ANALYTIC NUMBER THEORY IN FUNCTION FIELDS TCC 2015
 PROBLEM SHEET 7

JULIO ANDRADE

1-) Suppose $f: \mathcal{D}_{K}^{+} \rightarrow \mathbb{C}$ and that $\operatorname{Ave}(f)$ exists in the sense defined in Lecture 4. Show that

$$
\operatorname{Ave}(f)=\lim _{N \rightarrow \infty} \frac{\sum_{\operatorname{deg} D \leq N} f(D)}{\sum_{\operatorname{deg} D \leq N} 1}
$$

2-) Let $D=\sum a(P) P$ be an effective divisor of K. Let $m>0$ be a positive integer. We say that D is m-th power free if for each $P, a(P) \neq 0$ implies $m \nmid a(P)$. Let f_{m} be the characteristic function of the m-th power free divisors. Show $\operatorname{Ave}\left(f_{m}\right)=\zeta_{K}(m)^{-1}$.

3-) Let $m>0$ be a positive integer and D an effective divisor. Define

$$
\sigma_{m}(D)=\sum_{0 \leq C \leq D} N C^{m}
$$

Find an asymptotic formula for $S_{m}(N)=\sum_{\operatorname{deg} D=N} \sigma_{m}(D)$.
4-) Let $D=\sum a(P) P$ be an effective divisor of K. Define $\mu(D)=1$ if D is the zero divisor, $\mu(D)=(-1)^{t}$ if D is square-free and exactly t of the coefficients $a(P)$ are not zero, and $\mu(D)=0$ otherwise. For every fixed $\varepsilon>0$, show

$$
\sum_{\operatorname{deg} D=N} \mu(D)=O\left(q^{\left(\frac{1}{2}+\varepsilon\right) N}\right) .
$$

5-) Let D be an effective divisor of K. Define $d_{m}(D)$ to be the number of $m+1$-tuples of effective divisors $\left(C_{1}, C_{2}, \ldots, C_{m}, C_{m+1}\right)$ such that $\sum_{i=1}^{m+1} C_{i}=D$. Note that $d_{1}(D)=d(D)$ is equal to the number of divisors of D. Show that $\zeta_{d_{m}}(s)=\zeta_{K}(s)^{m+1}$ and use the theorem from the last lecture to derive an asymptotic formula for $\Delta_{m}(N)=\sum_{\operatorname{deg} D=N} d_{m}(D)$.

6-) Using the Selberg's sieve for $\mathbb{F}_{q}[x]$ prove that $\sum 1 /|P|$ converges, where the summation is over all monic irreducible polynomials P such that $P+K$

[^0]is also irreducible.

7-) (Large Sieve for Function Fields). If $\mathcal{A}=\left\{A_{1}, \ldots, A_{Z}\right\}, \operatorname{deg} A_{i}<2 n$, $Z(P, K)$ is the number of elements of \mathcal{A} which are $\equiv K(\bmod P)$, and $m \leq n$, then

$$
\sum_{\operatorname{deg} P \leq m}|P| \sum_{\operatorname{deg} K=\operatorname{deg} P}\left(Z(P, K)-\frac{Z}{|P|}\right)^{2} \leq Z q^{2 n}
$$

(this is a difficult question)

University of Oxford - Mathematical Institute
E-mail address: j.c.andrade.math@gmail.com

[^0]: Date: May 21, 2015.

