(
q−2M

[
M−1

2

]∑
n=0

qn

)

=
qM+1

2M + 1

−1 + q
1+

[
M−1

2

]
−1 + q

− q−M

2M + 1

−1 + q
1+

[
M−1

2

]
−1 + q

+O

(
q

[
M−1

2

])
.

(5.4.38)

Lemma 5.4.15. We have that,

q−M
M−1∑
n=0

∑
f monic

deg(f)=n
f 6=�

∑
P monic

irreducible
deg(P )=2M+1

χP (f) = O

(
qMM

2M + 1

)
. (5.4.39)

Proof. Using the same arguments of Lemma 5.4.12 we have that,

q−M
M−1∑
n=0

∑
f monic

deg(f)=n
f 6=�

∑
P monic

irreducible
deg(P )=2M+1

χP (f) �
M−1∑
n=0

∑
f monic

deg(f)=n

n

2M + 1

=
1

2M + 1

(
q −Mqm − q1+M +Mq1+M

(−1 + q)2

)
� 1

2M + 1
MqM . (5.4.40)
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Lemma 5.4.16. We have that,

∑
P monic

irreducible
deg(P )=2M+1

q−M
∑

f monic
deg(f)≤(M−1)

χP (f)

=
qM+1

2M + 1

−1 + q
1+

[
M−1

2

]
−1 + q

− q−M

2M + 1

−1 + q
1+

[
M−1

2

]
−1 + q


+O

(
qMM

2M + 1

)
.

(5.4.41)

Proof. Follows directly from Lemmas 5.4.14 and 5.4.15.

Proof of Proposition 5.4.3. Putting the Lemmas 5.4.13 and 5.4.16 together

and after some simple algebraic manipulations, we have the proof of the propo-

sition as desired.

5.5 Proof of the Main Theorems

One last ingredient is need for we be able to present a complete proof of the

main theorems of this chapter, this ingredient is the following result due to

Artin [Artin].

Theorem 5.5.1 (Artin). Let D ∈ A be a square–free polynomial of degree M .

Then if M is odd, we have that

L(1, χD) =

√
q√
|D|

hD. (5.5.1)

Now we can present the proof of the main theorems.

Proof of Theorem 5.3.1. Using Corollary 5.4.2 and the Artin’s result (5.5.1),

the desired formula follows.

Proof of Theorem 5.3.2. Using Corollary 5.4.4 and Artin’s result (5.5.1) with

D = P , the desired formula follows.
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Chapter 6

Integral Moments of

L–functions in Function Fields

In Chapter 1, we mentioned the Keating and Snaith conjectures about the

moments of L–functions. In particular, they conjectured (see Conjecture 1.5.8)

a formula for the leading asymptotic of∑∗

0<d≤D

L(1
2
, χd)

k, for R(k) ≥ 0, (6.0.1)

as D → ∞. However, to gain a full understanding of the structure of mo-

ments of L–functions we need to go beyond the leading order asymptotic and

determine the principal lower order terms and, if possible, study the profound

structure of the error–term. The main idea of this Chapter is to present and ex-

tend to the function field setting the heuristic, previously developed, by Conrey,

Farmer, Keating, Rubinstein and Snaith [CFKRS05], for the integral moments

of L–functions defined over number fields. Specifically, we give a heuristic for

the moments of a family of L–functions associated with hyperelliptic curves

of genus g over a fixed finite field Fq in the limit as g → ∞, we present the

function field analogue of the Conjecture 1.5.3 presented in [CFKRS05]. To

accomplish this task we will adapt for the function field setting the recipe for

conjecturing moments of L–functions.

Like in the number field case, our conjecture has a striking resemblance
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to the corresponding formulae for the moments of characteristic polynomials

of random matrices, since L(s, χD) has a spectral interpretation and therefore

Random Matrix Theory should be a good model.

Remark 6.0.2. Os calculos e resultados apresentados neste capitulo e no prox-

imo capitulo tambem aparecem em [And-Kea12].

6.1 Conjecture for Integral Moments of L(1
2, χD)

over the rational function field

Under the philosophy that statistical properties of the zeros of L–functions

and the eigenvalue distributions of random unitary matrices are connected in

some way, Conrey et.al. in [CFKRS05,CFKRS08] applying number–theoretic

heuristics derived an asymptotic expansion for the kth integral moment of

L(1
2
, χd), which includes the lower order terms. We present their conjecture and

method, so we can analyze and observe the similarities between the classical

case and the function field case that we develop in this chapter.

Conjecture 6.1.1. [Conrey, Farmer, Keating, Rubinstein and Snaith] Sup-

pose g(u) is a suitable weight function with support in either (0,∞) or (−∞, 0),

and let Xd(s) = |d| 12−sX(s, a) where a = 0 if d > 0 and a = 1 if d < 0, and

X(s, a) = πs−1/2Γ

(
1 + a− s

2

)/
Γ

(
s+ a

2

)
. (6.1.1)

That is, Xd(s) is the factor in the functional equation

L(s, χd) = εdXd(s)L(1− s, χd).

Summing over fundamental discriminants d we have∑*

d

L(1
2
, χd)

kg(|d|) =
∑*

d

Qk(log |d|)(1 +O(|d|−
1
2

+ε))g(|d|) (6.1.2)

where Qk is the polynomial of degree k(k + 1)/2 given by the k-fold residue

Qk(x) =
(−1)k(k−1)/22k

k!

1

(2πi)k

∮
· · ·
∮
G(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)

2∏k
j=1 z

2k−1
j

×e
x
2

∑k
j=1 zj dz1 . . . dzk, (6.1.3)
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2
, χD) over the rational function

field

with

G(z1, . . . , zk) = Ak(z1, . . . , zk)
k∏
j=1

X(1
2

+ zj, a)−
1
2

∏
1≤i≤j≤k

ζ(1 + zi + zj), (6.1.4)

∆(z1, . . . , zk) the Vandermonde determinant given by

∆(z1, . . . , zk) =
∏

1≤i<j≤k

(zj − zi), (6.1.5)

and Ak is the Euler product, absolutely convergent for |<zj| < 1
2
, defined by

Ak(z1, . . . , zk) =
∏
p

∏
1≤i≤j≤k

(
1− 1

p1+zi+zj

)

×

(
1

2

(
k∏
j=1

(
1− 1

p
1
2

+zj

)−1

+
k∏
j=1

(
1 +

1

p
1
2

+zj

)−1
)

+
1

p

)

×
(

1 +
1

p

)−1

. (6.1.6)

More generally, if F is the family of real primitive Dirichlet L-functions then

Sk(F , α, g) =
∑*

d

Qk(log |d|, α)(1 +O(|d|−
1
2

+ε))g(|d|), (6.1.7)

where

Qk(x, α) =
(−1)k(k−1)/22k

k!

1

(2πi)k

×
∮
· · ·
∮
G(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)

2
∏k

j=1 zj∏k
i=1

∏k
j=1(zj − αi)(zj + αi)

×e
x
2

∑k
j=1 zj dz1 . . . dzk, (6.1.8)

where the path of integration encloses the ±α’s.

This same conjecture can be obtained through the use of multiple Dirichlet

series techniques [Diac-Gold-Hoff]. The formulae presented in the Conjecture

6.1.1 matches the corresponding formulae (which are identities) of the theo-

rem presented below quoted from [CFKRS03] for characteristic polynomials of

random matrices. We can also compare the theorem with the Conjecture 6.1.3

which we present in this chapter and, again we see the same similarities.
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Theorem 6.1.2. Let,

Jk(USp(2N), α) =

∫
USp(2N)

ΛM(e−α1) . . .ΛM(e−αk)dA. (6.1.9)

Then,

Jk(USp(2N), 0) =

(
2k(k+1)/2

k∏
j=1

j!

(2j)!

) ∏
1≤i≤j≤k

(N + i+j
2

), (6.1.10)

where A is in the group of symplectic unitary matrices, USp(2N) and

ΛA(s) = det(I − As).

More generally, with

G(z1, . . . , zk) =
∏

1≤i≤j≤k

(1− e−zi−zj)−1

we have

Jk(USp(2N), α) =
(−1)k(k−1)/22k

k!

1

(2πi)k

×
∮
· · ·
∮
G(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)

2
∏k

j=1 zj∏k
i=1

∏k
j=1(zj − αi)(zj + αi)

×eN
∑k
j=1 zjdz1 · · · dzk, (6.1.11)

where the contours of integration enclose the ±α’s.

By applying an adapted version of the recipe used to write the general

conjectures for moments of L–functions we obtain the following conjecture for

moments of quadratic Dirichlet L–functions over function fields

Conjecture 6.1.3. Suppose that q ≡ 1(mod4) is the fixed cardinality of the

finite field Fq and let XD(s) = |D|1/2−sX (s) and

X (s) = q−1/2+s. (6.1.12)

That is, XD(s) is the factor in the functional equation

L(s, χD) = XD(s)L(1− s, χD). (6.1.13)
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6.1. Conjecture for Integral Moments of L(1
2
, χD) over the rational function

field

Summing over fundamental discriminants D ∈ H2g+1,q we have∑
D∈H2g+1,q

L(1
2
, χD)k =

∑
D∈H2g+1,q

Qk(logq |D|)(1 +O(|D|−
1
2

+ε)) (6.1.14)

where Qk is the polynomial of degree k(k + 1)/2 given by the k–fold residue

Qk(x) =
(−1)k(k−1)/22k

k!

1

(2πi)k

∮
· · ·
∮
G(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)

2∏k
j=1 z

2k−1
j

×q
x
2

∑k
j=1 zj dz1 . . . dzk, (6.1.15)

where ∆(z1, . . . , zk) is defined as in (6.1.5),

G(z1, . . . , zk) = Ak(z1, . . . , zk)
k∏
j=1

X (1
2

+ zj)
− 1

2

∏
1≤i≤j≤k

ζA(1 + zi + zj), (6.1.16)

and Ak is the Euler product, absolutely convergent for |<(zj)| < 1
2
, defined by

Ak(z1, . . . , zk) =
∏

P monic
irreducible

∏
1≤i≤j≤k

(
1− 1

|P |1+zi+zj

)

×

(
1

2

 k∏
j=1

(
1− 1

|P | 12+zj

)−1

+
k∏
j=1

(
1 +

1

|P | 12+zj

)−1
+

1

|P |

)

×
(

1 +
1

|P |

)−1

. (6.1.17)

More generally, we have∑
D∈H2g+1,q

L(1
2

+ α1, χD) . . . L(1
2

+ αk, χD)

=
∑

D∈H2g+1,q

k∏
j=1

X (1
2

+ αj)
−1

2 |D|−
1
2

∑k
j=1 αjQk(logq |D|, α)(1 +O(|D|−

1
2

+ε)),

(6.1.18)

where

Qk(x, α) =
(−1)k(k−1)/22k

k!

1

(2πi)k

×
∮
· · ·
∮
G(z1, . . . , zk)∆(z2

1 , . . . , z
2
k)

2
∏k

j=1 zj∏k
i=1

∏k
j=1(zj − αi)(zj + αi)

×q
x
2

∑k
j=1 zj dz1 . . . dzk, (6.1.19)

and the path of integration encloses the ±α’s.
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6.2 Heuristic Derivation of the Conjecture

In this section we will present the details of the recipe for conjecturing moments

of L–functions associated with hyperelliptic curves of genus g over a fixed finite

field Fq as g → ∞. To do this, we will adapt to the function field setting the

recipe presented in [CFKRS05]. Note that the recipe is used without rigorous

justification in each of its steps, but when seen as a whole it serves to produce

a conjecture for the moments of L–functions that is consistent with its random

matrix analogues and with all results known to date.

Let D ∈ H2g+1,q. For a fixed k, we seek an asymptotic expression for∑
D∈H2g+1,q

L(1
2
, χD)k, (6.2.1)

as g → ∞. To achieve this we consider the more general expression obtained

by introducing small shifts, say α1, . . . , αk∑
D∈H2g+1,q

L(1
2

+ α1, χD) . . . L(1
2

+ αk, χD). (6.2.2)

By introducing such shifts, hidden structures are revealed in the form of

symmetries and the calculations are simplified by the removal of higher order

poles. In the end we let each α1, . . . , αk tend to 0 to recover (6.2.1).

6.2.1 Some Analogies Between Classical L–functions and

L–functions over Function Fields

The starting point to conjecture moments for L–functions is the use of the

approximate functional equation. For the hyperelliptic ensemble considered

here, the analogue of the approximate functional equation is given by

L(s, χD) =
∑

n monic
deg(n)≤g

χD(n)

|n|s
+ XD(s)

∑
n monic

deg(n)≤g−1

χD(n)

|n|1−s
, (6.2.3)

where D ∈ H2g+1,q and XD(s) = qg(1−2s). Note that we can write,

XD(s) = |D|
1
2
−sX (s), (6.2.4)
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6.2. Heuristic Derivation of the Conjecture

where X (s) = q−
1
2

+s corresponds to the gamma factor that appears in the clas-

sical quadratic L–functions. Now we will present the following simple lemma

which will be used in the recipe and which make the analogy between the

function field case and the number field case more direct.

Lemma 6.2.1. We have that,

XD(s)1/2 = XD(1− s)−1/2, (6.2.5)

and

XD(s)XD(1− s) = 1. (6.2.6)

Proof. The proof is straightforward and follows directly from the definition of

XD(s).

It is convenient to remember that as in the classical case, we have that the

following formula holds for L–functions in function fields

L(s, χD) = XD(s)L(1− s, χD). (6.2.7)

This is a rather pretentious way of writing the functional equation for the

L-polynomial of the zeta function associated to the curve CD.

6.2.2 Applying the Recipe for L–Functions over Func-

tion Fields

For ease of presentation, we will work with a slightly different L–function.

Namely, we consider the Z–function

ZL(s, χD) = XD(s)−1/2L(s, χD), (6.2.8)

which satisfies a more symmetric functional equation, in this case

Lemma 6.2.2. The function ZL(s, χD) satisfies the following functional equa-

tion,

ZL(s, χD) = ZL(1− s, χD). (6.2.9)
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Proof. This follows from a direct application of the first equation of Lemma

6.2.1.

Thus, we would like to produce an asymptotic for the k–shifted moment

LD(s) =
∑

D∈H2g+1,q

Z(s;α1, . . . , αk), (6.2.10)

where

Z(s;α1, . . . , αk) =
k∏
j=1

ZL(s+ αj, χD). (6.2.11)

Making use of (6.2.3) and Lemma 6.2.1 we have that

ZL(s, χD) = XD(s)−1/2
∑

n monic
deg(n)≤g

χD(n)

|n|s
+ XD(1− s)−1/2

∑
m monic

deg(m)≤g−1

χD(m)

|m|1−s
.

(6.2.12)

As a matter of completeness we present the general recipe extract from

Conrey et.al [CFKRS05] and we will follow their recipe making adjustments

for function fields when necessary.

