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1-) Let M be even and positve. And consider that the following sum is
over all non-square monic polynomials of degree M in A. Also suppose that
s 6= 1

2 or 1. Prove that

q−M
∑

L(s, χm) =
ζA(2s)

ζA(2s+ 1)
−
(

1− 1

q

)
(q1−2s)

M
2 ζA(2s)

−q−
M
2

(
ζA(2s)
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−
(

1− 1

q

)
(q1−s)MζA(s)

)
.

2-) Let M be even and positve. And consider that the following sum is
over all non-square monic polynomials of degree M in A. Also suppose that
s = 1. Prove that

q−M
∑

L(1, χm) =
ζA(2)

ζA(3)
− q−

M
2

(
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q

)
(M − 1)

)
.

3-) Let M be positive and even, and let γ ∈ F∗ be a non-square constant.
The following sum is over all non-square monic polynomials of degree M .
For s 6= 1

2 prove that

q−M
∑

L(s, χγm) =
ζA(2s)

ζA(2s+ 1)
−
(

1− 1

q

)
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)
.

4-) In the situations of problems 1,2 and 3 find a formula for

q−M
∑

m monic
deg(m)=M

L(12 , χm).
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