ANALYTIC NUMBER THEORY IN FUNCTION FIELDS TCC 2015
 PROBLEM SHEET 1

JULIO ANDRADE

1-) If $m \in A=\mathbb{F}_{q}[T]$, and $\operatorname{deg}(m)>0$, show that $q-1 \mid \Phi(m)$.
2-) If $q=p$ is a prime number and $P \in A$ is an irreducible, show $\left(\mathbb{F}_{q}[T] / P^{2} A\right)^{*}$ is cyclic if and only if $\operatorname{deg}(P)=1$.

3-) Suppose $m \in A$ is monic and that $m=m_{1} m_{2}$ is a factorization into two monics which are relatively prime and of positive degree. Show $(A / m A)^{*}$ is not cyclic except possibly in the case $q=2$ and m_{1} and m_{2} have relatively prime degrees.

4-) Assume $q \neq 2$. Determine all m for which $(A / m A)^{*}$ is cyclic (see the proof of Proposition 1.6 in [1]).

5-) Suppose $d \mid q-1$. Show $x^{d} \equiv-1(\bmod P)$ is solvable if and only if $(-1)^{\frac{q-1}{d} \operatorname{deg}(P)}=1$.

6-) Show $\prod_{\alpha \in \mathbb{F}_{q}^{*}} \alpha=-1$.
7-) Let $P \in A$ be a monic irreducible. Show

$$
\prod_{\substack{\operatorname{deg}(f)<d \\ f \text { monic }}} f \equiv \pm 1(\bmod P)
$$

where $d=\operatorname{deg}(P)$. Determine the sign on the right-hand side of this congruence.

8 -) For an integer $m \geq 1$ define $[m]=T^{q^{m}}-T$. Show that $[m]$ is the product of all monic irreducible polynomials $P(T)$ such that $\operatorname{deg}(P)$ divides m.

9-) Working in the polynomial ring $\mathbb{F}_{q}\left[u_{0}, u_{1}, \ldots, u_{n}\right]$, define $D\left(u_{0}, \ldots, u_{n}\right)=$ $\operatorname{det}\left|u_{i}^{q^{j}}\right|$, where $i, j=0,1, \ldots, n$. This is called the Moore determinant.

[^0]Show

$$
D\left(u_{0}, u_{1}, \ldots, u_{n}\right)=\prod_{i=0}^{n} \prod_{c_{i-1} \in \mathbb{F}_{q}} \ldots \prod_{c_{0} \in \mathbb{F}_{q}}\left(u_{i}+c_{i-1} u_{i-1}+\cdots+c_{0} u_{0}\right)
$$

Hint: Show each factor on the right divides the determinant and then count degrees.

10-) Define $F_{j}=\prod_{i=0}^{j-1}\left(T^{q^{j}}-T^{q^{i}}\right)=\prod_{i=0}^{j-1}[j-i]^{q^{i}}$. Show that

$$
D\left(1, T, T^{2}, \ldots, T^{n}\right)=\prod_{j=0}^{n} F_{j}
$$

Hint: Use the fact that $D\left(1, T, T^{2}, \ldots, T^{n}\right)$ can be viewed as a Vandermonde determinant.

11-) Show that F_{j} is the product of all monic polynomials in A of degree j.
12-) Define $L_{j}=\prod_{i=1}^{j}\left(T^{q^{i}}-T\right)=\prod_{i=1}^{j}[i]$. Use Exercise 8 to prove that L_{j} is the least common multiple of all monics of degree j.

13-) Show

$$
\prod_{\operatorname{deg}(f)<d}(u+f)=\frac{D\left(1, T, T^{2}, \ldots, T^{d-1}, u\right)}{D\left(1, T, T^{2}, \ldots, T^{d-1}\right)}
$$

14-) Deduce from Exercise 13 that

$$
\prod_{\operatorname{deg}(f)<d}(u+f)=\sum_{j=0}^{d}(-1)^{d-j} \frac{F_{d}}{F_{j} L_{d-j}^{q^{j}}} u^{q^{j}}
$$

15-) Show that the product of all the non-zero polynomials of degree less than d is equal to $(-1)^{d} F_{d} / L_{d}$.

16-) Prove that

$$
u \prod_{\substack{\operatorname{deg}(f)<d \\ f \neq 0}}\left(1-\frac{u}{f}\right)=\sum_{j=0}^{d}(-1)^{j} \frac{L_{d}}{F_{j} L_{d-j}^{q^{j}}} u^{q^{j}}
$$

References

[1] M. Rosen: Number Theory in Function Fields, Graduate Texts in Mathematics 210, Springer-Verlag, New York (2002).

University of Oxford - Mathematical Institute
E-mail address: j.c.andrade.math@gmail.com

[^0]: Date: April 11, 2015.