Suppose L is an L-function and f is a character with conductor c(f), as

described in Section 3 of [CFKRS05]. So we have

ZL(s, f) = ε
− 1

2
f Xf (s)

− 1
2L(s, f), (6.2.13)

which satisfies the functional equation

ZL(s, f) = ZL(1− s, f), (6.2.14)

so ZL(s, f) is real on the 1
2
-line. Note that ε

−1/2
f involves a choice which must

be made consistently.

We consider the moment∑
f∈F

ZL(1
2

+ α1, f) . . . ZL(1
2

+ αk, f)g(c(f)) (6.2.15)

where g is a suitable test function.

Here is the recipe for conjecturing a formula for the above moment:
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6.2. Heuristic Derivation of the Conjecture

1. Start with a product of k shifted L-functions:

Zf (s, α1, . . . , αk) = ZL(s+ α1, f) . . . ZL(s+ αk, f). (6.2.16)

2. Replace each L-function with the two terms from its approximate func-

tional equation, ignoring the remainder term. Multiply out the resulting

expression to obtain 2k terms. Write those terms as

(product of εf factors)(product of Xf factors)
∑

n1,...,nk

(summand).

(6.2.17)

3. Replace each product of εf -factors by its expected value when averaged

over the family.

4. Replace each summand by its expected value when averaged over the

family.

5. Extend each of n1, . . . , nk to all positive integers and call the total of

M(s, α1, . . . , α2k).

6. The conjecture is

∑
f∈F

Zf (
1
2
, α1, . . . , α2k)g(c(f))

=
∑
f∈F

Mf (
1
2
, α1, . . . , α2k)(1 +O(e(− 1

2
+ε)c(f)))g(c(f)), (6.2.18)

for all ε > 0, where g is a suitable weight function.

Let us now exhibit the technical details involved in each of these steps

when we adapt it for L–functions associated with hyperelliptic curves over

finite fields.

(1) We start with a product of k shifted L–functions:

Z(s;α1 . . . , αk) = ZL(s+ α1, χD) . . . ZL(s+ αk, χD). (6.2.19)
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(2) Replace each L–function by its corresponding “approximate”

functional equation (6.2.3). Multiply out to get an expression of the

form:

(product of XD(s) factors)
∑

n1,...,nk
ni monic

(summand). (6.2.20)

Since s = 1
2

+ αj implies that 1− s = 1
2
− αj, we have,

Z(1
2
;α1, . . . , αk)

=

(
XD(1

2
+ α1)−1/2

∑
n1 monic
deg(n1)≤g

χD(n1)

|n1|
1
2

+α1

+ XD(1
2
− α1)−1/2

∑
n1 monic

deg(n1)≤g−1

χD(n1)

|n1|
1
2
−α1

)

×. . .×

(
XD(1

2
+αk)

−1/2
∑

nk monic
deg(nk)≤g

χD(nk)

|nk|
1
2

+αk
+XD(1

2
−αk)−1/2

∑
nk monic

deg(nk)≤g−1

χD(nk)

|nk|
1
2
−αk

)
.

(6.2.21)

So we can write (6.2.21) as,

Z(1
2
;α1, . . . , αk)

=
k∏
j=1

(
XD(1

2
+αj)

−1/2
∑

nj monic
deg(nj)≤g

χD(nj)

|nj|
1
2

+αj
+XD(1

2
−αj)−1/2

∑
nj monic

deg(nj)≤g−1

χD(nj)

|nj|
1
2
−αj

)

=
∑
εj=±1

k∏
j=1

XD(1
2

+ εjαj)
−1/2

∑
nj monic

deg(nj)≤f(εj)

χD(nj)

|nj|
1
2

+εjαj

 ,

(6.2.22)

where f(1) = g and f(−1) = g − 1. We then multiply out and end up with,

Z(1
2
;α1, . . . , αk) =

∑
εj=±1

k∏
j=1

XD(1
2
+εjαj)

−1/2
∑

n1,...,nk
ni monic

χD(n1 . . . nk)∏k
j=1 |nj|

1
2

+εjαj
. (6.2.23)
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6.2. Heuristic Derivation of the Conjecture

(3) Replace the product of εf–factors by its average over the family.

Note that in this case the εf–factors are equal to 1 and therefore do not

produce any effect on the final result.

(4) Replace each summand by its expected value when averaged over

the family H2g+1,q.

In this step we need to average over all fundamental discriminants D ∈

H2g+1,q and as a preliminary task, we will restate the following orthogonality

relation for quadratic Dirichlet characters over function fields.

Lemma 6.2.3. Let

am =
∏

P monic
irreducible

P |m

(
1 +

1

|P |

)−1

. (6.2.24)

Then,

lim
deg(D)→∞

1

#H2g+1,q

∑
D∈H2g+1,q

χD(m) =

am if m = �

0 otherwise.

(6.2.25)

Proof. We start by considering m = � = l2, then using Proposition 3.4.3 and

the fact that Φ(l)
|l| < 1 we have,∑

D∈H2g+1,q

χD(m) =
|D|
ζA(2)

∏
P monic

irreducible
P |m

(
1 +

1

|P |

)−1

+O(
√
|D|).

So,

1

#H2g+1,q

∑
D∈H2g+1,q

χD(m = l2) =
|D|
ζA(2)

1

(q − 1)q2g

∏
P monic

irreducible
P |m

(
1 +

1

|P |

)−1

+ O(
√
|D|((q − 1)q2g)−1)

=
∏

P monic
irreducible

P |m

(
1 +

1

|P |

)−1

+O(q−g).

Therefore,

lim
deg(D)→∞

1

#H2g+1,q

∑
D∈H2g+1,q

χD(m = l2) =
∏

P monic
irreducible

P |m

(
1 +

1

|P |

)−1

.
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If m 6= � we can use the function field version of the Pólya–Vinogradov

inequality [Fai-Rud, Lemma 2.1] to bound the sum over non–trivial Dirichlet

characters, ∣∣∣∣∣ ∑
D∈H2g+1,q

m 6=�

χD(m)

∣∣∣∣∣� 2deg(m)
√
|D|,

and so we end up with,

1

#H2g+1,q

∑
D∈H2g+1,q

m6=�

χD(m) �
2g
√
|D|

(q − 1)q2g

� q−g2g,

which tends to zero when g →∞ since q > 3 is fixed.

Using Lemma 6.2.3, we can average the summand in (6.2.23), since

lim
g→∞
〈χD(n1) . . . χD(nk)〉 =


∏

P |�

(
1 + 1

|P |

)−1

if n1 . . . nk = �,

0 otherwise.

(6.2.26)

We therefore have

lim
g→∞

1

#H2g+1,q

∑
D∈H2g+1,q

∑
n1,...,nk
ni monic

χD(n1 . . . nk)∏k
j=1 |nj|

1
2

+εjαj
=

∑
n1,...,nk
ni monic
n1...nk=m2

am2∏k
j=1 |nj|

1
2

+εjαj

=
∑

m monic

∑
n1,...,nk
ni monic
n1...nk=m2

am2∏k
j=1 |nj|

1
2

+εjαj
.

(5) Extend each of n1, . . . , nk sum for all monic polynomials and

denote the result M(s;α1, . . . , αk).

If we call

Rk

(
1

2
; ε1α1, . . . , εkαk

)
=

∑
m monic

∑
n1,...,nk
ni monic
n1...nk=m2

am2∏k
j=1 |nj|

1
2

+εjαj
, (6.2.27)

we have that the quantity produced by the recipe is

106



6.3. Putting the Conjecture in a More Useful Form

M

(
1

2
;α1 . . . αk

)
=
∑
εj=±1

k∏
j=1

XD(1
2

+ εjαj)
−1/2Rk

(
1

2
; ε1α1, . . . , εkαk

)
.

(6.2.28)

(6) The conjecture is

∑
D∈H2g+1,q

Z(1
2
;α1, . . . , αk) =

∑
D∈H2g+1,q

M(1
2
;α1, . . . , αk)(1 +O(|D|−

1
2

+ε)),

(6.2.29)

for all ε > 0.

6.3 Putting the Conjecture in a More Useful

Form

The conjecture (6.2.29) is problematic in the form presented because the indi-

vidual terms have poles that cancel when summed. In this section we put it

in a more useful form, writing Rk as an Euler product and then factoring out

the appropriate ζA(s)–factors.

We have that am is multiplicative, since

amn = aman, where am =
∏

P monic
irreducible

P |m

(1 + |P |−1)−1,

and if we define

ψ(x) :=
∑

n1...nk=x
ni monic

1

|n1|s+α1 . . . |nk|s+αk
,

we have that ψ(m2) is multiplicative on m.
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So,

∑
m monic

∑
n1,...,nk
ni monic
n1...nk=m2

am2

|n1|s+α1 . . . |nk|s+αk

=
∑

m monic

am2

∑
n1,...,nk
ni monic
n1...nk=m2

1

|n1|s+α1 . . . |nk|s+αk

=
∑

m monic

am2ψ(m2) =
∏

P monic
irreducible

(
1 +

∞∑
j=1

aP 2jψ(P 2j)

)
,

where

ψ(P 2j) =
∑

n1,...,nk
ni monic

n1...nk=P 2j

1

|n1|s+α1 . . . |nk|s+αk
,

and so, ni = P ei , for i = 1, . . . , k and e1 + · · · + ek = 2j due the fact that

|P |e1 . . . |P |ek = |P |e1+···+ek = |P |2j.

Hence we can write

ψ(P 2j) =
∑

n1,...,nk
ni monic

n1...nk=P 2j

1

|P |e1(s+α1) . . . |P |ek(s+αk)

=
∑

e1,...,ek≥0
e1+···+ek=2j

1

|P |e1(s+α1) . . . |P |ek(s+αk)

=
∑

e1,...,ek≥0
e1+···+ek=2j

k∏
i=1

1

|P |ei(s+αi)

and thus we end up with

Rk(s;α1, . . . , αk) =
∏

P monic
irreducible

(
1 +

∞∑
j=1

aP 2jψ(P 2j)

)

=
∏

P monic
irreducible

1 +
∞∑
j=1

aP 2j

∑
e1,...,ek≥0

e1+···+ek=2j

k∏
i=1

1

|P |ei(s+αi)

 , (6.3.1)

and as

aP 2j = (1 + |P |−1)−1,
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we have that (6.3.1) becomes

Rk(s;α1, . . . , αk)

=
∏

P monic
irreducible

1 + (1 + |P |−1)−1

∞∑
j=1

∑
e1,...,ek≥0

e1+···+ek=2j

k∏
i=1

1

|P |ei(s+αi)


=

∏
P monic

irreducible

Rk,P . (6.3.2)

Using

(1 + |P |−1)−1 = 1− 1

|P |
+

1

|P |2
− 1

|P |3
+ · · · =

∞∑
l=0

(−1)l

|P |l

we have that

Rk,P = 1 +
∞∑
l=0

∞∑
j=1

∑
e1,...,ek≥0

e1+···+ek=2j

k∏
i=1

(−1)l

|P |ei(s+αi)+l

and so

R(s;α1, . . . , αk) =
∏

P monic
irreducible

1 +
∞∑
l=0

∞∑
j=1

∑
e1,...,ek≥0

e1+···+ek=2j

k∏
i=1

(−1)l

|P |ei(s+αi)+l

 .

The key point is that only the terms with e1 + · · ·+ ek = 2 produce poles.

Thus, we look for l = 0 and j = 1 and have

Rk,P = 1 +
∑

e1+···+ek=2

k∏
i=1

1

|P |ei(s+αi)
+ (lower order terms)

= 1 +
∑

e1+···+ek=2

(
1

|P |e1(s+α1)
· · · 1

|P |ek(s+αk)

)
+ (lower order terms)

= 1 +
1

|P |(s+α1)|P |s+α2
+

1

|P |s+α1 |P |s+α3
+ · · ·+ (lower order terms)

= 1 +
∑

1≤i≤j≤k

1

|P |2s+αi+αj
+ (lower order terms)

Hence we can write

Rk,P = 1 +
∑

1≤i≤j≤k

1

|P |2s+αi+αj
+O(|P |−1−2s+ε) +O(|P |−3s+ε)
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(for more details see [CFKRS05, pg87]). Expressing Rk,P as a product, we

finish with

Rk,P =
∏

1≤i≤j≤k

(
1 +

1

|P |2s+αi+αj

)
× (1 +O(|P |−1−2s+ε) +O(|P |−3s+ε)).

Now, since ∏
P monic

irreducible

(
1 +

1

|P |2s

)
=
ζA(2s)

ζA(4s)

has a simple pole at s = 1
2

and∏
P monic

irreducible

(1 +O(|P |−1−2s+ε) +O(|P |−3s+ε))

is analytic in R(s) > 1
3
, we see that

∏
P Rk,P has a pole at s = 1

2
of order

k(k + 1)/2 if α1 = · · · = αk = 0.

With the divergent sums replaced by their analytic continuation and the

leading order poles clearly identified, we are almost ready to put the Conjecture

6.2.29 in a more desirable form. We just need to factor out the appropriate

zeta–factors and write the above product
∏

P Rk,P as

Rk(s;α1, . . . , αk)

=
∏

P monic
irreducible

( ∏
1≤i≤j≤k

(
1 +

1

|P |2s+αi+αj

)
(1+O(|P |−1−2s+ε)+O(|P |−3s+ε))

)

=
∏

1≤i≤j≤k

ζA(2s+ αi + αj)

ζA(2(2s+ αi + αj))

∏
P monic

irreducible

(1+O(|P |−1−2s+ε)+O(|P |−3s+ε))

=
∏

1≤i≤j≤k

ζA(2s+αi+αj)
∏

P monic
irreducible

∏
1≤i≤j≤k

(
1− 1

|P |2s+αi+αj

)

×
(

1 +
1

|P |2s+αi+αj

)
(1 +O(|P |−1−2s+ε) +O(|P |−3s+ε))

=
∏

1≤i≤j≤k

ζA(2s+αi+αj)

×
∏

P monic
irreducible

(
Rk,P (s;α1, . . . , αk)

∏
1≤i≤j≤k

(
1− 1

|P |2s+αi+αj

))

=
∏

1≤i≤j≤k

ζA(2s+αi+αj)Ak(s;α1, . . . , αk).
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Here, Ak defines an absolutely convergent Dirichlet series for R(s) > 1
2

+ δ

for some δ > 0 and for all α
′
js in some sufficiently small neighborhood of 0.

