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ABSTRACT. We prove results on moments of L-functions in the function field setting, where the moment
averages are taken over primitive characters of modulus R, where R is a polynomial in Fy[T]. We
consider the behaviour as deg R — oo and the cardinality of the finite field is fixed. Specifically, we
obtain an exact formula for the second moment provided that R is square-full, an asymptotic formula
for the second moment for any R, and an asymptotic formula for the fourth moment for any R. The
fourth moment result is a function field analogue of Soundararajan’s result in the number field setting
that improved upon a previous result by Heath-Brown. Both the second and fourth moment results
extend work done by Tamam in the function field setting who focused on the case where R is prime.
As a prerequisite for the fourth moment result, we obtain, for the special case of the divisor function,
the function field analogue of Shiu’s generalised Brun-Titchmarsh theorem.
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1. INTRODUCTION

The study of moments of families L-functions is a central theme in analytic number theory. These
moments are connected to the famous Lindel6f hypothesis for such L-functions and have many appli-
cations in analytic number theory. It is a very challenging problem to establish asymptotic formulas
for higher moments of families of L-functions and until now we only have asymptotic formulas for
the first few moments of any given family of L-functions. However, we do have precise conjectures
for higher moments of families of L-functions due to the work of many mathematicians (see for ex-

ample an . In this paper the focus is on the moments o irichlet L-functions
pl CFK+O5 d DGHO3) In this pap he f i h f Dirichlet L-f |

associated to primitive Dirichlet characters.
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In 1981, Heath-Brown [HBS81| proved that
—1)3

(1) > L(% x) ’4 = #‘f’*@ 11 ((11+];1)(10g 9)* +0(2°Wq(log ¢)°),

x mod q plg

*
where, for all positive integers ¢, Z 4 represents a summation over all primitive Dirichlet char-
xmod g

acters of modulus ¢, ¢*(q) is the number of primitive characters of modulus ¢, and w(q) is the number
of distinct prime divisors of ¢ and L(s, x) is the associated Dirichlet L-function.

In the equation above , in order to ensure that the error term is of lower order than the main term,
we must restrict g to

loglog g — 7logloglog q
w(q) < :

Soundararajan [Sou07] addressed this by proving that

3 Gl = s @ Iy toso (14 0oy falp) ) + oesod

x mod g plg
Here, the error terms are of lower order than the main term without the need to have any restriction
on q.

log 2

In a breakthrough paper, Young [Youll] obtained explicit lower order terms for the case where ¢ is
an odd prime and was able to establish the full polynomial expansion for the fourth moment of the
associated Dirichlet L-functions. In other words, he proved that

4
<Z>*1(q) 2 L(%“) ‘4 =Y cilogg)' + O(q7527),
X

mod q =0

where the constants ¢; are computable. The error term was subsequently improved by Blomer et
al. [BFK™17] who proved that
1 4
L(39] =
9 X

1 *
¢*(q) 2

x mod ¢ %

ci(log q)' + O (¢~ 327).

M-

I
=)

In the function field setting Tamam [Tam14] established that

i 5 ) s (12

x mod Q (q2 |Q|%+1
X#X0
and
1 Ly oa=d 4 3
" >X§Q‘L(2’X)‘ = "5, (deg@)" +0((deg Q)
XFX0

as deg() — oo. Here, @ is an irreducible, monic polynomial in F,[T] with F, a finite field with ¢
elements; xo is the trivial character (in this case, of modulus @); and, for non-trivial characters of

modulus @,
1 x(A
CRIEID D
aenm Al2
deg A<deg @

where M is the set of monic polynomials IF,[77].

In this paper we prove the function field analogue of Soundararajan’s fourth moment result, which is
also an extension of Tamam’s fourth moment result. In order to accomplish this we prove, along the
way, a function field analogue of a special case of Shiu’s Brun-Titchmarsh theorem for multiplicative
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functions [Shi80]. We also obtain an asymptotic main term for the second moment. This generalises
Tamam’s result in that her result is for all primitive characters of prime modulus, whereas our result is
for primitive characters of any modulus. Note, however, that Tamam’s result is exact. By considering
only square-full moduli, we also obtain an exact formula.

