ANALYTIC NUMBER THEORY IN FUNCTION FIELDS TCC 2015 PROBLEM SHEET 6

JULIO ANDRADE

1-) Suppose K / F has genus zero. For a divisor D with $\operatorname{deg} D \geq-1$ show that $l(D)=\operatorname{deg} D+1$.

2-) Suppose K / F has genus zero and that C is a divisor in the canonical class. Show $l(-C)=3$ and conclude that there is a prime P of degree less than or equal to 2 .

3-) Suppose K / F has genus zero and that there is a prime P of degree 1. Show $K=F(x)$ for some element $x \in K$.

4-) Suppose K / F has genus zero and that P is a prime of degree 2. By Exercise $1, l(P)=3$. Let $\{1, x, y\}$ be a basis for $L(P)$. Show $K=F(x, y)$. Show further that $\left\{1, x, y, x^{2}, y^{2}, x y\right\} \subset L(2 P)$ and conclude that x and y satisfy a polynomial of degree 2 over F.

5-) Suppose that K / F has genus 1. Show that $l(D)=\operatorname{deg} D$ for all divisors D with $\operatorname{deg} D \geq 1$.

6-) Suppose K / F has genus 1 and that P is a prime of degree 1 . By the last exercise we know $l(2 P)=2$ and $l(3 P)=3$. Let $\{1, x\}$ be a basis of $L(2 P)$ and $\{1, x, y\}$ be a basis of $L(3 P)$. Show that $K=F(x, y)$. Show also that x and y satisfy a cubic polynomial with coefficients in F of the form

$$
Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6}
$$

Hint: Consider $L(6 P)$.
7-) Let K / F be of positive genus and suppose there is a prime P of degree 1. Suppose further that $L(2 P)$ has dimension 2 . Let $\{1, x\}$ be a basis. If char $F \neq 2$, show that there is an element $y \in K$ such that $K=F(x, y)$ and such that x and y satisfy a polynomial equation of the form $Y^{2}=f(X)$ where $f(X)$ is a square-free polynomial of degree at least three.

Date: May 11, 2015.

8-) Use the Riemann-Roch theorem to show that if B and D are divisors such that $B+D$ is in the canonical class, then $|l(B)-l(D)| \leq \frac{1}{2}|\operatorname{deg}(B)-\operatorname{deg}(D)|$.

9-) Suppose P is a prime of degree 1 of a function field K / F. For every positive integer n show $l((n+1) P)-l(n P) \leq 1$.

10-) Let K / F be a function field of genus $g \geq 2$, and P a prime of degree 1. For all integers k we have $l(k P) \leq l((k+1) P)$. If we restrict k to the range $0 \leq k \leq 2 g-2$ show there are exactly g values of k where $l(k P)=l((k+1) P)$. These are called Weierstrass gaps. Assume F has characteristic zero. If all the gaps are less than or equal to g we say P is a non-Weierstrass point, if not we say P is a Weierstrass point. It can be shown that there are only finitely many Weierstrass points. In characteristic p there is a theory of Weierstrass points (due to H. Schmid), but the definition is somewhat different.

11-) Suppose K / F has genus 1 and that P_{∞} is a prime of degree 1 , also called a rational point. Let $E(F)$ denote the set of rational points. If $P, Q \in E(F)$, show there is a unique element $R \in E(F)$ such that $P+Q \sim R+P_{\infty}$. (Recall that for two divisors A and $B, A \sim B$ means that $A-B$ is a principal divisor). Denote R by $P \oplus Q$. Show that $(P, Q) \rightarrow P \oplus Q$ makes $E(F)$ into an abelian group with P_{∞} as the zero element.

12-) With the same assumptions as Exercise 11, map $E(F) \rightarrow C l_{K}^{0}$ by sending P to the class of $P-P_{\infty}$. Show that this map is an isomorphism of abelian groups.

13-) Let K / F be a function field and σ an automorphism of K, which leaves F fixed. If (\mathcal{O}, P) is a prime of K, show that $(\sigma \mathcal{O}, \sigma P)$ is also a prime of K. Show, further, that for all $a \in K$, we have $\operatorname{ord}_{\sigma P}(a)=\operatorname{ord}_{P}\left(\sigma^{-1} a\right)$.

14-) (Continuation). The map $P \rightarrow \sigma P$ on primes extends to an action of σ on divisors. If $a \in K^{*}$, show that $\sigma(a)=(\sigma a)$.

15-) (Continuation). If D is a divisor of K, show $a \rightarrow \sigma a$ induces a linear isomorphism from $L(D) \rightarrow L(\sigma D)$. In particular, if σ fixes D, i.e., $\sigma D=D$, then σ induces an automorphism of $L(D)$.

16-) (Continuation). Suppose P is a prime of degree 1 and that $\sigma P=P$. Then, σ induces an automorphism of $L((2 g+1) P)$. If this induced map is the identity, show that σ is the identity automorphism.
Hint: Find two elements $x, y \in K^{*}$ fixed by σ such that $K=F(x, y)$.

17-) Let A be a divisor and P a prime divisor. Suppose $g \in L(A+P)-L(A)$. If $f \in L(A+P)$ show $f / g \in \mathcal{O}_{P}$. Use this to prove $l(A+P) \leq l(A)+\operatorname{deg}(P)$.

18-) Use Exercise 17 to show $l(A) \leq \operatorname{deg}(A)+1$ if A is an effective divisor. Show further that this inequality holds in general. Thus, $l(A)$ is finite for any divisor A.

[^0]
[^0]: University of Oxford - Mathematical Institute
 E-mail address: j.c.andrade.math@gmail.com