Consequently, we have

M

(
1

2
;α1, . . . , αk

)
=
∑
εj=±1

k∏
j=1

XD(1
2

+ εjαj)
−1

2

∏
1≤i≤j≤k

ζA(1 + εiαi + εjαj)Ak(
1
2
; ε1α1, . . . , εkαk)

(6.3.3)

and so the conjectured asymptotic takes the form

∑
D∈H2g+1,q

Z(1
2
, α1, . . . , αk)

=
∑

D∈H2g+1,q

∑
εj=±1

k∏
j=1

XD(1
2
+εjαj)

−1
2Ak(

1
2
; ε1α1, . . . , εkαk)

×
∏

1≤i≤j≤k

ζA(1 + εiα1 + εjαj)(1 +O(|D|−
1
2

+ε)) (6.3.4)

Using the definition of XD(s), we have that

XD(1
2

+ εjαj)
−1

2 = |D|
εjαj

2 X (1
2

+ εjαj)
−1

2 , (6.3.5)

and substituting this into (6.3.4), after some arithmetical manipulations we

are led to the following form of the conjecture:

∑
D∈H2g+1,q

ZL(1
2

+ α1, χD) . . . ZL(1
2

+ αk, χD)

=
∑
εj±1

k∏
j=1

X (1
2
+εjαj)

−1/2

×
∑

D∈H2g+1,q

Rk(
1
2
; ε1α1, . . . , εkαk)|D|

(
1
2

)∑k
j=1 εjαj(1 +O(|D|−

1
2

+ε)). (6.3.6)

Note that (6.3.6) can be seen as the function field analogue of the formula

(4.4.22) in [CFKRS05].
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Lemma 6.3.1. We have that,

Ak(
1
2
;α1, . . . , αk) =

∏
P monic

irreducible

∏
1≤i≤j≤k

(
1− 1

|P |1+zi+zj

)

×

(
1

2

 k∏
j=1

(
1− 1

|P | 12+zj

)−1

+
k∏
j=1

(
1 +

1

|P | 12+zj

)−1
+

1

|P |

)

×
(

1 +
1

|P |

)−1

. (6.3.7)

Proof. We can write,

Ak(
1
2
;α1, . . . , αk)

=
∏

P monic
irreducible

(
Rk,P (1

2
;α1, . . . , αk)

∏
1≤i≤j≤k

(
1− 1

|P |1+αi+αj

))

=
∏

P monic
irreducible

∏
1≤i≤j≤k

(
1− 1

|P |1+αi+αj

)
Rk,P (1

2
;α1, . . . , αk)

=
∏

P monic
irreducible

∏
1≤i≤j≤k

(
1− 1

|P |1+αi+αj

)

×
∏

P monic
irreducible

1 + (1 + |P |−1)−1

∞∑
j=1

∑
e1,...,ek≥0

e1+···+ek=2j

k∏
i=1

1

|P |ei(
1
2

+αi)

 .

(6.3.8)

Making the following substitution

1 + (1 + |P |−1)−1

∞∑
j=1

∑
e1,...,ek≥0

e1+···+ek=2j

k∏
i=1

1

|P |ei(
1
2

+αi)

= (1 + |P |−1)−1

∞∑
j=0

∑
e1,...,ek≥0

e1+···+ek=2j

k∏
i=1

1

|P |ei(
1
2

+αi)
(6.3.9)
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and writing,

∞∑
j=0

∑
e1,...,ek≥0

e1+···+ek=2j

k∏
i=1

1

|P |ei(
1
2

+αi)

=
∞∑
j=0

1

2

 ∑
e1,...,ek≥0

e1+···+ek=2j

k∏
i=1

 1

|P |
1
2

+αi

ei

+
∑

e1,...,ek≥0
e1+···+ek=2j

k∏
i=1

 1

|P |
1
2

+αi

ei


=
1

2

 ∑
e1,...,ek≥0

k∏
i=1

 1

|P |
1
2

+αi

ei

+
∑

e1,...,ek≥0

(−1)e1+···+ek
k∏
i=1

 1

|P |
1
2

+αi

ei
=

1

2

 ∑
e1,...,ek≥0

k∏
i=1

 1

|P |
1
2

+αi

ei

+
∑

e1,...,ek≥0

k∏
i=1

(−1)ei

 1

|P |
1
2

+αi

ei
=

1

2

 k∏
i=1

∞∑
ei=0

 1

|P |
1
2

+αi

ei

+
k∏
i=1

∞∑
ei=0

(−1)ei

 1

|P |
1
2

+αi

ei
=

1

2

 k∏
i=1

1− 1

|P |
1
2

+αj

−1

+
k∏
i=1

1 +
1

|P |
1
2

+αj

−1

,

(6.3.10)

we obtain the formula stated in the lemma.

6.4 The Final Form of the Conjecture

In this section we will use the following lemma from [CFKRS05].

Lemma 6.4.1 (Conrey, Farmer, Keating, Rubinstein and Snaith). Suppose

F is a symmetric function of k variables, regular near (0, . . . , 0), and that

f(s) has a simple pole of residue 1 at s = 0 and is otherwise analytic in a

neighborhood of s = 0, and let

K(a1, . . . , ak) = F (a1, . . . , ak)
∏

1≤i≤j≤k

f(ai + aj) (6.4.1)

or

K(a1, . . . , ak) = F (a1, . . . , ak)
∏

1≤i<j≤k

f(ai + aj). (6.4.2)
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If αi + αj are contained in the region of analyticity of f(s) then

∑
εj=±1

K(ε1α1, . . . , εkαk) =
(−1)k(k−1)/2

(2πi)k
2k

k!

∮
· · ·
∮
K(z1, . . . , zk)

×
∆(z2

1 , . . . , z
2
k)

2
∏k

j=1 zj∏k
i=1

∏k
j=1(zi − αj)(zi + αj)

dz1 · · · dzk,

and

∑
εj=±1

(
k∏
j=1

εj

)
K(ε1α1, . . . , εkαk)

=
(−1)k(k−1)/2

(2πi)k
2k

k!

∮
· · ·
∮
K(z1, . . . , zk)

×
∆(z2

1 , . . . , z
2
k)

2
∏k

j=1 αj∏k
i=1

∏k
j=1(zi − αj)(zi + αj)

dz1 · · · dzk,

where the path of integration encloses the ±αj’s.

We will use this lemma to write the conjecture for function fields as a

contour integral. For this, note that

∑
D∈H2g+1,q

ZL(1
2

+ α1, χD) . . . ZL(1
2

+ αk, χD)

=
∑

D∈H2g+1,q

k∏
j=1

XD(1
2

+ αj)
−1/2L(1

2
+ α1, χD) . . . L(1

2
+ αk, χD) (6.4.3)

and as XD(1
2

+ αj)
−1/2 does not depend on D, we can factor it out and write

the following expression:
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∑
D∈H2g+1,q

L(1
2

+ α1, χD) . . . L(1
2

+ αk, χD)

=
∑

D∈H2g+1,q

∑
εj=±1

k∏
j=1

X (1
2

+ εjαj)
−1/2

k∏
j=1

XD(1
2

+ εjαj)
1/2Rk(

1
2
; ε1α1, . . . , εkαk)

× |D|
1
2

∑k
j=1 εjαj(1 +O(|D|−

1
2

+ε))

=
∑

D∈H2g+1,q

k∏
j=1

X (1
2
+αj)|D|−

1
2

∑k
j=1 αj

∑
εj=±1

k∏
j=1

X (1
2
+εjαj)

−1/2

×Rk(
1
2
; ε1α1, . . . , εkαk)|D|

1
2

∑k
j=1 εjαj(1 +O(|D|−

1
2

+ε))

=
∑

D∈H2g+1,q

k∏
j=1

X (1
2

+αj)|D|−
1
2

∑k
j=1 αj

∑
εj=±1

k∏
j=1

X (1
2

+εjαj)
−1/2

×Ak
(

1
2
;α1, . . . , αk

)
|D|

1
2

∑k
j=1 εjαj

∏
1≤i≤j≤k

ζA(1+εiαi+εjαj)(1+O(|D|−
1
2

+ε))

(6.4.4)

Multiplying and dividing by (log q)k(k+1)/2 we have that

∑
D∈H2g+1,q

L(1
2

+ α1, χD) . . . L(1
2

+ αk, χD)

=
∑

D∈H2g+1,q

∏k
j=1X (1

2
+ αj)|D|−

1
2

∑k
j=1 αj

(log q)k(k+1)/2

∑
εj=±1

k∏
j=1

X (1
2
+εjαj)

−1/2

×Ak
(

1
2
;α1, . . . , αk

)
|D|

1
2

∑k
j=1 εjαj

∏
1≤i≤j≤k

ζA(1+εiαi+εjαj)(log q)

× (1 +O(|D|−
1
2

+ε)). (6.4.5)

If we call

F (α1, . . . , αk) =
k∏
j=1

X (1
2

+ αj)
−1/2Ak

(
1
2
;α1, . . . , αk

)
|D|

1
2

∑k
j=1 αj , (6.4.6)

and

f(s) = ζA(1 + s) log q and so f(αi +αj) = ζA(1 +αi +αj) log q, (6.4.7)
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we have that f(s) has a simple pole at s = 0 with residue 1.

Denoting

K(α1, . . . , αk) = F (α1, . . . , αk)
∏

1≤i≤j≤k

f(αi + αj), (6.4.8)

we can write (6.4.5) as ∑
D∈H2g+1,q

∏k
j=1X (1

2
+ αj)|D|−

1
2

∑k
j=1 αj

(log q)k(k+1)/2

∑
εj=±1

K(ε1α1, . . . , εkαk)


× (1 +O(|D|−

1
2

+ε)), (6.4.9)

and now we can use Lemma 6.4.1 and write (6.4.9) as,

∑
D∈H2g+1,q

∏k
j=1X (1

2
+ αj)|D|−

1
2

∑k
j=1 αj

(log q)k(k+1)/2

(−1)k(k−1)/2

(2πi)k
2k

k!

∮
· · ·
∮
K(z1, . . . , zk)

×
∆(z2

1 , . . . , z
2
k)

2
∏k

j=1 zj∏k
i=1

∏k
j=1(zi − αj)(zi + αj)

dz1 · · · dzk(1 +O(|D|−
1
2

+ε))

=
∑

D∈H2g+1,q

k∏
j=1

X (1
2
+αj)|D|−

1
2

∑k
j=1 αj

(−1)k(k−1)/2

(2πi)k
2k

k!

∮
· · ·
∮
F (z1, . . . , zk)

×
∏

1≤i≤j≤k

ζA(1+zi+zk)
∆(z2

1 , . . . , z
2
k)

2
∏k

j=1 zj∏k
i=1

∏k
j=1(zi − αj)(zi + αj)

dz1 · · · dzk +O(|D|
1
2

+ε).

(6.4.10)

If we denote now

K(z1, . . . , zk) = F (z1, . . . , zk)
∏

1≤i≤j≤k

ζA(1 + zi + zk), (6.4.11)

we have that (6.4.10) becomes

∑
D∈H2g+1,q

k∏
j=1

X (1
2

+ αj)|D|−
1
2

∑k
j=1 αj

(−1)k(k−1)/2

(2πi)k
2k

k!

∮
· · ·
∮
K(z1, . . . , zk)

×
∆(z2

1 , . . . , z
2
k)

2
∏k

j=1 zj∏k
i=1

∏k
j=1(zi − αj)(zi + αj)

dz1 · · · dzk+O(|D|
1
2

+ε),

(6.4.12)
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and if we denote

G(z1, . . . , zk) =
k∏
j=1

X (1
2

+ zj)
−1/2Ak(

1
2
; z1, . . . , zk)

∏
1≤i≤j≤k

ζA(1 + zi + zj),

(6.4.13)

we have that (6.4.12) is

∑
D∈H2g+1,q

k∏
j=1

X (1
2

+ αj)|D|−
1
2

∑k
j=1 αj

(−1)k(k−1)/2

(2πi)k
2k

k!

∮
· · ·
∮
G(z1, . . . , zk)

× |D|
1
2

∑k
j=1 zj

∆(z2
1 , . . . , z

2
k)

2
∏k

j=1 zj∏k
i=1

∏k
j=1(zi − αj)(zi + αj)

dz1 · · · dzk +O(|D|
1
2

+ε).

(6.4.14)

Now calling

Qk(x) =
(−1)k(k−1)/2

(2πi)k
2k

k!

∮
· · ·
∮
G(z1, . . . , zk)

×
∆(z2

1 , . . . , z
2
k)

2
∏k

j=1 zj∏k
i=1

∏k
j=1(zi − αj)(zi + αj)

q
x
2

∑k
j=1 zjdz1 · · · dzk, (6.4.15)

we have established the formulae given in the Conjecture 6.1.3.

Remark 6.4.2. Note that the formulas (6.1.14) and (6.1.18) are the function

field analogues of the formulas (1.5.11) and (1.5.15) presented in [CFKRS05]

respectively.

6.5 Some Conjectural Values for Moments of

L–functions in the Hyperelliptic Ensemble

In this section we use Conjecture 6.1.3 to obtain explicit conjectural values for

the first few moments of quadratic Dirichlet L–functions over function fields.

6.5.1 First Moment

We will use Conjecture 6.1.3 to compute the value of the first moment (k = 1)

of our family of L–function and compare with the main theorem of Chapter
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3. Specifically, we will specialize the formula in Conjecture 6.1.3 for k = 1 to

compute∑
D∈H2g+1,q

L(1
2
, χD) =

∑
D∈H2g+1,q

Q1(logq |D|)(1 +O(|D|−
1
2

+ε)), (6.5.1)

where Q1(x) is a polynomial of degree 1, i.e., Q1(x) = ax + b. This will be

done using the contour integral formula for Qk(x). We have,

Q1(x) =
1

πi

∮
G(z1)∆(z2

1)2

z1

q
x
2
z1dz1 (6.5.2)

where

G(z1) = Ak(
1
2
; z1)X (1

2
+ z1)−1/2ζA(1 + 2z1). (6.5.3)

Remembering that,

∆(z1, . . . , zk) =
∏

1≤i<j≤k

(zj − zi) (6.5.4)

is the Vandermonde determinant we have that,

∆(z2
1)2 = 1 (6.5.5)

and

X (1
2

+ z1)−1/2 = q−z1/2. (6.5.6)

So (6.5.2) becomes,

1

πi

∮
Ak(

1
2
; z1)X (1

2
+ z1)−1/2ζA(1 + 2z1)

z1

q
x
2
z1dz1

=
1

πi

∮
Ak(

1
2
; z1)ζA(1 + 2z1)q−z1/2

z1

q
x
2
z1dz1. (6.5.7)

We also have that,

Ak(
1
2
; z1) =

∏
P monic

irreducible

(
1− 1

|P |1+2z1

)

×

(
1

2

((
1− 1

|P |1/2+z1

)−1

+

(
1 +

1

|P |1/2+z1

)−1
)

+
1

|P |

)

×
(

1 +
1

|P |

)−1

. (6.5.8)

118



6.5. Some Conjectural Values for Moments of L–functions in the
Hyperelliptic Ensemble

Our goal is to compute the integral (6.5.7) where the contour is a small

circle around the origin, and for that we need to locate the poles of the inte-

grand,

f(z1) =
Ak(

1
2
; z1)ζA(1 + 2z1)q−z1/2

z1

q
x
2
z1 . (6.5.9)

We note that f(z1) has a pole of order 2 at z1 = 0. To compute the

residue we expand f(z1) as a Laurent series and pick up the coefficient of 1/z1.