2. NOTATION AND STATEMENT OF RESULTS

Let ¢ € N be a prime-power, not equal to 2. We denote the finite field of order ¢ by ;. We denote the
ring of polynomials over the finite field F, by A := F,[T]. Unless otherwise stated, for a subset S C A
we define S,, := {4 € S : deg A = n}. We identify Ay with F,. Also, if we have some non-negative real
number x, then range deg A < z is not taken to include the polynomial A = 0.

The norm of A € A\{0} is defined by |A| := ¢9°84, and for the zero polynomial we define |0| := 0.

We denote the set of monic polynomials in A by M. For a € F; we denote the set of polynomials,
with leading coefficient equal to a, by aM. Because A is an integral domain, an element is prime
if and only if it is irreducible. We denote the set of prime monic polynomials in A by P, and all
references to primes (or irreducibles) in the function field setting are taken as being monic primes.
Also, when indexing, the upper-case letter P always refers to a monic prime. Furthermore, if we range
over polynomials F that divide some polynomial F', then these E are taken to be the monic divisors
only.

Suppose f,g: D — C are functions from the domain ® to the complex numbers, where either ® C A
or ® C C, and f and/or g may be dependent on q. We take f(z) = O(g(x)) to mean: There exists
a positive constant ¢ such that for all ¢ and all x € © we have |f(z)| < ¢|g(z)|. Now suppose that
we have some variable e (not equal to the variable ¢) taking values in a set €, which f and/or g may
depend on. Then, we take f(x) = O (g(x)) to mean: For each € € €, there exists a positive constant
ce such that for all ¢ and all x € © we have |f(2)| < ¢e|g(z)]. We take f(z) < g(z) and g(z) > f(x)
to mean f(z) = O(g(z)), and we take f(z) < g(x) to mean that both f(z) < g(x) and f(z) > g(=)
hold. Similarly, we take f(z) < g(z) and g(z) >, f(z) to mean f(z) = Oc(g(z)).

Definition 2.1 (Dirichlet Characters). Let R € M. A Dirichlet character on A with modulus R is a
function x : A — C* satisfying the following properties. For all A, B € A:

(1) X(AB) = x(A)x(B);
(2) If A= B(mod R), then x(A) = x(B);
(3) x(A) =0 if and only if (A, R) # 1.

Due to point [2, we can view a character y of modulus R as a function on A\R.A. This makes expres-
sions such as y(A~!) well-defined for A € (.A\R.A)*.

We can deduce that x(1) =1 and |x(A)| = 1 when (A, R) = 1. We say that x is the trivial character
of modulus R if x(A) = 1 when (A, R) = 1, and this is denoted by xo. Otherwise, we say that x is
non-trivial. Also, there is only one character of modulus 1 and it simply maps all A € A to 1.

It can easily be seen that the set of characters of a fixed modulus R forms an abelian group under
multiplication. The identity element is xo. The inverse of x is X, which is defined by X (A) = x(A) for
all A € A. It can be shown that the number of characters of modulus R is ¢(R).

A character x is said to be even if x(a) = 1 for all a € F. Otherwise, we say that it is odd. The set of
even characters of modulus R is a subgroup of the set of all characters of modulus R. It can be shown

that there are qul (R) elements in this group.
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Definition 2.2 (Primitive Character). Let R € M, S | R and x be a character of modulus R. We
say that S is an induced modulus of x if there exists a character x1 of modulus S such that

(A = {xl(A) if (A R) =1

0 otherwise.

X 1s said to be primitive if there is no induced modulus of strictly smaller norm than R. Otherwise, x
is said to be non-primitive. ¢*(R) denotes the number of primitive characters of modulus R.

