ANALYTIC NUMBER THEORY IN FUNCTION FIELDS TCC 2015 PROBLEM SHEET 7

JULIO ANDRADE

1-) Suppose $f: \mathcal{D}_K^+ \to \mathbb{C}$ and that $\operatorname{Ave}(f)$ exists in the sense defined in Lecture 4. Show that

$$\operatorname{Ave}(f) = \lim_{N \to \infty} \frac{\sum_{\deg D \le N} f(D)}{\sum_{\deg D \le N} 1}.$$

2-) Let $D = \sum a(P)P$ be an effective divisor of K. Let m > 0 be a positive integer. We say that D is m-th power free if for each P, $a(P) \neq 0$ implies $m \nmid a(P)$. Let f_m be the characteristic function of the m-th power free divisors. Show Ave $(f_m) = \zeta_K(m)^{-1}$.

3-) Let m > 0 be a positive integer and D an effective divisor. Define

$$\sigma_m(D) = \sum_{0 \le C \le D} NC^m.$$

Find an asymptotic formula for $S_m(N) = \sum_{\deg D=N} \sigma_m(D)$.

4-) Let $D = \sum a(P)P$ be an effective divisor of K. Define $\mu(D) = 1$ if D is the zero divisor, $\mu(D) = (-1)^t$ if D is square-free and exactly t of the coefficients a(P) are not zero, and $\mu(D) = 0$ otherwise. For every fixed $\varepsilon > 0$, show

$$\sum_{\deg D=N} \mu(D) = O\left(q^{\left(\frac{1}{2}+\varepsilon\right)N}\right).$$

5-) Let D be an effective divisor of K. Define $d_m(D)$ to be the number of m + 1-tuples of effective divisors $(C_1, C_2, \ldots, C_m, C_{m+1})$ such that $\sum_{i=1}^{m+1} C_i = D$. Note that $d_1(D) = d(D)$ is equal to the number of divisors of D. Show that $\zeta_{d_m}(s) = \zeta_K(s)^{m+1}$ and use the theorem from the last lecture to derive an asymptotic formula for $\Delta_m(N) = \sum_{\deg D=N} d_m(D)$.

6-) Using the Selberg's sieve for $\mathbb{F}_q[x]$ prove that $\sum 1/|P|$ converges, where the summation is over all monic irreducible polynomials P such that P + K

Date: May 21, 2015.

is also irreducible.

7-) (Large Sieve for Function Fields). If $\mathcal{A} = \{A_1, \ldots, A_Z\}$, deg $A_i < 2n$, Z(P, K) is the number of elements of \mathcal{A} which are $\equiv K \pmod{P}$, and $m \leq n$, then

$$\sum_{\deg P \le m} |P| \sum_{\deg K = \deg P} \left(Z(P, K) - \frac{Z}{|P|} \right)^2 \le Zq^{2n}.$$

(this is a difficult question)

UNIVERSITY OF OXFORD - MATHEMATICAL INSTITUTE *E-mail address:* j.c.andrade.math@gmail.com