Expanding the numerator of f(z1) around z1 = 0 we have,

1.

Ak(z1) = Ak(0) + A
′

k(0)z1 +
1

2
A
′′

k(0)z2
1 + · · ·

2.

q−z1/2 = 1− 1

2
(log q)z1 +

1

8
(log q)z2

1 + · · ·

3.

q
x
2
z1 = 1 +

1

2
(log q)xz1 +

1

8
(log2 q)x2z2

1 + · · ·

4.

ζA(1 + 2z1) =
1

2 log q

1

z1

+
1

2
+

1

6
(log q)z1 −

1

90
(log3 q)z3

1 + · · ·

Hence we can write,

f(z1) =

(
Ak(0)

z1

+ A
′

k(0) +
A
′′

k(0)

2
z1 + · · ·

)
×

(
1− 1

2
(log q)z1 +

1

8
(log q)z2

1 + · · ·
)

×
(

1 +
1

2
(log q)xz1 +

1

8
(log2 q)x2z2

1 + · · ·
)

×
(

1

2 log q

1

z1

+
1

2
+

1

6
(log q)z1 −

1

90
(log3 q)z3

1 + · · ·
)
,

(6.5.10)

where we have denoted Ak(
1
2
; z1) by Ak(z1).
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Multiplying the above expression we identify the coefficient of 1/z1. There-

fore

Resz1=0f(z1) =
1

2
Ak(0)− 1

4
Ak(0) +

1

4
Ak(0)x+

1

2 log q
A
′

k(0). (6.5.11)

We find, after some straightforward calculations, that:

Ak(0) = P (1) =
∏

P monic
irreducible

(
1− 1

(|P |+ 1)|P |

)
(6.5.12)

and

A
′

k(0) = Ak(0)(2 log q)
∑

P monic
irreducible

deg(P )

|P |(|P |+ 1)− 1
(6.5.13)

and so (6.5.11) becomes

Resz1=0f(z1) =
1

4
P (1) +

1

4
P (1)x+ P (1)

∑
P monic

irreducible

deg(P )

|P |(|P |+ 1)− 1
. (6.5.14)

Hence we have that,

1

πi

∮
Ak(

1
2
; z1)ζA(1 + 2z1)q−z1/2

z1

q
x
2
z1dz1

=
1

πi
2πi

1

4
P (1) +

1

4
P (1)x+ P (1)

∑
P monic

irreducible

deg(P )

|P |(|P |+ 1)− 1


=

1

2
P (1) +

1

2
P (1)x+ 2P (1)

∑
P monic

irreducible

deg(P )

|P |(|P |+ 1)− 1
. (6.5.15)

So,

Q1(x) =
1

2
P (1)

x+ 1 + 4
∑

P monic
irreducible

deg(P )

|P |(|P |+ 1)− 1

 . (6.5.16)
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We therefore have that

∑
D∈H2g+1,q

L(1
2
, χD) =

∑
D∈H2g+1,q

Q1(logq |D|)(1+O(|D|−
1
2

+ε))

=
∑

D∈H2g+1,q

1

2
P (1)

logq |D|+ 1 + 4
∑

P monic
irreducible

deg(P )

|P |(|P |+ 1)− 1


× (1 +O(|D|−

1
2

+ε))

=
P (1)

2

logq |D|+ 1 + 4
∑

P monic
irreducible

deg(P )

|P |(|P |+ 1)− 1


∑

D∈H2g+1,q

1+O(|D|
1
2

+ε)

=
P (1)

2ζA(2)
|D|

logq |D|+ 1 + 4
∑

P monic
irreducible

deg(P )

|P |(|P |+ 1)− 1

+O(|D|
1
2

+ε).

(6.5.17)

If we compare the main theorem of Chapter 3 with the conjecture we note

that the main term and the principal lower order terms are the same. Hence the

main theorem of Chapter 3 proves our conjecture with an errorO

(
|D|

3
4

+
logq 2

2

)
when k = 1.

6.5.2 Second Moment

For the second moment, Conjecture 6.1.3 asserts that

∑
D∈H2g+1,q

L(1
2
, χD)2 =

∑
D∈H2g+1,q

Q2(logq |D|)(1 +O(|D|−
1
2

+ε)), (6.5.18)

where

Q2(x) =
(−1)22

2!

1

(2πi)2

∮ ∮
G(z1, z2)∆(z2

1 , z
2
2)2

z3
1z

3
2

q
x
2

(z1+z2)dz1dz2. (6.5.19)

Denoting by Aj(0, ...0) the partial derivative, evaluated at zero, of the func-
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tion A(1
2
; z1, . . . , zk) with respect to jth variable, we have that,

∮ ∮
G(z1, z2)∆(z2

1 , z
2
2)2

z3
1z

3
2

q
x
2

(z1+z2)dz1dz2

= (2πi)2

[
1

48(log q)3

(
−6A(0, 0)(log q)3−11xA(0, 0)(log q)3−6x2A(0, 0)(log q)3

−x3A(0, 0)(log q)3−11(log q)2A2(0, 0)−12x(log q)2A2(0, 0)

−3x2(log q)2A2(0, 0)+2A222(0, 0)−11(log q)2A1(0, 0)−12x(log q)2A1(0, 0)

−3x2(log q)2A1(0, 0)−24(log q)A12(0, 0)−12x(log q)A12(0, 0)−6A122(0, 0)

−6A221(0, 0)+2A111(0, 0)

)]
.

(6.5.20)

Simplifying we have,

∮ ∮
G(z1, z2)∆(z2

1 , z
2
2)2

z3
1z

3
2

q
x
2

(z1+z2)dz1dz2

= (2πi)2

[
− 1

48(log q)3

(
(6+11x+6x2 +x3)A(0, 0)(log q)3

+(11+12x+3x2)(log q)2(A2(0, 0)+A1(0, 0))+12(2+x)(log q)A12(0, 0)

−2(A222(0, 0)−3A122(0, 0)−3A112(0, 0)+A111(0, 0))

)]
.

(6.5.21)

Hence the leading order asymptotic for the second moment for this family

of L–functions can be written, conjecturally, as

∑
D∈H2g+1,q

L(1
2
, χD)2 ∼ 1

24ζA(2)
Ak(

1
2
; 0, 0)|D|(logq |D|)3, (6.5.22)

when g →∞, where

Ak(
1
2
; 0, 0) =

∏
P monic

irreducible

(
1− 4|P |2 − 3|P |+ 1

|P |4 + |P |3

)
. (6.5.23)
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6.5.3 Third Moment

For the third moment, our conjecture states that:

∑
D∈H2g+1,q

L(1
2
, χD)3 =

∑
D∈H2g+1,q

Q3(logq |D|)(1 +O(|D|−
1
2

+ε)), (6.5.24)

where

Q3(x) =
(−1)323

3!

1

(2πi)3

∮ ∮ ∮
G(z1, z2, z3)∆(z2

1 , z
2
2 , z

2
3)2

z5
1z

5
2z

5
3

× q
x
2

(z1+z2+z3)dz1dz2dz3. (6.5.25)

Computing the triple contour integral with the help of the symbolic ma-

nipulation software Mathematica, we obtain

∮ ∮ ∮
G(z1, z2, z3)∆(z2

1 , z
2
2 , z

2
3)2

z5
1z

5
2z

5
3

q
x
2

(z1+z2+z3)dz1dz2dz3

= (2πi)3

[
− 1

11520(log q)6

(
3(3+x)2(40+78x+49x2+12x3+x4)A(0, 0, 0)(log q)6

+4(471+949x+720x2+260x3+45x4+3x5)(log q)5(A3(0, 0, 0)+A2(0, 0, 0)

+A1(0, 0, 0))+4(949+1440x+780x2+180x3+15x4)(log q)4(A23(0, 0, 0)

+A13(0, 0, 0)+A12(0, 0, 0))−10(24+26x+9x2+x3)(log q)3(2A333(0, 0, 0)

−3A233(0, 0, 0)−3A223(0, 0, 0)+2A222(0, 0, 0)−3A133(0, 0, 0)−36A123(0, 0, 0)

−3A122(0, 0, 0)−3A113(0, 0, 0)−3A112(0, 0, 0)+2A111(0, 0, 0))

−20(26+18x+3x2)(log q)2(A2333(0, 0, 0)+A2223(0, 0, 0)

+A1333(0, 0, 0)−6A1233(0, 0, 0)−6A1223(0, 0, 0)+A1222(0, 0, 0)−6A1123(0, 0, 0)

+A1113(0, 0, 0)+A1112(0, 0, 0))+6(3+x)(log q)(2A33333(0, 0, 0)−5A23333(0, 0, 0)

−10A22333(0, 0, 0)−10A22233(0, 0, 0)−5A22223(0, 0, 0)+2A22222(0, 0, 0)

−5A13333(0, 0, 0)+60A12233(0, 0, 0)−5A12222(0, 0, 0)−10A11333(0, 0, 0)

+60A11233(0, 0, 0)+60A11223(0, 0, 0)−10A11222(0, 0, 0)−10A11133(0, 0, 0)

−10A11122(0, 0, 0)−5A11113(0, 0, 0)−5A11112(0, 0, 0)+2A11111(0, 0, 0))
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+4(3A233333(0, 0, 0)−20A222333(0, 0, 0)+3A222223(0, 0, 0)+3A222223(0, 0, 0)

−30A123333(0, 0, 0)+30A122333(0, 0, 0)+30A122233(0, 0, 0)−30A122223(0, 0, 0)

+3A122222(0, 0, 0)+30A112333(0, 0, 0)+30A112223(0, 0, 0)−20A111333(0, 0, 0)

+30A111233(0, 0, 0)+30A111223(0, 0, 0)−20A111222(0, 0, 0)−30A111123

+ 3A111113(0, 0, 0) + 3A11112(0, 0, 0))

)]
.

(6.5.26)

And so

∑
D∈H2g+1,q

L(1
2
, χD)3 ∼ 1

2880ζA(2)
Ak(

1
2
; 0, 0, 0)|D|(logq |D|)6, (6.5.27)

as g →∞, where

Ak(
1
2
; 0, 0, 0) =

∏
P monic

irreducible

(
1− 12|P |5 − 23|P |4 + 23|P |3 − 15|P |2 + 6|P | − 1

|P |6(|P |+ 1)

)
.

(6.5.28)

6.6 Leading Order Asymptotic for the Moments

of L(s, χD)

In this section we will show how to obtain an explicit conjecture for the leading

order asymptotic of the moments for a general integer k. The calculations

presented here follow closely those presented in [Kea-Odg]. The main result is

the following conjecture

Conjecture 6.6.1. Using the same notation as in Conjecture 6.1.3, we have

that as g →∞ the following holds

∑
D∈H2g+1,q

L(1
2
, χD)k ∼ |D|

ζA(2)
(logq |D|)k(k+1)/2Ak(

1
2
; 0, . . . , 0)

k∏
j=1

j!

(2j)!
. (6.6.1)

To establish the above conjecture we will first prove the following lemma.
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Lemma 6.6.2. Suppose F is a symmetric function of k variables, regular near

(0, . . . , 0) and f(s) has a simple pole of residue 1 at s = 0 and is otherwise

analytic in a neighborhood of s = 0. Let

K(|D|;w1, . . . , wk) =
∑
εj=±1

e
1
2

log |D|
∑k
j=1 εjwjF (ε1w1, . . . , εjwj)

×
∏

1≤i≤j≤k

f(εiwi + εjwj), (6.6.2)

and define I(|D|, k;w = 0) to be the value of K when w1, . . . , wk = 0. We have

that,

I(|D|, k; 0) ∼ (1
2

log |D|)k(k+1)/2F (0, . . . , 0)2k(k+1)/2

(
k∏
j=1

j!

(2j)!

)
. (6.6.3)

Proof. We begin by defining the following function

G(|D|;w1, . . . , wk) = e
1
2

log |D|
∑k
j=1 wjF (w1, . . . , wk)

∏
1≤i≤j≤k

f(wi + wj). (6.6.4)

So by Lemma 2.5.2 of [CFKRS05] we have,

∑
εj=±1

G(|D|; ε1w1, . . . , εkwk)

=
(−1)k(k−1)/2

(2πi)k
2k

k!

∮
· · ·
∮
G(|D|; z1, . . . , zk)

×
∆(z2

1 , . . . , z
2
k)

2
∏k

j=1 zj∏k
i=1

∏k
j=1(zj − wj)(zi − wj)

dz1 . . . dzk. (6.6.5)

We will analyze this integral as wj → 0. It follows from (6.6.5) that

I(|D|, k; 0)

=
(−1)k(k−1)/2

(2πi)k
2k

k!

∮
· · ·
∮
G(|D|; z1, . . . , zk)

∆(z2
1 , . . . , z

2
k)

2
∏k

j=1 zj∏k
j=1 z

2k
j

dz1 . . . dzk.

(6.6.6)

We expand G(|D|; z1, . . . , zk) and make the following variable change zj =

125



Chapter 6. Integral Moments of L–functions in Function Fields

2vj
log |D| which provides us with

I(|D|, k; 0)

=

(
1

2
log |D|

)k(k+1)/2
(−1)k(k−1)/2

(2πi)k
1

k!

∮
· · ·
∮
e
∑k
j=1 vj

×F
(

2v1

log |D|
, . . . ,

2vk
log |D|

) ∏
1≤i<j≤k

f

(
2

log |D|
(vi + vj)

)(
2

log |D|
(vi + vj)

)

×
k∏
j=1

f

(
2

log |D|
(2vj)

)(
2

log |D|
(2vj)

)
×

∏
1≤i<j≤k

1

vi + vj

∆(v2
1, . . . , v

2
k)

2∏k
j=1 v

2k
j

dv1 . . . dvk.

(6.6.7)

Letting g →∞ (i.e. |D| → ∞) we have,

I(|D|, k; 0) ∼
(

1

2
log |D|

)k(k+1)/2

F (0, . . . , 0)

× (−1)k(k−1)/2

(2πi)k
1

k!

∮
· · ·
∮
e
∑k
j=1 vj

∏
1≤i<j≤k

1

vi + vj

∆(v2
1, . . . , v

2
k)

2∏k
j=1 v

2k
j

dv1 . . . dvk.

(6.6.8)

Using equation (3.36) from [CFKRS03], Lemma 2.5.2 from [CFKRS05], and

the second integral of Theorem 1.5.5 for the moments at the symmetry point

of characteristic polynomials in the symplectic ensemble completes the proof

of the lemma.

Now we are ready to establish Conjecture 6.6.1. Using the equation (6.4.9)

with α1, . . . , αk → 0 and the lemma above we have that,

∑
D∈H2g+1,q

L(1
2
, χD)k ∼

∑
D∈H2g+1,q

1

(log q)k(k+1)/2

×
(

1

2
log |D|

)k(k+1)/2

Ak(0, . . . , 0)2k(k+1/2)

k∏
j=1

j!