We note that all trivial characters of some modulus R # 1 are non-primitive as they are induced by
the character of modulus 1. We also note that if R is prime, then the only non-primitive character
of modulus R is the trivial character of modulus R. We denote a sum over primitive characters of

*
modulus R by the standard notation g iR
X Mo

Definition 2.3 (Dirichlet L-functions). Let x be a Dirichlet character. The associated L-function,
L(s,X), is defined for Re(s) > 1 by

x(4)

[Al*

L(s,x) :=
AeM

This has an analytic continuation to either C or C\{1}, depending on the character.
In this paper, we will prove the following three main results.
Theorem 2.4. Let R € M. Then,

@

mo

L(%,X)‘Q = ﬁg) deg R+ O(logw(R))

Theorem 2.5. Let R be a square-full polynomial. That is, if P | R then P?| R. Then,
* 1 V2 _o(R)? o(R)*  ¢(R) deg P
Z L(f,x)‘ deg R + - RJ? %

NPy " IRP RE Pl—1
1 ( ¢(R)®  o(R) I 1 2)
+ 1 - +2 1 1- T 1 :
(2 -1)°\ 1R R p|R( o)

Theorem 2.6. Let R € M. Then,

X —q ', 1— Pt 3 w
R U | C e = e R ()

x mod R
P|R

Furthermore, in order to prove Theorem we are required to prove a specific case of the function
field analogue of Shiu’s generalised Brun-Titchmarsh theorem. This allows us to estimate sums of the

form
> d(N)

NeM
deg(N—-X)<y
N=A(mod G)

given certain conditions on X, A,G € M and y > 0.

3. FuncTiON FIELD BACKGROUND

We provide some definitions and results relating to function fields that are needed in this paper. Many
of these results are well known and so we do not provide a proof. Some proofs can be found in Rosen’s
book [Ros02], particularly chapter 4.

Definition 3.1 (Mé&bius Function). We define the Mébius function, u, multiplicatively by p(P) = —1
and p(P€) =0 for all primes P € A and all integers e > 2.
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Definition 3.2 (w Function). For all R € A\{0} we define w(R) to be the number of distinct prime
factors of R.

Definition 3.3 (Q Function). For all R € A\{0} we define Q(R) to be the total number of prime
factors of R (i.e. counting multiplicity).

Definition 3.4 (¢ Function). For R € A with deg R = 0 we define ¢(R) := 1, and for R € A with
deg R > 1 we define

d(R) :=#{Aec A:deg A <degR,(A,R)=1}.
It is not hard to show that

¢(R)=|RI[[1—1PI7").

P|R

Definition 3.5. For all R € A with deg R > 1 we define p_(R) to be the largest positive integer such
that if P | R then deg P > p_(R). Similarly, we define p1(R) to be the smallest positive integer such
that if P | R then deg P < p,(R).

Lemma 3.6 (Orthogonality Relations). Let R € M. Then,
_ R if (AB,R) =1 and A = B(mod R
S ARB) - {¢< ) i (AB.R) (mod R)

mod R 0 otherwise.
and
Z W(AT(B) = qf11d>(R) if (AB,R) =1 and A = aB(mod R) for some a € F,*
Cmod R 0 otherwise.
X even

Lemma 3.7. Let R€ M and let A, B € A. Then,
> er=r H(E)O(F) if (AB,R)=1

S X(AR(B) = { TFI@A-B)
xmod R 0 otherwise
and
. T ZF{%ffRB) W(E)P(F) if (AB,R) =1
> x(DX(B) = a€F}
x mod R 0 otherwise

X even

Proof. The case where (AB, R) # 1 is trivial. So, suppose (AB, R) = 1. We have that
(2) doxAXB) = D D x(AB).

x mod R EF=R xmodE
Recall the Mobius inversion formula tells us that if g, f are functions on M satisfying

g(R) = ) f(E)
EF=R
for all R € M, then
fR)= > u(E)g(F)
EF=R

for all R € M. By applying this to and making use of Lemma we obtain the first result. The

second result follows similarly to the first. O

Corollary 3.8. For all R € M we have that
O(R) = D, wE)$(F).
EF=R
Proof. This follows easily from Lemma when we take A, B = 1. O
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For a character y we will, on occasion, write the associated L-function as

-3 i
where we define

Ly(x) == Z X(4)

AeM
deg A=n

for all non-negative integers n and all characters y.

