ANALYTIC NUMBER THEORY IN FUNCTION FIELDS TCC 2015 PROBLEM SHEET 4

JULIO ANDRADE

1-) Fill in the details of the proof of Proposition 3.4 in [1].
2-) Fill in the details of the proof of Theorem 3.5 in [1].
3-) Suppose $d \mid q-1$ and that $m \in A$ is a polynomial of positive degree. Show that the number of d-th powers in $(A / m A)^{*}$ is given by $\Phi(m) / d^{\lambda(m)}$, where $\lambda(m)$ is the number of distinct monic prime divisors of m.

4-) Let $P \in A$ be a prime and consider the congruence $X^{2} \equiv-1(\bmod P)$ Show this congruence is solvable except in the case where $q \equiv 3(\bmod 4)$ and $\operatorname{deg}(P)$ is odd.

5-) Suppose $d^{\prime} \mid q-1$ and $\alpha \in \mathbb{F}_{q}^{*}$ is an element of order d^{\prime}. Let $P \in A$ be a prime of positive degree and suppose that d is a divisor of $|P|-1$. Show that $X^{d} \equiv \alpha(\bmod P)$ is solvable if and only if $d d^{\prime}$ divides $|P|-1$. Show how Exercise 4 is a special case of this result.

6-) Suppose that d is a positive integer and that $q \equiv 1(\bmod 4 d)$. Let $P \in A$ be a monic prime. Show that $X^{d} \equiv T(\bmod P)$ if and only if the constant term of P, i.e. $P(0)$, is a d-th power in \mathbb{F}_{q}.

7-) Suppose d divides $q-1$ and that $P \in A$ is a prime. Show that the number of solutions to $X^{d} \equiv a(\bmod P)$ is given by

$$
1+\left(\frac{a}{P}\right)_{d}+\left(\frac{a}{P}\right)_{d}^{2}+\cdots+\left(\frac{a}{P}\right)_{d}^{d-1}
$$

8-) Let $b \in A$ and suppose $b=\beta P_{1}^{e_{1}} P_{2}^{e_{2}} \cdots P_{t}^{e_{t}}$ is the prime decomposition of b. Here, $\beta \in \mathbb{F}_{q}^{*}$ and the P_{i} are distinct monic primes. Consider $(a / b)_{d}$ as a homomorphism from $(A / b A)^{*}$ to the cyclic group $\left\langle\zeta_{d}\right\rangle$ generated by an element $\zeta_{d} \in \mathbb{F}_{q}^{*}$ of order d. Show that this map is onto if and only if the greatest common divisor of the set $\left\{e_{1}, e_{2}, \ldots, e_{t}\right\}$ is relatively prime to d.

[^0]9-) Suppose $d \mid q-1$ and $a, b_{1}, b_{2} \in A$. Show that $\left(a / b_{1}\right)_{d}=\left(a / b_{2}\right)_{d}$ if the following conditions hold: $b_{1} \equiv b_{2}(\bmod a), \operatorname{deg}\left(b_{1}\right) \equiv \operatorname{deg}\left(b_{2}\right)(\bmod d)$, and $\operatorname{sgn}_{d}\left(b_{1}\right)=\operatorname{sgn}_{d}\left(b_{2}\right)$.

10-) In this exercise we give an analogue of the classical Gauss criterion for the Legendre symbol. Let $P \in A$ be a prime. Show that every non-zero residue class modulo P has a unique representative of the form μm where $\mu \in \mathbb{F}_{q}^{*}$ and m is a monic polynomial of degree less than $\operatorname{deg}(P)$. Let \mathcal{M} denote the set of monics of degree less than $\operatorname{deg}(P)$. Suppose $a \in A$ with $P \nmid a$. For each $m \in \mathcal{M}$ write $a m \equiv \mu_{m} m^{\prime}(\bmod P)$ where $\mu_{m} \in \mathbb{F}_{q}^{*}$ and $m^{\prime} \in \mathcal{M}$. Show

$$
\left(\frac{a}{P}\right)_{q-1}=\prod_{m \in \mathcal{M}} \mu_{m}
$$

References

[1] M. Rosen: Number Theory in Function Fields, Graduate Texts in Mathematics 210, Springer-Verlag, New York (2002).

University of Oxford - Mathematical Institute
E-mail address: j.c.andrade.math@gmail.com

[^0]: Date: April 28, 2015.