(2j)!
. (6.6.9)

So as g →∞ we have the formula given in the conjecture.
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Chapter 7

Autocorrelation of Ratios of

L–functions over Rational

Function Fields Fq(T )

In this chapter we present a heuristic for all of the main terms in the quotient

of products of quadratic Dirichlet L–functions over the rational function field

when the average is taken over a family of hyperelliptic curves given by CD :

y2 = D(T ), where D ∈ H2g+1,q. The main conjecture presented in this chapter

generalize the new Conjecture 6.1.3 presented in the Chapter 6 and can be

compared with the the analogous theorem for the characteristic polynomials of

matrices averaged over the compact group USp(2g) and again we find striking

similarities between our conjecture and the theorem as expected.

7.1 Conrey, Farmer and Zirnbauer’s Recipe

for Ratios of L–Functions

In [Conr-Far-Zir] we find the following recipe for conjecturing average of ratios

of L–functions.
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7.1.1 The Recipe

Suppose L is an L-function and F = {f} is a family of characters with con-

ductor c(f), as described in Section 3 of [CFKRS05]. Thus, L(s, f) has an

approximate functional equation of the form

L(s, f) =
∑ an(f)

ns
+ εfXf (s)

∑ an(f)

n1−s + remainder. (7.1.1)

Also, we can write
1

L(s, f)
=
∞∑
n=1

µL,f (n)

ns
, (7.1.2)

the series converging absolutely for <(s) > 1 and conditionally, assuming a

suitable Riemann Hypothesis, for <(s) > 1
2
.

We wish to conjecture a precise asymptotic formula for the average∑
f∈F

L(1
2

+ α1, f) . . .L(1
2

+ αK , f)L(1
2

+ αK+1, f) . . .L(1
2

+ αK+L, f)

L(1
2

+ γ1, f) . . .L(1
2

+ γQ, f)L(1
2

+ δ1, f) . . .L(1
2

+ δR, f)
g(c(f))

(7.1.3)

where g is a suitable test function. Note that the sum is an integral in the case

of moments in t-aspect.

The recipe is:

1. Start with

Lf (s;αK ;αL;γQ; δR)

=
L(s+ α1, f) . . .L(s+ αK , f)L(s+ αK+1, f) . . .L(s+ αK+L, f)

L(s+ γ1, f) . . .L(s+ γQ, f)L(s+ δ1, f) . . .L(s+ δR, f)

(7.1.4)

2. Replace each L-function in the numerator with the two terms from its

approximate functional equation (7.1.1), ignoring the remainder term.

Replace each L-function in the denominator by its series (7.1.2). Multiply

out the resulting expression to obtain 2K+L terms. Write those terms as

(product of εf factors)(product of Xf factors)
∑

n1,...,nK+L+Q+R

(summand).

(7.1.5)
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3. Replace each product of εf -factors by its expected value when averaged

over the family.

4. Replace each summand by its expected value when averaged over the

family.

5. Complete the resulting sums (i.e., extend the ranges of the summation

indices out to infinity), and call the total Mf (s,αK ;αL;γQ; δR).

6. The conjecture is

∑
f∈F

Lf (1
2
,αK ;αL;γQ; δR)g(c(f))

=
∑
f∈F

Mf (
1
2
,αK ;αL;γQ; δR)(1 +O(e(− 1

2
+ε)c(f)))g(c(f)), (7.1.6)

for all ε > 0, where g is a suitable weight function.

In the rest of this chapter, we will adapt the recipe above for the case of

a family of L–functions associated with hyperelliptic curves over a finite field

and in the end we will writing down the function field analogue of the following

conjecture.

Conjecture 7.1.1 (Conrey, Farmer and Zirnbauer). Suppose that the real

parts of αk and γq are positive. Then

∑
0<d≤X

∏K
k=1 L(1/2 + αk, χd)∏Q
q=1 L(1/2 + γq, χd)

=
∑

0<d≤X

∑
ε∈{−1,1}K

(
|d|
π

) 1
2

∑K
k=1(εkαk−αk) K∏

k=1

g+

(
1

2
+
αk − εkαk

2

)
× YSAD(ε1α1, . . . , εKαK ; γ) +O(X1/2+ε), (7.1.7)

where YS is a certain product of Riemann zeta–functions, AD is an Euler

product which is absolutely convergent for all of the variables in small disks

around 0 and

g+(s) =
Γ
(

1−s
2

)
Γ
(
s
2

) . (7.1.8)

129



Chapter 7. Autocorrelation of Ratios of L–functions over Rational Function
Fields Fq(T )

If we let

HD+,d,α,γ(w) =

(
|d|
π

) 1
2

∑K
k=1 wk K∏

k=1

g+

(
1

2
+
αk − wk

2

)
YSAD(w1, . . . , wk; γ)

(7.1.9)

then the conjecture may be formulated as

∑
0<d≤X

∏K
k=1 L(1/2 + αk, χd)∏Q
q=1 L(1/2 + γq, χd)

=
∑

0<d≤X

(
|d|
π

)− 1
2

∑K
k=1 αk ∑

ε∈{−1,1}K
HD+,d,α,γ(ε1α1, . . . , εKαK)

+O(X1/2+ε). (7.1.10)

7.2 Autocorrelation of Ratios of Characteris-

tic Polynomials

Let A ∈ USp(2N). Thus, the eigenvalues of A occur in complex conjugate

pairs and we can write them as

e±iθ1 , . . . , e±iθN (7.2.1)

with

0 ≤ θ1, θ2, . . . , θN ≤ π. (7.2.2)

Now we quote formulas that appear in [Conr-Far-Zir], [Huc-Put-Zir] and

[Conr-For-Sna] for the ratios of characteristic polynomials averaged over the

symplectic group USp(2N). Let

z(x) =
1

1− e−x
=

1

x
+O(1), (7.2.3)

and note that the function z(x) appears in random matrix theory where ζ(1+x)

appears in the study of mean values of L–functions. Call dA the Haar measure

on the group USp(2N) and

ΛA(s) = det(I − sA†), (7.2.4)
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the characteristic polynomial of A.

Thus, we have

Theorem 7.2.1. If 2N ≥ Q−K − 1 and <(γq) > 0 then∫
USp(2N)

∏K
k=1 ΛM(e−αk)∏Q
q=1 ΛM(e−γq)

dA

=
∑

ε∈{−1,1}K
eN

∑K
k=1(εkαk−αk)

∏
j≤k≤K z(εjαj + εkαk)

∏
q<r≤Q z(γq + γr)∏K

k=1

∏Q
q=1 z(εkαk + γq)

,

(7.2.5)

If we let

yS(α; γ) :=

∏
j≤k≤K z(αj + αk)

∏
q<r≤Q z(γq + γr)∏K

k=1

∏Q
q=1 z(αk + γq)

(7.2.6)

and

hS(α; γ) = eN
∑K
k=1 εkαkyS(α; γ), (7.2.7)

then the above can be expressed as∫
USp(2N)

∏K
k=1 ΛA(e−αk)∏Q
q=1 ΛA(e−γq)

dA = e−N
∑K
k=1 αk

∑
ε∈{−1,1}K

hS(ε1α1, . . . , εKαK ; γ).

(7.2.8)

Note the similarities between Theorem 7.2.1 and the Conjecture 7.1.1.

7.3 Applying the Recipe for L–functions over

Function Fields.

We will now adapt the recipe presented in Section 7.1.1 for the case of L–

functions over function fields.

Recall that in Chapter 2 we introduced our family of L–functions. In

particular if

H2g+1,q = {D monic, D square− free, deg(D) = 2g + 1, D ∈ Fq[x]} ,

(7.3.1)
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the family D+ = {L(s, χD) : D ∈ H2g+1,q} is a symplectic family. We can make

a conjecture which is the function field analogue of the Conjecture 7.1.1 and

can be compared with the Theorem 7.2.1 for∑
D∈H2g+1,q

∏K
k=1 L(1

2
+ αk, χD)∏Q

q=1 L(1
2

+ γq, χD)
. (7.3.2)

The main difficulty, like in the number field case, is to identify and factor

out the appropriate zeta factors (arithmetic factors). We now follow the recipe

given in the section 7.1.1 and we will adapt the recipe for function fields when

necessary.

The L–functions in the numerator are replaced by their “approximate”

functional equations

L(s, χD) =
∑

n monic
deg(n)≤g

χD(n)

|n|s
+ XD(s)

∑
n monic

deg(n)≤g−1

χD(n)

|n|1−s
, (7.3.3)

and those in the denominator are expanded into series

1

L(s, χD)
=

∏
P monic

irreducible

(
1− χD(P )

|P |s

)
=

∑
n monic

µ(n)χD(n)

|n|s
, (7.3.4)

with µ(n) and χD(n) defined in Chapter 2.

In the numerator we will again replace L(s, χD) with ZL(s, χD) and in the

end we will recover the L–function in the numerator by using that

ZL(s, χD) = XD(s)−1/2L(s, χD). (7.3.5)

The quantity that we will apply the recipe to is

∑
D∈H2g+1,q

∏K
k=1 ZL(1

2
+ αk, χD)∏Q

q=1 L(1
2

+ γq, χD)

=
∑

D∈H2g+1,q

ZL(1
2
+α1, χD) . . . ZL(1

2
+αK , χD)

×
∑

h1,...,hQ
hi monic

µ(h1) . . . µ(hQ)χD(h1 . . . hQ)∏Q
q=1 |hq|

1
2

+γq
. (7.3.6)
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We have that,

ZL(1
2

+ α1, χD) . . . ZL(1
2

+ αK , χD)

=
∑

εk∈{−1,1}K

K∏
k=1

XD(1
2

+ εkαk)
−1/2

∑
m1,...,mK
mj monic

χD(m1 . . .mK)∏K
k=1 |mk|

1
2

+εkαk
, (7.3.7)

and so, (7.3.6) becomes

∑
D∈H2g+1,q

∑
εk∈{−1,1}K

K∏
k=1

XD(1
2

+ εkαk)
−1/2

×
∑

m1,...,mK
h1,...,hQ

mj ,hi monic

∏Q
q=1 µ(hq)χD(m1 . . .mK)χD(h1 . . . hQ)∏K

k=1 |mk|
1
2

+εkαk
∏Q

q=1 |hq|
1
2

+γq
. (7.3.8)

Now, following the recipe we average the summand over fundamental dis-

criminants D ∈ H2g+1,q,

lim
deg(D)→∞

( ∑
εk∈{−1,1}K

K∏
k=1

XD(1
2

+ εkαk)
−1/2

×
∑

m1,...,mK
h1,...,hQ

mj ,hi monic

∏Q
q=1 µ(hq)〈χD(

∏K
k=1 mk

∏Q
q=1 hq)〉∏K

k=1 |mk|
1
2

+εkαk
∏Q

q=1 |hq|
1
2

+γq

)

=
∑

εk∈{−1,1}K

K∏
k=1

XD(1
2

+ εkαk)
−1/2

×
∑

m1,...,mK
h1,...,hQ

mj ,hi monic

∏Q
q=1 µ(hq)δ

(∏K
k=1mk

∏Q
q=1 hq

)
∏K

k=1 |mk|
1
2

+εkαk
∏Q

q=1 |hq|
1
2

+γq
,

(7.3.9)

where δ(n) =
∏

P monic
P irreducible

P |n

(
1 +

1

|P |

)−1

if n is a square and is 0 otherwise.

Thus, using the same notation as in [Conr-Far-Zir]
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GD(α; γ) =
∑

m1,...,mK
h1,...,hQ

mj ,hi monic

∏Q
q=1 µ(hq)δ

(∏K
k=1mk

∏Q
q=1 hq

)
∏K

k=1 |mk|
1
2

+αk
∏Q

q=1 |hq|
1
2

+γq
. (7.3.10)

We can express GD(α; γ) as a convergent Euler product provided that R(αk) >

0 and R(γq) > 0. Thus,

GD(α; γ) =
∏

P monic
irreducible

(
1 +

(
1 +

1

|P |

)−1

×
∑

0<
∑
k ak+

∑
q cq is even

∏Q
q=1 µ(P cq)

|P |
∑
k ak

(
1
2

+αk

)
+
∑
q cq
(

1
2

+γq
)
)
. (7.3.11)

The above expression will enable us to locate the poles and zeros and

express GD in terms of the zeta–function associated with A = Fq[x]. Following

Conrey et.al. [Conr-Far-Zir] we want to express the contribution of all zeros

and poles of the above Euler product in terms of ζA(s), doing this we obtain

GD(α; γ) =
∏

P monic
irreducible

(
1 +

(
1 +

1

|P |

)−1
[∑

j,k
j<k

1

|P |
(

1
2

+αj

)
+
(

1
2

+αk

)

+
∑
k

1

|P |1+2αk
+
∑
q<r
q,r

µ(P )2

|P |
(

1
2

+γq
)

+
(

1
2

+γr
) +

∑
k

∑
q

µ(P )

|P |
(

1
2

+αk

)
+
(

1
2

+γq
) + · · ·

])
,

(7.3.12)

where · · · indicates terms that converge. Remembering that,

ζA(s) =
∏

P monic
irreducible

(
1− 1

|P |s

)−1

(7.3.13)

and using that (
1− 1

|P |s

)−1

=
∞∑
j=0

(
1

|P |s

)j
, (7.3.14)

we have that the terms in (7.3.12) with
∑K

k=1 ak+
∑Q

q=1 cq = 2 contribute to the

zeros and poles. The poles come from terms with aj = ak = 1, 1 ≤ j < k ≤ K,
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and from terms ak = 2, 1 ≤ k ≤ K. In addition, there are poles coming from

terms with cq = cr = 1, 1 ≤ q < r ≤ Q.

We also note that poles do not arise from terms with cq = 2 since µ(P 2) = 0.

The contribution of zeros arises from terms with ak = 1 = cq with 1 ≤ k ≤ K

and 1 ≤ q ≤ Q. After all this analysis, the contribution, expressed in terms of

ζA(s), of all these zeros and poles is

YS(α; γ) :=

∏
j≤k≤K ζA(1 + αj + αk)

∏
q<r≤Q ζA(1 + γq + γr)∏K

k=1

∏Q
q=1 ζA(1 + αk + γq)

. (7.3.15)

So, when we factor YS out from GD we are left with the Euler product AD

which is absolutely convergent for all of the variables in small disks around 0:

AD(α; γ) =
∏

P monic
irreducible

∏
j≤k≤K

(
1− 1

|P |1+αj+αk

)∏
q<r≤Q

(
1− 1

|P |1+γq+γr

)
∏K

k=1

∏Q
q=1

(
1− 1

|P |1+αk+γq

)
×

1 +

(
1 +

1

|P |

)−1 ∑
0<
∑
k ak+

∑
q cq is even

∏Q
q=1 µ(P cq)

|P |
∑
k ak

(
1
2

+αk

)
+
∑
q cq
(

1
2

+γq
)
 .