Suppose x is the character of modulus 1 and Re(s) > 1. Then, L(s, x) is simply the zeta-function for
the ring A. That is,
Z |AJs A|s =1 Ca(s)-

AeM
We note further that

T

AeM

The far-RHS provides a meromorphic extension for (4 to C with a simple pole at 1. The following
Euler product formula will also be useful

cats)= [ =121~

PeP
for Re(s) > 1

Now suppose that xo is the trivial character of some modulus R and Re(s) > 1. It can be shown that

L(s o) (%113 NEC!

So, again, the far-RHS provides a meromorphic extension for L(s, xo) to C with a simple pole at 1.

Finally, suppose that x is a non-trivial character of modulus R and Re(s) > 1. It can be shown that

x(A
L(S,X) = E |1(4’8)
AeM
deg A<deg R

—S

This is just a finite polynomial in ¢—*, and so it provides a holomorphic extension for L(s, x) to C.

Theorem 3.9 (Functional Equation for L-functions of Primitive Characters). Let x be a primitive
character of some modulus R # 1. If x is even, then L(s,x) satisfies the function equation

—s degR , _ _s\deg R—1 _
(@ =D)L, ) =W)g = (¢°—1) ()™ L1 —s,%);
and if x is odd, then L(s,x) satisfies the function equation

deg R—1

Lis,) =W()a 2 ()" L1 - 5,%);

where |W(x)| = 1.

A generalisation of the theorem above appears in Rosen’s book [Ros02, Theorem 9.24 AJ.

Lemma 3.10. Let x a primitive odd character of modulus R. Then,

pEf =2 = P

A BeM |AB|
deg AB<deg R
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where we define

W=y XAxE)

1
A,BEM |AB|2
deg AB=deg R—1

Proof. The functional equation for odd primitive characters gives

deg R—1 dow Rt dos R deg R—1
—ns deg i—1 —s —1 .\ —n(l—s
Ls,x\) = Y La()qa ™ =W()g 2z (¢°)" " Y Lu(xqg "
n=0 n=0
dew A1 deg R—1
:[/V(X)q—gT Z Ln(y)q(lfs)(denglfn)'
n=0
That is,
deg R—1
(3) L(s,x) = Y La(x)q™™
n=0
and
dew A1 deg R—1

(4) Lis,x) =W(H)g 2 Z L (x)q(t—)(deg R=1-n),

n=0
Taking the squared modulus of both sides of and of , we see that

2deg R—2
) peok= > (X Lonm)e
n=0 0<i,j<deg R

i+j=n

and
2deg R—2
(6) ’L(S, X)’Z =q deg R+1 Z < Z Li(X)Lj(X)>q(lS)(QdegRQn)-
n=0 0<i,j<deg R
i+j=n

By the linear independence of powers of ¢~* we can see that |L(s, x)|? is equal to the sum of the terms
n=20,1,...,deg R — 1 on the RHS of and the terms n = 0,1,...,deg R — 2 on the RHS of @

That is,

deg R—1
L= Y ( 3 Li<x>Lj<x>)qm

n=0 0<i,j<deg R
i+j=n
deg R—2
+q~ deg R+1 Z Z Li(X)Lj(X)>q(lS)(QdegRQn)-
n=0 0<i,j<deg R
i+j=n
Hence,
1 9 deg R—1 deg R—2
HENIEDS ( 3 Li<x>Lj<x>)q—z Py ( 3 Li<x>Lj<x>)q—z
n=0 \0<i,j<degR n=0 “0<ij<degR
i+j=n it+j=n
9 Z x(A)Xx(B) Z x(A)x(B)
= 1 PR
A,BEM |AB|> A,BEM |AB|>
deg AB<deg R deg AB=deg R—1

as required. O
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Lemma 3.11. Let x a primitive even character of modulus R # 1. Then,

