ANALYTIC NUMBER THEORY IN FUNCTION FIELDS TCC 2015 PROBLEM SHEET 8

JULIO ANDRADE

1-) Let M be even and positve. And consider that the following sum is over all non-square monic polynomials of degree M in A. Also suppose that $s \neq \frac{1}{2}$ or 1 . Prove that

$$
\begin{array}{r}
q^{-M} \sum L\left(s, \chi_{m}\right)=\frac{\zeta_{A}(2 s)}{\zeta_{A}(2 s+1)}-\left(1-\frac{1}{q}\right)\left(q^{1-2 s}\right)^{\frac{M}{2}} \zeta_{A}(2 s) \\
-q^{-\frac{M}{2}}\left(\frac{\zeta_{A}(2 s)}{\zeta_{A}(2 s+1)}-\left(1-\frac{1}{q}\right)\left(q^{1-s}\right)^{M} \zeta_{A}(s)\right) .
\end{array}
$$

2-) Let M be even and positve. And consider that the following sum is over all non-square monic polynomials of degree M in A. Also suppose that $s=1$. Prove that

$$
q^{-M} \sum L\left(1, \chi_{m}\right)=\frac{\zeta_{A}(2)}{\zeta_{A}(3)}-q^{-\frac{M}{2}}\left(2+\left(1-\frac{1}{q}\right)(M-1)\right) .
$$

3 -) Let M be positive and even, and let $\gamma \in \mathbb{F}^{*}$ be a non-square constant. The following sum is over all non-square monic polynomials of degree M. For $s \neq \frac{1}{2}$ prove that

$$
\begin{aligned}
q^{-M} \sum L\left(s, \chi_{\gamma m}\right) & =\frac{\zeta_{A}(2 s)}{\zeta_{A}(2 s+1)}-\left(1-\frac{1}{q}\right)\left(q^{1-2 s}\right)^{\frac{M}{2}} \zeta_{A}(2 s) \\
& -q^{-\frac{M}{2}}\left(\frac{1+q^{-s}}{1+q^{1-s}}-\left(1-\frac{1}{q}\right) \frac{\left(q^{1-s}\right)^{M}}{1+q^{1-s}}\right) .
\end{aligned}
$$

4-) In the situations of problems 1,2 and 3 find a formula for

$$
q^{-M} \sum_{\substack{m \text { monic } \\ \operatorname{deg}(m)=M}} L\left(\frac{1}{2}, \chi_{m}\right) .
$$

[^0]University of Oxford - Mathematical Institute
E-mail address: j.c.andrade.math@gmail.com

[^0]: Date: June 3, 2015.