(7.3.16)

So we can conclude that,

∑
D∈H2g+1,q

∏K
k=1 ZL(1

2
+ αk, χD)∏Q

q=1 L(1
2

+ γq, χD)
=

∑
D∈H2g+1,q

∑
ε∈{−1,1}K

K∏
k=1

XD(1
2

+ εkαk)
−1/2

× YS(ε1α1, . . . , εKαK ; γ)AD(ε1α1, . . . , εKαK ; γ) +O(|D|1/2+ε), (7.3.17)

using (7.3.5) we have that,

∑
D∈H2g+1,q

∏K
k=1 L(1

2
+ αk, χD)∏Q

q=1 L(1
2

+ γq, χD)

=
∑

D∈H2g+1,q

∑
ε∈{−1,1}K

K∏
k=1

XD(1
2

+ εkαk)
−1/2

K∏
k=1

XD(1
2

+ αk)
1/2

× YS(ε1α1, . . . , εKαK ; γ)AD(ε1α1, . . . , εKαK ; γ) +O(|D|1/2+ε), (7.3.18)

moreover,

XD(1
2

+ εkαk)
−1/2 = |D|

1
2
εkαkX (1

2
+ εkαk)

−1/2 (7.3.19)
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and

XD(1
2

+ αk)
1/2 = |D|−

1
2
αkX (1

2
+ αk)

1/2, (7.3.20)

and so

K∏
k=1

XD(1
2

+ εkαk)
−1/2XD(1

2
+ αk)

1/2

=
K∏
k=1

|D|
1
2

(εkαk−αk)
K∏
k=1

X (1
2

+ εkαk)
−1/2X (1

2
+ αk)

1/2

= |D|
1
2

∑K
k=1(εkαk−αk)

K∏
k=1

X (1
2

+ εkαk)
−1/2X (1

2
+ αk)

1/2. (7.3.21)

To put our conjecture in the same form as conjecture 5.2 in [Conr-Far-Zir]

and see clearly the analogies between the conjectures for the classical quadratic

L–functions and the L–functions over function fields, we need first to establish

the following simple lemma

Lemma 7.3.1. We have that,

X
(

1

2
+ εkαk

)−1/2

X
(

1

2
+ αk

)1/2

= X
(

1

2
+
αk − εkαk

2

)
. (7.3.22)

Proof. Follows directly from the X (s) = q−1/2+s.

We are now in a position to formulate the desired conjecture for function

fields.

Conjecture 7.3.2. Suppose that the real parts of αk and γq are positive and

that q ≡ 1 (mod 4) is the fixed cardinality of the finite field Fq. Then we have,

∑
D∈H2g+1,q

∏K
k=1 L(1

2
+ αk, χD)∏Q

q=1 L(1
2

+ γq, χD)

=
∑

D∈H2g+1,q

∑
ε∈{−1,1}K

|D|
1
2

∑K
k=1(εkαk−αk)

K∏
k=1

X
(

1

2
+
αk − εkαk

2

)
× YS(ε1α1, . . . , εKαK ; γ)AD(ε1α1, . . . , εKαK ; γ) +O(|D|1/2+ε). (7.3.23)
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If we let,

HD,|D|,α,γ(w) = |D|
1
2

∑K
k=1 wk

K∏
k=1

X
(

1

2
+
αk − wk

2

)
× YS(w1, . . . , wK ; γ)AD(w1, . . . , wK ; γ) (7.3.24)

then the conjecture may be formulated as

∑
D∈H2g+1,q

∏K
k=1 L(1

2
+ αk, χD)∏Q

q=1 L(1
2

+ γq, χD)

=
∑

D∈H2g+1,q

|D|−
1
2

∑K
k=1 αk

∑
ε∈{−1,1}K

HD,|D|,α,γ(ε1α1, . . . , εKαK ; γ)+O(|D|1/2+ε).

(7.3.25)

Remark 7.3.3. Note that the formulas (7.3.23) and (7.3.25) can be seen as the

function field analogues of the formulae (5.27) and (5.29) in [Conr-Far-Zir].

7.4 Refinements of the Conjecture

In this section we refine the ratios conjecture first by deriving a closed form

expression for the Euler product AD(α; γ), and second by expressing the com-

binatorial sum as a multiple integral. This is similar to the treatment given in

the previous chapter.

7.4.1 Closed form expression for AD

Suppose that f(x) = 1 +
∞∑
n=1

unx
n. Then

∑
0<n is even

unx
n =

1

2
(f(x) + f(−x)− 2) (7.4.1)
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and so,

1 +

(
1 +

1

|P |

)−1 ∑
0<n is even

unx
n

= 1 +

(
1 +

1

|P |

)−1(
1

2
(f(x) + f(−x)− 2)

)
=

1

1 + 1
|P |

(
f(x) + f(−x)

2
+

1

|P |

)
. (7.4.2)

Now, let

f

(
1

|P |

)
=

∑
ak,cq

∏Q
q=1 µ(P cq)

|P |
∑
k ak

(
1
2

+αk

)
+
∑
q cq
(

1
2

+γq
)

=
∑
ak

1

|P |
∑
k ak

(
1
2

+αk

)∑
cq

∏Q
q=1 µ(P cq)

|P |
∑
q cq
(

1
2

+γq
)

=
∑
ak

K∏
k=1

1

|P |ak
(

1
2

+αk

)∑
cq

Q∏
q=1

µ(P cq)

|P |cq
(

1
2

+γq
)

=

∏Q
q=1

(
1− 1

|P |1/2+γq

)
∏K

k=1

(
1− 1

|P |1/2+αk

) . (7.4.3)

We are ready to prove the following lemma

Lemma 7.4.1. We have that,

1 +

(
1 +

1

|P |

)−1 ∑
0<
∑
k ak+

∑
q cq is even

∏Q
q=1 µ(P cq)

|P |
∑
k ak

(
1
2

+αk

)
+
∑
q cq
(

1
2

+γq
)

=
1

1 + 1
|P |

(
1

2

∏Q
q=1

(
1− 1

|P |1/2+γq

)
∏K

k=1

(
1− 1

|P |1/2+αk

) +
1

2

∏Q
q=1

(
1 + 1

|P |1/2+γq

)
∏K

k=1

(
1 + 1

|P |1/2+αk

) +
1

|P |

)
. (7.4.4)

Proof. The proof follows directly using (7.4.2) and (7.4.3).

We have the following corollary from this lemma
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Corollary 7.4.2.

AD(α; γ) =
∏

P monic
irreducible

∏
j≤k≤K

(
1− 1

|P |1+αj+αk

)∏
q<r≤Q

(
1− 1

|P |1+γq+γr

)
∏K

k=1

∏Q
q=1

(
1− 1

|P |1+αk+γq

)
× 1

1 + 1
|P |

1

2

∏Q
q=1

(
1− 1

|P |1/2+γq

)
∏K

k=1

(
1− 1

|P |1/2+αk

) +
1

2

∏Q
q=1

(
1 + 1

|P |1/2+γq

)
∏K

k=1

(
1 + 1

|P |1/2+αk

) +
1

|P |

 .

(7.4.5)

7.4.2 Combinatorial Sum as Multiple Integrals

We begin this subsection by quoting the following lemma from [Conr-Far-Zir].

Lemma 7.4.3. Suppose that F (z) = F (z1, . . . , zK) is a function of K vari-

ables, which is symmetric and regular near (0, . . . , 0). Suppose further that f(s)

has a simple pole of residue 1 at s = 0 but is otherwise analytic in |s| ≤ 1. Let

either

H(z1, . . . , zK) = F (z1, . . . , zK)
∏

1≤j≤k≤K

f(zj + zk) (7.4.6)

or

H(z1, . . . , zK) = F (z1, . . . , zK)
∏

1≤j<k≤K

f(zj + zk). (7.4.7)

If |αk| < 1 then∑
ε∈{−1,+1}K

H(ε1α1, . . . , εKαK)

=
(−1)K(K−1)/22K

K!(2πi)K

∫
|zi|=1

H(z1, . . . , zK)∆(z2
1 , . . . , z

2
K)2

∏K
k=1 zk∏K

j=1

∏K
k=1(zk − αj)(zk + αj)

dz1 . . . dzK

(7.4.8)

and ∑
ε∈{−1,+1}K

sgn(ε)H(ε1α1, . . . , εKαK)

=
(−1)K(K−1)/22K

K!(2πi)K

∫
|zi|=1

H(z1, . . . , zK)∆(z2
1 , . . . , z

2
K)2

∏K
k=1 αk∏K

j=1

∏K
k=1(zk − αj)(zk + αj)

dz1 . . . dzK .

(7.4.9)
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Using this Lemma, we can reformulate Theorem 7.2.1 as∫
USp(2N)

∏K
k=1 ΛA(e−αk)∏Q
q=1 ΛA(e−γq)

dA = e−
N
2

∑K
k=1 αk

(−1)K(K−1)/22K

K!(2πi)K

×
∫
|zi|=1

hS(z1, . . . , zK ; γ)∆(z2
1 , . . . , z

2
K)2

∏K
k=1 zk∏K

j=1

∏K
k=1(zk − αj)(zk + αj)

dz1 . . . dzK . (7.4.10)

7.5 The Final Form of the Conjecture

Now we are in a position to present the final form of the ratios conjecture for

L–functions over functions fields using the contour integrals introduced above.

Our main Conjecture 7.3.2 in this section can be written as follows.

Conjecture 7.5.1. Suppose that the real parts of αk and γq are positive. Then

∑
D∈H2g+1,q

∏K
k=1 L(1

2
+ αk, χD)∏Q

q=1 L(1
2

+ γq, χD)
=

∑
D∈H2g+1,q

|D|−
1
2

∑K
k=1 αk

(−1)K(K−1)/22K

K!(2πi)K

×
∫
|zi|=1

HD,|D|,α,γ(z1, . . . , zK ; γ)∆(z2
1 , . . . , z

2
K)2

∏K
k=1 zk∏K

j=1

∏K
k=1(zk − αj)(zk + αj)

dz1 . . . dzK

+O(|D|1/2+ε). (7.5.1)

Remark 7.5.2. If we compare the formula (7.5.1) with the formula (6.31)

presented in [Conr-Far-Zir] we can see clearly the analogy between the classical

conjecture and its translation for function fields.
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Chapter 8

An Application of the Ratios

Conjecture of L–functions over

Function Fields: One–Level

Density

In this chapter we present an application of the Ratios Conjecture for L–

functions over function fields: we derive a smooth linear statistic, the one–

level density. The ideas and calculations presented in this chapter can be seen

as a translation to the function fields language of the calculations presented

in [Conr-Sna] and [Huy-Kea-Sna].

8.1 Applying the Ratios Recipe

We present the calculations in full to illustrate the steps outlined in the pre-

vious chapter. Our goal is to obtain an asymptotic formula for

RD(α; γ) =
∑

D∈H2g+1,q

L(1
2

+ α, χD)

L(1
2

+ γ, χD)
. (8.1.1)

Following the recipe presented in the Chapter 7, we represent the L(s, χD)
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in the numerator by

L(1
2

+ α, χD) =
∑

m monic
deg(m)≤g

χD(m)

|m|1/2+α
+ |D|−αX (1

2
+ α)

∑
n monic

deg(n)≤g−1

χD(n)

|n|1/2−α
, (8.1.2)

and we replace the the L(s, χD) in the denominator by

1

L(s, χD)
=

∑
h monic

µ(h)χD(h)

|h|s
. (8.1.3)

When we take the average over the family H2g+1,q, we retain only the terms

over squares; in other words, we use the first part of the formula

∑
D∈H2g+1,q

χD(n) =

a(n)#H2g+1,q + small if n is a square,

small if n is not a square,

(8.1.4)

where

a(n) =
∏

P monic
irreducible

P |n

|P |
|P |+ 1

, (8.1.5)

and

#H2g+1,q =
∑

D∈H2g+1,q

1 =
|D|
ζA(2)

. (8.1.6)

Now we compute the square terms and complete the sums by extending the

range of summation to all monic polynomials. After that, we need to identify

the terms which are ratios of products of zeta–functions associated to A = Fq[x]

(the divergent part), which are multiplied by an absolutely convergent Euler

product. We do this for each piece of the “approximate” functional equation

to obtain our conjectural result for RD(α; γ).

We now present the details involved in the calculation of RD(α; γ).

RD(α; γ) =
∑

D∈H2g+1,q

∑
m monic
deg(m)≤g

∑
h monic

χD(m)µ(h)χD(h)

|m|
1
2

+α|h|
1
2

+γ

+
∑

D∈H2g+1,q

|D|−αX (1
2

+ α)
∑

n monic
deg(n)≤g−1

∑
h monic

χD(n)µ(h)χD(h)

|n|
1
2
−α|h|

1
2

+γ
.

(8.1.7)
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We focus in the first piece of the “approximate” functional equation. Thus

we consider∑
D∈H2g+1,q

∑
m,h monic

µ(h)χD(mh)

|m|
1
2

+α|h|
1
2

+γ
=

∑
m,h monic

µ(h)

|m|
1
2

+α|h|
1
2

+γ

∑
D∈H2g+1,q

χD(mh).

