ANALYTIC NUMBER THEORY IN FUNCTION FIELDS TCC 2015 PROBLEM SHEET 2

JULIO ANDRADE

1-) Let $f \in A$ be a polynomial of degree at least $m \geq 1$. For each $N \geq m$ show that the number of polynomials of degree N divisible by f divided by the number of polynomials of degree N is just $|f|^{-1}$. Thus, it makes sense to say that the probability that an arbitrary polynomial is divisible by f is $|f|^{-1}$.

2-) Let $P_{1}, P_{2}, \ldots, P_{t} \in A$ be distinct monic irreducibles. Give a probabilistic argument that the probability that a polynomial not be divisible by any P_{i}^{2} for $i=1,2, \ldots, t$ is given by $\prod_{i=1}^{t}\left(1-\left|P_{i}\right|^{-2}\right)$.

3-) Based on Exercise 2, give a heuristic argument to show that the probability that a polynomial in A is square-free is given by $\zeta_{A}(2)^{-1}$.

4-) Generalize Exercise 3 to give a heuristic to show that the probability that a polynomial in A be k-th power free is given by $\zeta_{A}(k)^{-1}$.
$5-)$ Show $\sum|m|^{-1}$ diverges, where the sum is over all monic polynomials $m \in A$.

6-) Use the fact that every monic m can be written uniquely in the form $m=m_{0} m_{1}^{2}$ where m_{0} and m_{1} are monic and m_{0} is square-free to show $\sum\left|m_{0}\right|^{-1}$ diverges where the sum is over all square-free monics m_{0}.

7-) Use Exercise 6 to show

$$
\prod_{\substack{P \text { irreducible } \\ \operatorname{deg}(P) \leq d}}\left(1+|P|^{-1}\right) \rightarrow \infty \quad \text { as } d \rightarrow \infty
$$

8-) Use the obvious inequality $1+x \leq e^{x}$ and Exercise 7 to show $\sum|P|^{-1}$ diverges where the sum is over all monic irreducibles $P \in A$.

[^0]9-) Use the Prime Number Theorem for Polynomials to give another proof that $\sum|P|^{-1}$ diverges.

10-) Suppose there were only finitely many monic irreducibles in A. Denote them by $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$. Let $m=P_{1} P_{2} \ldots P_{n}$ be their product. Show $\Phi(m)=1$ and derive a contradiction.

University of Oxford - Mathematical Institute
E-mail address: j.c.andrade.math@gmail.com

[^0]: Date: April 11, 2015.