L= 2 XAXE

1
A,BeM |AB|2
deg AB<deg R
where
1
q x(A)x(B)  2¢2 X(A)x(B)
ce(X) =———"—2 > T T > B
(q2 - 1) A,BeM |AB|2 g2 —1 A,BeEM |AB|?
deg AB=deg R—2 deg AB=deg R—1
1 x(A)x(B)
t 3 D -
(42 - 1) A,BEM |AB|>

deg AB=deg R

Proof. The functional equation for even primitive characters gives us that

deg R—1
(@ =DLsx) = (" =1) > Lalx)g ™
n=0
dos B dos B 1degR—l
B —s —g\deg R— -\, —n(l—s
(7) =W(x)g 2 (¢ =1)(a )" Y La(xg "
n=0
deg R—1
_degR

:W(X)q 2 (ql’s—q) Z Ln(y)q(lfs)(dengl—n)
n=0

For any primitive character x1 of modulus R # 1, we define L_;(x1) := 0 and recall that Lgeg r(x1) = 0.
If we define

M;(x1) :== qLi—1(x1) — Li(x1)

fori=0,1,...,deg R, then @ gives us that

deg R
(8) (@' =1 Ls,x) = > Mu(x)g™
n=0
and
- deg R
(9) (@' = 1)L(s,x) = -W(X)g~ 2 Y My(x)q—deefizn),
n=0

Similarly as in the proof of Lemma we take the squared modulus of both sides of and @,
and use the linear independence of powers of ¢~*, to obtain

deg R
(q1—8—1)2|L<s,x>|2=Z< 2 Mi<X>Ma‘<X>)Q‘"S

n=0 0<i,j<deg R
i+j=n
deg R—1
+q deg R Z ( Z Mz(X)M] (X)>q(1—s)(2 deg R—n).
n=0 0<i,j<deg R

i+j=n
We now take s = % and simplify to obtain
1 2 1 2 deg -1 n deg R
(¢ = 1)?|L(50)] =2 X ( > Mi(x)Mj(x)>q2 > MM

n=0 0<i,j<deg R 0<i,j<deg R
i+j=n i+j=deg R
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Now,
deg R—1
> (X moom)
n=0 0<i,j<deg R
i+j=n
deg R—1 deg R—1
S I (D DI FRTHI AN Ve R DIRT (D DR ST AE ) Ve
n=0 0<i,j<deg R n=0 0<4,j<deg R
i+j=n i+j=n
deg R—1 deg R—1
-y o Y mwrea@)eie X (X nonm)e
n=0 0<i,j<deg R n=0 0<4,5<deg R
i+j=n i+j=n
deg R—3 deg R—2 )
- o Y non@)ei- X i ¥ nnm)e
n=0

0<i,j<deg R—1 0<i,j<deg R—1
i+j=n i+j=n

deg R—2

-2 qé( > Li(x)Lj(x))q3+de§_l< > Li(X)Lj(X)>q72L

n=0 0<4,5<deg R—1 n=0 0<4,5<deg R—1
i+j=n itj=n
Ly XARB) s MARB) sy AR
- 1 1 1
A,BEM |AB|2 A,BEM |AB|z A,BEM |AB|2
deg AB<deg R deg AB=deg R—2 deg AB=deg R—1

and similarly,

Y MM (e

0<i,j<deg R
i+j=deg R
xX(A)x(B) 1 X(B)x(4) X(A)X(B)
SR SRR RIS S L T S
ABeM |AB|> ABeM |AB|= ABem  |ABJ2
deg AB=deg R—2 deg AB=deg R—1 deg AB=deg R
Hence,
INE X(A)x(B) q X(A)x(B)
el = X SRS ;
A,BEM |AB|2 (q2 - 1) A,BEM |AB|2
deg AB<deg R deg AB=deg R—2
1
2q2 Ax(B 1 A)x(B
_ ) x( )><(l ) N S x( )X(l )’
gz —1 A,BEM |AB|2 (q2 - 1) A,BEM |AB|2
deg AB=deg R—1 deg AB=deg R
as required. O