(8.1.8)

Retaining only the terms for which hm = �, lead us to

#H2g+1,q

∑
m,h monic
hm=�=j2

µ(h)

|m|
1
2

+α|h|
1
2

+γ
a(hm). (8.1.9)

We will express this sum as an Euler product in the following way,∑
m,h monic
hm=�=j2

µ(h)

|m|
1
2

+α|h|
1
2

+γ
a(hm) =

∑
j monic

∑
m,h monic
hm=�=j2

µ(h)

|m|
1
2

+α|h|
1
2

+γ
a(hm)

=
∑

j monic

a(j2)
∑

m,h monic
hm=�=j2

µ(h)

|m|
1
2

+α|h|
1
2

+γ
. (8.1.10)

Let

ψ(j2) =
∑

m,h monic
hm=�=j2

µ(h)

|m|
1
2

+α|h|
1
2

+γ
, (8.1.11)

which is multiplicative, we also have that a(j2) is multiplicative. So in the end

we obtain that,∑
j monic

a(j2)ψ(j2) =
∏

P monic
irreducible

(
1 +

∞∑
ν=1

a(P 2ν)ψ(P 2ν)

)
. (8.1.12)

And once hm = P 2ν we have that h = P e1 and m = P e2 and e1 + e2 = 2ν, we

can write

ψ(P 2ν) =
∑

e1,e2≥0
e1+e2=2ν

µ(P e1)

|P |e1
(

1
2

+γ
)
|P |e2

(
1
2

+α
) . (8.1.13)

And so we can write (8.1.12) as,

∏
P monic

irreducible

1 +
∞∑
ν=1

a(P 2ν)
∑

e1,e2≥0
e1+e2=2ν

µ(P e1)

|P |e1
(

1
2

+γ
)
|P |e2

(
1
2

+α
)


=
∏

P monic
irreducible

 ∑
e1,e2≥0
e1+e2=2ν

µ(P e1)a(P e1+e2)

|P |e1
(

1
2

+γ
)
|P |e2

(
1
2

+α
)
 . (8.1.14)
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The effect of µ(P e1) is to limit the choices for e1 to 0 or 1. When e1 = 0 we

have,

∑
e2 even

a(P e2)

|P |e2(1/2+α)
=

∞∑
e2=0

a(P 2e2)

|P |e2(1+2α)

= 1 +
∞∑
e2=1

a(P 2e2)

|P |e2(1+2α)

= 1 +
|P |
|P |+ 1

∞∑
e2=1

1

|P |e2(1+2α)

= 1 +
|P |
|P |+ 1

1

|P |1+2α

1(
1− 1

|P |1+2α

) . (8.1.15)

And when e1 = 1 there is a contribution of

∑
e2 odd

µ(P )a(P 2+2e2)

|P |(1/2+γ)+(2e2+1)(1/2+α)
= −

∞∑
e2=0
e2 odd

a(P 1+e2)

|P |(1/2+γ)+e2((1/2+α))

= −
∞∑
e2=0

a(P 2+2e2)

|P |1/2+γ|P |e2(1+2α)+(1/2+α)

= − |P |
|P |+ 1

1

|P |1+α+γ

∞∑
e2=0

(
1

|P |1+2α

)e2
= − |P |

|P |+ 1

1

|P |1+α+γ

1(
1− 1

|P |1+2α

) .
(8.1.16)

Hence, the Euler product (8.1.14) simplifies to

∏
P monic

irreducible

(
1 +

|P |
|P |+ 1

1

|P |1+2α

1(
1− 1

|P |1+2α

)
− |P |
|P |+ 1

1

|P |1+α+γ

1(
1− 1

|P |1+2α

)). (8.1.17)
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And we can factor out the appropriate ζA–factors and write as,

∏
P monic

irreducible

(
1 +

|P |
|P |+ 1

1

|P |1+2α

1(
1− 1

|P |1+2α

)
− |P |
|P |+ 1

1

|P |1+α+γ

1(
1− 1

|P |1+2α

))

=
∏

P monic
irreducible

(
1− 1

|P |1+2α

)−1 ∏
P monic

irreducible

(
1− 1

|P |1+α+γ

)

×
∏

P monic
irreducible

(
1− 1

|P |1+α+γ

)−1
(

1− 1

|P |1+2α
+

|P |
(|P |+ 1)

1

|P |1+2α

− |P |
(|P |+ 1)

1

|P |1+γ+α

)

=
ζA(1 + 2α)

ζA(1 + α + γ)

∏
P monic

irreducible

(
1− 1

|P |1+α+γ

)−1

×
∏

P monic
irreducible

(
1− 1

(|P |+ 1)|P |1+2α
− 1

(|P |+ 1)|P |α+γ

)
.

(8.1.18)

The product over “prime” polynomials P is absolutely convergent as long as

R(α),R(γ) > −1/4.

For the second piece of the “approximate” functional equation, we can

determine by recalling the functional equation given by

L(1
2

+ α, χD) = |D|−αX (1
2

+ α)L(1
2
− α, χD). (8.1.19)

Thus, in total, we expect that following conjecture is true

Conjecture 8.1.1. With −1
4
< R(α) < 1

4
, 1

log |D| � R(γ) < 1
4

and I(α), I(γ)�ε
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|D|1−ε for every ε > 0, we have

RD(α; γ) =
∑

D∈H2g+1,q

L(1
2

+ α, χD)

L(1
2

+ γ, χD)

=
∑

D∈H2g+1,q

(
ζA(1 + 2α)

ζA(1 + α + γ)
AD(α; γ)

+ |D|−αX (1
2

+ α)
ζA(1− 2α)

ζA(1− α + γ)
AD(−α; γ)

)
+O(|D|1/2+ε), (8.1.20)

where

AD(α; γ) =
∏

P monic
irreducible

(
1− 1

|P |1+α+γ

)−1

×
(

1− 1

(|P |+ 1)|P |1+2α
− 1

(|P |+ 1)|P |α+γ

)
. (8.1.21)

8.2 Mean Value Theorem for the Logarithmic

Derivative of L(s, χD)

To obtain the formula for the one-level density from the ratios conjecture, we

note that

∑
D∈H2g+1,q

L
′
(1

2
+ r, χD)

L(1
2

+ r, χD)
=

d

dα
RD(α; γ)

∣∣∣∣
α=γ=r

. (8.2.1)

Now, a straightforward calculation gives us

d

dα

ζA(1 + 2α)

ζA(1 + α + γ)
AD(α; γ)

∣∣∣∣
α=γ=r

=
ζ ′A(1 + 2r)

ζA(1 + 2r)
AD(r; r) + A′D(r; r), (8.2.2)

and a simple use of the quotient rule gives us the following formula

d

dα

(
|D|−αX(1

2
+ α)

ζA(1− 2α)

ζA(1− α + γ)
AD(−α; γ)

) ∣∣∣∣
α=γ=r

= −(log q)|D|−rX (1
2

+ r)ζA(1− 2r)AD(−r; r). (8.2.3)
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Also,

AD(r; r) = 1, (8.2.4)

AD(−r; r) =
∏

P monic
irreducible

(
1− 1

|P |

)−1(
1− 1

(|P |+ 1)|P |1−2r
− 1

(|P |+ 1)

)
,

(8.2.5)

and computing the logarithmic–derivative we can easily obtain that

A
′

D(r; r) =
∑

P monic
irreducible

log |P |
(|P |1+2r − 1)(|P |+ 1)

. (8.2.6)

Therefore, the ratios conjecture implies that the following holds

Theorem 8.2.1. Assuming Conjecture 8.1.1, 1
log |D| � R(r) < 1

4
and I(r)�ε

|D|1−ε we have

∑
D∈H2g+1,q

L
′
(1

2
+ r, χD)

L(1
2

+ r, χD)

=
∑

D∈H2g+1,q

(
ζ ′A(1 + 2r)

ζA(1 + 2r)
+A′D(r; r)−(log q)|D|−rX (1

2
+r)ζA(1−2r)AD(−r; r)

)

+O(|D|1/2+ε), (8.2.7)

where AD(α; γ) is defined in (8.1.21).

8.3 The One–Level Density Formula

Now we are in a position to derive the formula for the one–level density for

the zeros of quadratic Dirichlet L–functions over function fields, complete with

lower order terms.

Let γD denote the ordinate of a generic zero of L(s, χD) on the half–line

(remember that here, unlike from the number field case, we do not need to

assume that all of the complex zeros are on the half–line, because the Riemann

hypothesis is established for this family of L–functions). As L(s, χD) is a
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functions of u = q−s and so is periodic with period 2πi/ log q we can confine

our analysis of the zeros for the range −πi/ log q ≤ I(s) ≤ πi/ log q. We

consider the one–level density

S1(f) :=
∑

D∈H2g+1,q

∑
γD

f(γD), (8.3.1)

where f is an even (2π/ log q)–periodic test function and holomorphic.

By Cauchy’s theorem we have

S1(f) =
∑

D∈H2g+1,q

1

2πi

(∫
(c)

−
∫

(1−c)

)
L
′
(s, χD)

L(s, χD)
f(−i(s− 1/2))ds, (8.3.2)

where (c) denotes a vertical line from c − πi/ log q to c + πi/ log q and 3/4 >

c > 1/2 + 1/ log |D|. The integral on the c–line is

1

2π

∫ π/ log q

−π/ log q

f(t− i(c− 1/2))
∑

D∈H2g+1,q

L
′
(1/2 + (c− 1/2 + it), χD)

L(1/2 + (c− 1/2 + it), χD)
dt. (8.3.3)

The sum over D can be replaced by Theorem 8.2.1 (see the 1–level density

section of [Conr-Sna] for a more detailed analysis). Next we move the path of

integration to c = 1/2 as the integrand is regular at t = 0 to obtain

1

2π

∫ π/ log q

−π/ log q

f(t)
∑

D∈H2g+1,q

(
ζ
′
A(1 + 2it)

ζA(1 + 2it)
+ A

′

D(it; it)

−(log q)|D|itX (1
2
+it)ζA(1−2it)AD(−it; it)

)
dt+O(|D|1/2+ε).

(8.3.4)

Now for the integral on the (1 − c)–line, we make the following variable

change, letting s→ 1− s, and we use the functional equation (6.1.13) to write

L
′
(1− s, χD)

L(1− s, χD)
=
X ′D(s)

XD(s)
− L

′
(s, χD)

L(s, χD)
, (8.3.5)
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where

X ′D(s)

XD(s)
= − log |D|+ X

′

X
(s). (8.3.6)

So, finally, we obtain the following theorem

Theorem 8.3.1. Assuming the Ratios Conjecture 8.1.1, the one–level density

for the zeros of the family of quadratic Dirichlet L–functions associated with

hyperelliptic curves given by the affine equation CD : y2 = D(x), where D ∈

H2g+1,q is given by

S1(f) =
∑

D∈H2g+1,q

∑
γD

f(γD)

=
1

2π

∫ π/ log q

−π/ log q

f(t)
∑

D∈H2g+1,q

(
log |D|+X

′

X
(1

2
−it)+2

(
ζ
′
A(1 + 2it)

ζA(1 + 2it)

+A
′

D(it; it)− (log q)|D|itX (1
2

+ it)ζA(1− 2it)AD(−it; it)

))
dt

+O(|D|1/2+ε),

(8.3.7)

where γD is the ordinate of a generic zero of L(s, χD) and f is an even and

periodic suitable test function.

8.3.1 The Scaled One–Level Density

Defining

f(t) = h

(
t(2g log q)

2π

)
(8.3.8)

and scaling the variable t as

τ =
t(2g log q)

2π
, (8.3.9)

we get after a change of variables
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∑
D∈H2g+1,q

∑
γD

h

(
γD

(2g log q)

2π

)

=
1

2g log q

∫ g

−g
h(τ)

∑
D∈H2g+1,q

(
log |D|+X

′

X

(
1
2
− 2πiτ

2g log q

)
+2

(
ζ
′
A(1 + 4πiτ

2g log q
)

ζA(1 + 4πiτ
2g log q

)

+A
′

D

(
2πiτ

2g log q
; 2πiτ

2g log q

)
−(log q)e−(2πiτ/2g log q) log |D|

×X
(

1
2

+ 2πiτ
2g log q

)
ζA

(
1− 4πiτ

2g log q

)
AD

(
− 2πiτ

2g log q
; 2πiτ

2g log q

)))
dτ+O(|D|1/2+ε).

(8.3.10)

Writing

ζA(1 + s) =
1/ log q

s
+

1

2
+

1

12
(log q)s+O(s2), (8.3.11)

we have

ζ
′
A(1 + s)

ζA(1 + s)
= −s−1 +

1

2
log q − 1

12
(log q)2s+O(s3). (8.3.12)

For large g only the log |D| term, the ζ
′
A/ζA term and the final term in the

integral contribute, yielding the asymptotic

∑
D∈H2g+1,q

∑
γD

h

(
γD

(2g log q)

2π

)

∼ 1

2g log q

∫ ∞
−∞

h(τ)

(
(#H2g+1,q) log |D|

− (#H2g+1,q)(2g log q)

2πiτ
+ (#H2g+1,q)

e−2πiτ

2πiτ
(2g log q)

)
dτ.

(8.3.13)

But, since h is an even function, we can ignore the middle term and the

last term can be duplicated with a change of sign of τ , leaving
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lim
g→∞

1

#H2g+1,q

∑
D∈H2g+1,q

∑
γD

h

(
γD

(2g log q)

2π

)
=

∫ ∞
−∞

h(τ)

(
1− sin(2πτ)

2πτ

)
dτ. (8.3.14)

Thus for q fixed and in the large g limit, the one–level density of the scaled

zeros has the same form as the one–level density of the eigenvalues of the

matrices from USp(2g) chosen with respect to Haar measure as can be seen

from part (ii) Theorem 1.4.2 and so our result is in agreement with results

previously obtained by Rudnick [Rud-TPFHE].

And as final conclusion, we can say that the ratios conjecture for the L–

functions in this family confirm a conjecture of Katz and Sarnak, that to

leading order of the low–lying zeros for this ensemble have symplectic statistics.

Remark 8.3.2. The calculations presented in this chapter also appears in

[And-Kea12].

Remark 8.3.3. We can compare the formula obtained in the function field case

(8.3.10) with the formula (3.14) obtained by Conrey and Snaith [Conr-Sna],

and observing that the function X (s) plays the role of the Γ(s) in the function

field setting we can see the striking resemblance between the two formulas.

An interesting question proposed by Rudnick (private communication) is if

we can go beyond the leading term and compare our results with the one–level

density formula presented in Corollary 2 of [Rud-TPFHE], which is:

Corollary 8.3.4 (Rudnick). If f is an even test function in the Schwartz

space, with Fourier transform f̂ supported in (−2, 2), then

〈Zf〉 =

∫
USp(2g)

Zf (U)dU +
dev(f)

g
+ o

(
1

g

)
, (8.3.15)

where

Zf (U) :=
N∑
j=1

F (θj), with F (θj) :=
∑
k∈Z

f

(
N

(
θ

2π
− k
))

, (8.3.16)
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where eiθj are the eigenvalues of the unitary N ×N matrix U and

dev(f) = f̂(0)
∑

P monic
irreducible

deg(P )

|P |2 − 1
− f̂(1)

1

q − 1
. (8.3.17)

Now if we take the comparison further, we have the term corresponding to∫
USp(2g)

Zf (U)dU is given by the term (2g + 1)(log q), which comes from the

log |D| term in (8.3.10), after the division by #H2g+1,q. Also we have that the

corresponding term to the sum over prime polynomials is given by the term A
′
D

in (8.3.10) after we perform the division by #H2g+1,q.

But the main question raised by Rudnick is about the term that appears

in his result which has q dependence f̂(1) 1
q−1

. Such term at this stage seems

mysterious when we look at the equation (8.3.10). A brief look at the equation

(8.3.10) shows us that their terms has no q dependence as the q dependence in

Rudnick’s theorem.

Seems interesting to analyze carefully the last term that appears in (8.3.10)

because the q dependence should come of such term. At this point the thesis

author is not able to get the q dependence from (8.3.10) and put all the terms

in one–one comparison with the Rudnick’s result. So, a research problem for

the near future is to identify whether the Ratios Conjecture produces the same

result derived by Rudnick, or if the the Ratios Conjecture is not able to present

the deviation term.

