ANALYTIC NUMBER THEORY IN FUNCTION FIELDS TCC 2015 PROBLEM SHEET 4

JULIO ANDRADE

1-) Fill in the details of the proof of Proposition 3.4 in [1].

2-) Fill in the details of the proof of Theorem 3.5 in [1].

3-) Suppose $d \mid q-1$ and that $m \in A$ is a polynomial of positive degree. Show that the number of *d*-th powers in $(A/mA)^*$ is given by $\Phi(m)/d^{\lambda(m)}$, where $\lambda(m)$ is the number of distinct monic prime divisors of *m*.

4-) Let $P \in A$ be a prime and consider the congruence $X^2 \equiv -1 \pmod{P}$ Show this congruence is solvable except in the case where $q \equiv 3 \pmod{4}$ and $\deg(P)$ is odd.

5-) Suppose d' | q - 1 and $\alpha \in \mathbb{F}_q^*$ is an element of order d'. Let $P \in A$ be a prime of positive degree and suppose that d is a divisor of |P| - 1. Show that $X^d \equiv \alpha \pmod{P}$ is solvable if and only if dd' divides |P| - 1. Show how Exercise 4 is a special case of this result.

6-) Suppose that d is a positive integer and that $q \equiv 1 \pmod{4d}$. Let $P \in A$ be a monic prime. Show that $X^d \equiv T \pmod{P}$ if and only if the constant term of P, i.e. P(0), is a d-th power in \mathbb{F}_q .

7-) Suppose d divides q-1 and that $P \in A$ is a prime. Show that the number of solutions to $X^d \equiv a(\text{mod } P)$ is given by

$$1 + \left(\frac{a}{P}\right)_d + \left(\frac{a}{P}\right)_d^2 + \dots + \left(\frac{a}{P}\right)_d^{d-1}.$$

8-) Let $b \in A$ and suppose $b = \beta P_1^{e_1} P_2^{e_2} \cdots P_t^{e_t}$ is the prime decomposition of b. Here, $\beta \in \mathbb{F}_q^*$ and the P_i are distinct monic primes. Consider $(a/b)_d$ as a homomorphism from $(A/bA)^*$ to the cyclic group $\langle \zeta_d \rangle$ generated by an element $\zeta_d \in \mathbb{F}_q^*$ of order d. Show that this map is onto if and only if the greatest common divisor of the set $\{e_1, e_2, \ldots, e_t\}$ is relatively prime to d.

Date: April 28, 2015.

JULIO ANDRADE

9-) Suppose $d \mid q-1$ and $a, b_1, b_2 \in A$. Show that $(a/b_1)_d = (a/b_2)_d$ if the following conditions hold: $b_1 \equiv b_2 \pmod{a}$, $\deg(b_1) \equiv \deg(b_2) \pmod{d}$, and $\operatorname{sgn}_d(b_1) = \operatorname{sgn}_d(b_2)$.

10-) In this exercise we give an analogue of the classical Gauss criterion for the Legendre symbol. Let $P \in A$ be a prime. Show that every non-zero residue class modulo P has a unique representative of the form μm where $\mu \in \mathbb{F}_q^*$ and m is a monic polynomial of degree less than deg(P). Let \mathcal{M} denote the set of monics of degree less than deg(P). Suppose $a \in A$ with $P \nmid a$. For each $m \in \mathcal{M}$ write $am \equiv \mu_m m' \pmod{P}$ where $\mu_m \in \mathbb{F}_q^*$ and $m' \in \mathcal{M}$. Show

$$\left(\frac{a}{P}\right)_{q-1} = \prod_{m \in \mathcal{M}} \mu_m.$$

References

[1] M. Rosen: Number Theory in Function Fields, Graduate Texts in Mathematics 210, Springer-Verlag, New York (2002).

UNIVERSITY OF OXFORD - MATHEMATICAL INSTITUTE *E-mail address*: j.c.andrade.math@gmail.com