It is convenient to define

(10) c(x) = {CE(X) if x is even

co(x) if x is odd.
4. MULTIPLICATIVE FUNCTIONS ON F,[T]

In this section we state and prove some results for the functions p, ¢ and w that are required for the
proofs of the main theorems. We will need the following well-known theorem.

Theorem 4.1 (Prime Polynomial Theorem). We have that

where the implied constant is independent of q. We reserve the symbol ¢ for the implied constant.
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We will also need the following two definitions.

Definition 4.2 (Radical of a Polynomial, Square-free, and Square-full). For all R € A we define the
radical of R to be the product of all distinct monic prime factors that divide R. It is denoted by rad(R).
If R = rad(R), then we say that R is square-free. If for all P | R we have that P? | R, then we say
that R is square-full.

Definition 4.3 (Primorial Polynomials). Let (S;)icz., be a fized ordering of all the monic irreducibles
in A such that deg S; < deg S;11 for alli > 1 (the order of the irreducibles of a given degree is not of
importance in this paper). For all positive integers n we define

Ry =[]
=1

We will refer to R, as the n-th primorial. For each positive integer n we have unique non-negative
integers my, and r,, such that

(11) R, = (deglpISmn P) <[[1Q>

where the Q; are distinct monic irreducibles of degree my,, + 1. This definition of primorial is not
standard.

Now, before proceeding to prove results on the growth of the w and ¢ functions, we note that

,u 1
(12) =JJ1- VR
w(E)deg B
(13) > T ——(Hl—

and

E\R PR
1 deg P
) ()
EIR PR P|R

for all R € A\{0} . The first equation holds for all s € C. The second holds for all s € C\{0} and is
obtained by differentiating the first with respect to s.

Also, for all square-full R € .A\{O} we have that
p(E ¢(R)|E]* _ ¢(R) n(E)
= p(E = T l—s
> M = X e =T X

(14) EF=R EF=R EF=R
_9(R) II- L
we AL
and
W(E)P(F)deg I p(R) deg P
(15) ) ‘F’s L Hl_‘p‘l s degR—i—Z|P|1 s_1)
EF=R PIR PIR

The first equation holds for all s € C. The second holds for all s € C\{1} and is obtained by
differentiating the first with respect to s.

Lemma 4.4. For all positive integers n we have that
log, log, | Rp| = my + O(1).
Proof. By and the prime polynomial theorem, we see that
mn+1

log,|Ry| = deg R, < < Z q +O( 5)) < g™
and

log,|Rn| = deg Ry, > <iqi + O(ﬁ)) > ¢

=1
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By taking logarithms of both equations above, we deduce that

log, log,|Ry| = my, + O(1).

Lemma 4.5. Let R € M. We have that

deg P
O(1 :
g Pl 1= O(logw(R))
PR

Proof. Tt suffices to prove the claim for the primorials. Indeed, if this is true, then taking n := w(R)
gives

deg P deg P
> —Z g < logn = logw(R).
2P -1 P

To prove the middle relation above, we first recall that the prime polynomial theorem gives
#Pm = %—FO (%) From this, we can deduce that there is a constant ¢ € (0, 1), which is independent

of g, such that #P<,, > cq for all positive integers m. In particular, if we take m = [lozq og 2],
then #P<,, > n . So,
o log 241 = log Z+1 )
deg P e deg P _ B i q
< - - <K 10 n
Z|p|_1— Z > |p‘_1 Z ¢ —1i gn,
P|R, =1 P prime =1
deg P=i
where the second relation follows from the prime polynomial theorem again. O

The following four results well-known (at least, their analogues in the number field setting are), and
their proofs follow the same method as Lemma above: Prove the claim for the primorials by using
the prime polynomial theorem and perhaps Lemma [4.4] and then generalise to all R € M.