Also seems a good time for reviewing the results presented by Rudnick,

since our formula is in complete agreement presented with the formulae for the

number–field case.
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Chapter 9

Conclusion and Further

Questions

The initial motivation for this thesis was to investigate the moments of L–

functions associated with curves over a fixed finite field Fq in the limit when

the genus of the curve grows, i.e., g →∞. The study of similar questions, fixing

q and letting g →∞, was initiated by Kurlberg & Rudnick [Kur-Rud] and by

Faifman & Rudnick [Fai-Rud] and so this thesis is an attempt to enlarge our

mathematical knowledge of such questions and therefore the limit considered

in this thesis is precisely the opposite of those studied by Katz and Sarnak

in [Katz-Sar99a, Katz-Sar99b]. Following the philosophy of Katz and Sarnak,

if q → ∞ we can use the RMT powerful results, for example, to compute

moments of L–functions, but the same philosophy does not applies when we

fix q and investigate the limit g → ∞, since in this case we do not have

the Equidistribution theorems and so the questions about moments becomes,

purely, a number theory question.

The theorem established in Chapter 3 indicates the same techniques devel-

oped to study and prove a formula for the first moment of L(s, χD) also can be

extended to study the second and third power moment for this case. And as

we are working on the function field setting, we expect that the problem about

higher moments are treatable in this setting, based in the old philosophy that

153



Chapter 9. Conclusion and Further Questions

problems in function fields are easier to solve.

In Chapter 5, making use of the same techniques developed in previous

chapters, we obtain averages for hD which agree with the analogous averages

previously obtained in the context of number fields. However it would be

interesting to continue study the class number problems over function fields and

try to determine, unconditionally, if there are infinitely many real quadratic

function fields with class number one. This definitely is a research problem

which deserves attention in the future.

Going back to Chapter 6 and Chapter 7 we see that the same heuristic argu-

ments developed by Conrey et.al. [CFKRS05, Conr-Far-Zir] can be developed

in the function field setting. Thus, a natural question is to extend the same

heuristics for unitary and orthogonal families of L-functions in the function

field context, and we expect that the formulae developed will be very similar

to those developed in the number field case.

Understand problems about distribution of zeros of L–functions and mo-

ments in the context of function fields is interesting, once we hope to gain a

better understanding of similarities and differences between number fields and

function fields and we dream that one day we can totally understand these

parallel worlds and make a translation of the proof of Riemann hypothesis for

curves to the context of number fields.

Below we present some problem ideas that can be approachable in the

function field setting:

1. Using the ideas presented in [Conr-Far-Zir], [Conr-Sna] and making use

of the Ratio Conjectures for L–functions over function fields presented

in Chapter 7 we hope to obtain the two–level density, three–level density

and the n–level density of zeros of L(s, χD) in this setting.

2. Using the ideas presented in [Bog-Kea95,Bog-Kea96a,Bog-Kea96b,Bog-

Leb,EHM,Pol06,Pol08] we hope to use the analogue of Hardy–Littlewood

twin prime conjecture for monic irreducible polynomials to obtain the
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pair–correlation of zeros of the L–functions over function fields. We also

hope use the pair–correlation to obtain the Hardy–Littlewood twin prime

conjecture for this case.

3. Investigate higher moments for L–functions associated with hyperelliptic

curves when both q, g → ∞ and q is small compared to g, for example,

q = log log log g.

4. Try to establish asymptotic formulas for the first few moments (k = 1,

and possibly, for k = 2) for

∑∗

χ( mod Q)

|L(1
2
, χ)|2k (9.0.1)

as deg(Q) → ∞, where Q ∈ Fq[T ] is a monic polynomial of positive

degree and the sum is over all primitive characters χ (mod Q).

5. Translate the Li’s Criterion [Li] for Riemann Hypothesis to L–functions

over function fields and try to produce a new proof the Riemann Hy-

pothesis for curves using the function field Li’s Criterion.

6. Investigate the Mollification techniques in this setting and do the trans-

lation of the Levinson’s method over function fields.

7. Investigate Log Moments of L(s, χD).

8. Beyond the function field context, we intend start to think about mo-

ments of the Selberg zeta function, Witten zeta function and Shintani

zeta function and at same time find the correct RMT models for these

L–functions.
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Appendix A

The Leading Order Term for the

First Moment Using the

Function Field Tauberian

Theorem

In this appendix we obtain the leading order term for the first moment of

quadratic Dirichlet L–functions making use of the function field version of the

Wiener–Ikehara Tauberian theorem.

From Chapter 3, we have that

∑
D∈H2g+1,q

L(1
2
, χD) ∼ P (1)

2ζA(2)
|D| logq |D|, (A.1)

as |D| → ∞, i.e., g →∞. Recall that |D| = q2g+1 and

P (s) =
∏

P monic
irreducible

(
1− 1

(|P |+ 1)|P |s

)
. (A.2)

The leading order for the first moment is obtained when we analyze the

following expressions
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|D|
ζA(2)

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∏
P |l

(1 + |P |−1)−1, (A.3)

and
|D|
ζA(2)

g−1∑
m=0
2|n

q−m/2
∑

l monic
deg(l)=m/2

∏
P |l

(1 + |P |−1)−1, (A.4)

as can be seen from (3.4.35) and from the dual sum presented in Chapter 3.

In this Appendix we obtain the same leading order term, as expected, by

using the following theorem quoted from [Rosen, Theorem 17.1]

Theorem A.0.5. Let f : D+
K → C be given and ζf (s) be the following abso-

lutely convergent Dirichlet series for R(s) > 1

ζf (s) =
∞∑
N=0

F (N)q−Ns, (A.5)

where F (N) =
∑

deg(D)=N f(D). Moreover, let ζf (s) be holomorphic on {s ∈

B | R(s) = 1} with a simple pole at s = 1, where

B =

{
s ∈ C | − πi

log(q)
≤ I(s) <

πi

log(q)

}
. (A.6)

Then, there is a δ < 1 such that

F (N) = α log(q)qN +O(qδN), (A.7)

with α = Ress=1ζf (s) and D+
K is the set of monic polynomials in A = Fq[T ].

The calculations now presented are in the same spirit of the calculations

given in the Appendix section of the recent paper by Keating and Rudnick

[Kea-Rud].

Let f(l) =
∏

P |l(1 + |P |−1)−1 and denote by ζf (s) the following Dirichlet

series,

ζf (s) =
∑

l monic

f(l)

|l|s
=

∞∑
N=0

∑
l monic

deg(l)=N

f(l)q−Ns. (A.8)
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We have that,

ζf (s) =
∏

P monic
irreducible

(
1 + f(P )

∞∑
j=1

(
1

|P |s

)j)

=
∏

P monic
irreducible

(
1 +

|P |
|P |+ 1

1

|P |s − 1

)

= ζA(s)
∏

P monic
irreducible

(
1 +

|P |
|P |+ 1

1

|P |s − 1

)(
1− 1

|P |s

)
. (A.9)

Now, applying the Theorem A.0.5 we have that

∑
l monic

deg(l)=N

f(l) = α log(q)qN +O(qδN), (A.10)

for some δ < 1.

Computing the residue of the simple pole at s = 1 from (A.9) we obtain

that,

α =
1

log(q)

∏
P

(
1 +

|P |
(|P |+ 1)(|P | − 1)

)(
1− 1

|P |

)
=

1

log(q)

∏
P

(
1− 1

|P |(|P |+ 1)

)
. (A.11)

Therefore, in the end, we obtain that

∑
l monic

deg(l)=n/2

f(l) = P (1)qn/2 +O(q
δn
2 ). (A.12)

Now making the substitution of (A.12) in (A.3) we have that

|D|
ζA(2)

g∑
n=0
2|n

q−n/2
∑

l monic
deg(l)=n/2

∏
P |l

(1 + |P |−1)−1

=
|D|
ζA(2)

P (1)[g/2] +O
(
|D|q

εg
2

+ε
)
, (A.13)

where ε = δ − 1 < 0.
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Proceeding in the same manner for the dual sum (A.4) we have that,

|D|
ζA(2)

g−1∑
m=0
2|n

q−m/2
∑

l monic
deg(l)=m/2

∏
P |l

(1 + |P |−1)−1

=
|D|
ζA(2)

P (1)

[
g − 1

2

]
+O

(
|D|q

ε
2
g− ε

2

)
. (A.14)

Putting together the equations (A.13) and (A.14) we obtain precisely the

leading order term for the first moment, as desired.

159



Appendix B

Brief Review on Probability

Theory

Let Ω be a topological space, and let 2Ω denote the set of all subsets of Ω.

Definition B.0.6. A ⊆ 2Ω is a σ–algebra of Ω if

1. Ω ⊆ A

2. If A ∈ A then AC ∈ A.

3. A is closed under countable unions and countable intersections.

Definition B.0.7. The Borel σ–algebra associated with the topological space

Ω is the σ–algebra generated by the open sets (i.e. the smallest σ–algebra

containing all the open sets in that topology).

Definition B.0.8. A probability measure defined on σ–algebra A of Ω is

a function P : A 7→ [0, 1] that satisfies

1. P{Ω} = 1

2. For every countable sequence {An}n≥1, where Ai ∈ A which are pairwise

disjoint,

P

{
∞⋃
n−1

An

}
=
∞∑
n=1

P{An}. (B.1)
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Definition B.0.9. Let F be the Borel σ–algebra of a topological space F . A

function X : Ω 7→ F is a random variable if X−1(Λ) ∈ A for all Λ ∈ F .

We use the usual notation and write P{X ∈ Λ} = P{ω : X(ω) ∈ Λ} for the

probability that a random variable X takes a value lying in some set Λ ∈ F .

For example, if F = Rd we have,

Definition B.0.10. We say X has a probability density function p : Ω 7→

Rd if for all Λ ∈ F

P{X ∈ Λ} =

∫
Λ

p(x)dx. (B.2)

Definition B.0.11. Ef(X) denotes the expectation of f(X), and if X has

a density function,

Ef(X) =

∫
Rd
f(x)p(x)dx. (B.3)

Definition B.0.12. The moment generating function of X is Ee〈λ,X〉,

and the characteristic function of X is Ei〈λ,X〉, where 〈λ,X〉 =
∑d

j=1 λjXj.

For example, if F = R and c(λ) = EeiλX then by Fourier inversion, if p(·)

exists then

p(x) =
1

2π

∫ ∞
−∞

e−iλxc(λ)dλ. (B.4)

Definition B.0.13. An ensemble is just a set with a probability measure

attached to it.
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The Gamma function and the

Barnes G–function

C.1 Euler’s Gamma function

The Euler Gamma function is discussed in [Gra-Ryz] and is defined for R(z) >

0 by

Γ(z) =

∫ ∞
0

tz−1e−tdt. (C.1)

C.1.1 Properties of the Gamma function.

(i) [Integral representation]:

1

Γ(z)
=

i

2π

∫
C
(−t)−ze−tdt (C.2)

where C starts at +∞ on the real axis, circles the origin once in the counter-

clockwise direction, and returns to the starting point.

(ii) [Functional equation]:

Γ(z)Γ(1− z) =
π

sin(πz)
(C.3)

(iii) [Recurrence relation]: Γ(z + 1) = zΓ(z).
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(iv) [Complex conjugation]: Γ∗(z) = Γ(z∗).

(v) [Multiplication formula]:

Γ(z)Γ

(
z +

1

m

)
Γ

(
z +

2

m

)
· · ·Γ

(
z +

m− 1

m

)
= (2π)(m−1)/2m1/2−mzΓ(mz).

(C.4)

(vi) [Stirling’s asymptotic formula]: For |z| → ∞ with | arg(z)| < π,

log Γ(z) ∼ (z − 1
2
) log z − z + 1

2
log(2π) +

1

12z
− 1

360z3
+ · · ·

+
B2m

2m(2m− 1)z2m−1
+ · · · (C.5)

where the B2m are the Bernoulli numbers, defined by

∞∑
n=0

Bn
tn

n!
=

t

et − 1
. (C.6)

(vii) [Taylor expansion]: For |z| < 2

log Γ(z + 1) = − log(z + 1) + z(1− γ) +
∞∑
n=2

(−1)n(ζ(n)− 1)
zn

n
, (C.7)

where γ is the Euler–Mascheroni constant.

(viii) [Special values and poles]: Γ(z) has simple poles at z = −n, n = 0, 1, 2, . . .

of residue (−1)n/n!.

Γ(1) = 1.

Γ(1/2) =
√
π.

Γ(1) = 1 and Γ(n) = (n− 1)! for positive integers n.

C.2 The Barnes G–function

The Barnes G–function is defined [Barnes] as

G(z + 1) = (2π)z/2 exp(−(z(z + 1) + γz2)/2)
∞∏
n=1

[(
1 +

z

n

)n
exp

(
−z +

z2

2n

)]
,

(C.1)

with exp(x) = ex.
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C.2.1 Properties of the Barnes G–function

(i) [Recurrence relation]: G(z + 1) = Γ(z)G(z).

(ii) [Complex conjugation]: G∗(z) = G(z∗).

(iii) [Multiplication formula]:

G(nz) = K(n)nn
2z2/2−nz(2π)−

n2−n
2

z
n−1∏
i=0

n−1∏
j=0

G

(
z +

i+ j

n

)
, (C.2)

where

K(n) = e−(n2−1)ζ′(−1)n
5
12 (2π)(n−1)/2. (C.3)

(iv) [Asymptotic expansion]: For |z| → ∞ with | arg(z)| < π,

logG(z+1) ∼ z2

(
1

2
log z − 3

4

)
+

1

2
z log 2π− 1

12
log z+ζ ′(−1)+O

(
1

z

)
. (C.4)

(v) [Taylor expansion]: For |z| < 1,

logG(z + 1) =
1

2
(log 2π − 1)z − 1

2
(1 + γ)z2 +

∞∑
n=3

(−1)n−1ζ(n− 1)
zn

n
. (C.5)

(vi) [Special values and zeros]: G(z+ 1) has zeros at z = −n of order n, where

n = 1, 2, . . ..

G(1)=1.

G(1/2)=e3ζ′(−1)/2π−1/421/24.
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[Ozl-Sny99] A.E. Özlük and C. Snyder, On the distribution of the nontriv-
ial zeros of quadratic L–functions close to the real axis, Acta Arith.,
91(1999), 209–228.

173



Bibliography

[Paley] R.E.A.C. Paley, On the k-analogues of some theorems in the theory
of the Riemann zeta-function, Proc. Lond. Math. Soc. (2) 32 (1931),
273–311.

[Pol06] P. Pollack, An explicit approach to Hypothesis H for polynomials over
finite fields, Anatomy of integers. Proceedings of a conference on the
anatomy of integers, Montreal, March 13th-17th, 2006 eds: J.M. de
Koninck, A. Granville and F. Luca, pp. 259–273.

[Pol08] P. Pollack, A polynomial analogue of the twin prime conjecture, Proc.
Amer. Math. Soc. (11) 136 (2008), 3775–3784.

[Poussin] C.J. de la Vallée Poussin, Recherches analytiques la théorie des nom-
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