ANALYTIC NUMBER THEORY IN FUNCTION FIELDS TCC 2015 PROBLEM SHEET 3

JULIO ANDRADE

1-) Suppose h is a complex valued function on monics in A and that the limit as n tends to infinity of $Ave_n(h)$ is equal to α . Show

$$\lim_{n \to \infty} (1 + q + q^2 + \dots + q^n)^{-1} \sum_{\substack{f \text{ monic} \\ \deg(f) \le n}} h(f) = \alpha.$$

2-) Let $\mu(m)$ be the Möbius function on monic polynomials which we have introduced in the lectures. Consider the sum $\sum_{\deg(m)=n} \mu(m)$ over monic polynomials of degree n. Show the value of this sum is 1 if n = 0, -q if n = 1, and 0 if n > 1.

3-) For each integer $k \ge 1$ define $\sigma_k(m) = \sum_{f|m} |f|^k$. Calculate Ave_n(σ_k).

4-) Consider the von-Mangoldt function in A. Show that

$$\sum_{f|m} \Lambda(f) = \log_q |m|.$$

5-) Show that

$$D_{\Lambda}(s) = -\zeta'_{A}(s)/\zeta_{A}(s).$$

Use this to evaluate $\sum_{\deg(m)=n} \Lambda(m)$.

6-) Recall that d(m) is the number of monic divisors of m. Show

$$\sum_{m \text{ monic}} \frac{d(m)^2}{|m|^s} = \frac{\zeta_A(s)^4}{\zeta_A(2s)}.$$

Use this to evaluate $\sum_{\deg(m)=n} d(m)^2$.

Date: April 28, 2015.

JULIO ANDRADE

UNIVERSITY OF OXFORD - MATHEMATICAL INSTITUTE *E-mail address*: j.c.andrade.math@gmail.com

2