Lemma 4.6. We have that
log, log,|R|

lim sup w(R
deg R—o0 ( ) Iqu‘R’

Lemma 4.7. For all R € A with deg R > 1 we have that
e "|R| -3

(16) o(F) = log, log, | R| + 0(1)6 ’

and for infinitely many R € A we have that

e*’Y‘R’ bq_%

(17) o(R) < log, log, | R| + O(l)e ’

where a and b are positive constants which are independent of ¢ and R.
Lemma 4.8. For all R € A with deg R > 1 we have that

€_W¢(R) efcqf%
log, log,|R| 4+ O(1) ’

¢*(R) >

and for infinitely many R € A we have that

e To(R) dq~?

* R < ,
() < log, log,| R + O(l)e

where ¢ and d are positive constants which are independent of ¢ and R.
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Lemma 4.9. Let k be a non-negative integer. For R € M,

I 1 g 1 2
1+2|P|—1 - 1L+ |P~1)”

P|R
P|R P|R

(H 1—|P|~ 1) w(R) > 1;
PIR
<H 1- |P|_1>w(R) > /w(R) > logw(R

P|R
Note, the fourth result follows easily from the third
We end this section with three more lemmas.

Lemma 4.10. We have that

Proof. For all N € A we have that

S e =Tl

E|N P|N

_ _ N
1‘}11|P|1 SN)

So,

R 1N _ HE HE)’ ne
2 $(N) 2 INT¢(N) 2 INIZ -2 ¢(E) 2 [NV

NeM NeM NeM E|N EeM NeM
deg N<z deg N<z deg N<z deg E<z deg N<z
E|N
p(E JU—degE) ( 3 p(E)? )
= > z+0(1)
2 B)|E] 2= H(B)|E]
deg E<z
O
Lemma 4.11. We have that
M >
NeM
degN<a:

Proof. For square—free N we have that

ol H(lflPl N —1H<++1+ >: y L

2 )
o N TN Ny PP vig 1M
rad(M)=N
and so
2
,u 1 1
—_ > — = .
Zmc X X wac X m
deg N<z N is square-free rad(M)=N deg M <z
deg N<z
O

While it is not a result on multiplicative functions, the proof of the following lemma uses several results
from this section.
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Lemma 4.12. Let R € M and let x be a positive integer. Then,

Z 1 \(R|)33 + O(logw(R)) if v > deg R
=, A ‘(Rl)x%—O(logw(R))+O<2wéf)x> ifo<degR’
deg A<z
(A,R)=1

Proof. For all positive integers x we have that

1 1 L L 1
D= 2 A 2 B =D uE) > o= D) MSE) 2. T

AeM 4] AeM | |E|(A,R) E|R AeM 4] E|R | AeM

deg A<z deg F<z deg A<z deg E<z deg A<z—deg F
(A,R)=1 E|A -
1(E) n(E) n(E)
(x —degE) = (x —degE) — (r —deg E).
o |E o [E o |El
deg E<z deg E>x
By , , and Lemma we see that
u(E P(R) <¢(R)
(x —degE) = —~z+ O logw(R) ).
,;Q 7] 7]

When x > deg R, it is clear that

Z ,u (x —deg E) = 0.

E|R
deg E>z

Whereas, when z < degR we have that

M w(E)|deg B x 2w (B)
lo—dr) < Y MEEEE < LY up < T
E|R E|R 9 E|R 9
deg E>x deg E>x deg E>x

The proof follows.

5. THE SECOND MOMENT
We now proceed to prove Theorems [2.4] and
Proof of Theorem [2.4. By using the functional equation for Dirichlet L-functions, we have that

1 g x(4)x(B) 1 *
— L(= = .
s S e m D, X, S e

degAB<degR

For the first term on the RHS, by Lemma [3.7] and Corollary [3.8] we have

X(A)Y(B) 2 Z 1
— = pEY(F) Y
R) sir  ABem |AB|2 ¢*(R) jon ABem |ABJ?
deg AB<deg R deg AB<deg R
(AB,R)=1
A=B(mod F)

1 2 1
=2 Y it X AEeE) Y ;

AeM EF=R Apem |AB|2

deg A<% deg R deg AB<deg R

(A,R)=1 (AB,R)=1
A=B(mod F)
A+B
By Lemma [4.12] we have that
1 ¢(R)
2 — deg R+ O(1 R
>, o gy des R+ (logw(R)).

AeM ‘ |
deg A< % deg R
(A,R)=1

13
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For the off-diagonal terms, let us consider the case where deg AB = 2z and deg A > deg B. Then,
deg B < 3 and we can write A = LF' + B for monic L with deg L = z — deg B — deg F. So,

PO S S

ABem |AB|z Bem  |B|? LeM
deg AB=z deg B<% deg L=z—deg B—deg F’
deg A>deg B
(AB,R)=1
A=B(mod F)

The case where deg A < deg B is similar.
A=LF+ Bfor L € Awith deg L < deg B — deg F'. So,

For the case deg A =

z
zq?2

2F|

‘»Q
[SIE%

1
T <
ILF|z ~ |

>
’ BeM |B‘
deg B<3

!

1 z+1

1 1 qz q 2
> < 2 > T <t 2 l=TE
ABEM AB|? ~ jy \ LeA iLrlz 1l g%, £
deg AB==z deg B—f deg L<deg B—deg F' deg B=%
deg A=deg B
(AB,R)=1
A=B(mod F)
A#£B
Hence,
deg R—1 1
1 1 R|2deg R
D S S SPRCULL . £
azem 1ABlz Fl o |
degAB<degR
(AB,R)=1
A=B(mod F)
A#£B
and so
2 1 yR|2 degR 2W<R>\R|% deg R
EF=R ABem |AB|z EF= R
deg AB<deg R
(AB,R)=1
A=B(mod F)
A#B
Hence, we have that
A)x(B R
x( )X(l ) = ¢(R ) deg R+ O(logw(R)).
XmodR A,BEM |AB’2 ‘ ’
deg AB<deg R

Finally,

x mod R xmod R x mod R
x odd X even
wl X e+ 2 9
= C — C .
¢*(R) ol ot
x mod R x mod R
X even

By similar methods as previously in the proof, we can see that the above is O(1). The result follows.

deg B, we have deg B =

: and

< |R|"3.

g
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Proof of Theorem [2.5, We have that
(LN * X(A)x(B)
PONLICRY D DY

1
x mod R x mod R A,BEM ‘AB,Q
deg A,deg B<deg R

=Y wEerF) Y !

1
EF=R A,BeEM |AB|2
deg A,deg B<deg R
(AB,R)=1
A=B(mod F)
1 1
= wWEWE) Y —x Y —7
EF=R aem A2 g B2
deg A<deg R deg B<deg R
(A,R)=1 B=A(mod F)

The second equality follows from Lemma For the last equality we note that if R is square-full,
EF = R, and pu(E) # 0, then F' and R have the same prime factors. Therefore, if we also have that
(A,R) =1 and B = A(mod F'), then (B, R) = 1.

Continuing,
* 1 2
> |E(50)
x mod R
1 1
= > wBeF) Y — > w6 Y
EF=R aem AR glam Bem B2
deg A<deg R deg B<deg R
B=A(mod F)
1 1
U9 = X w3 ow@ > s >
EF=R GIR aem A2 gey |BI?
deg A<deg R deg B<deg R
G|A B=A(mod F)
1 1
SPIEEG) WIS SR GED N (D DR |
EF=R GIR KeA Aem A2 Bem B2
deg K<deg F—deg G deg A<deg R deg B<deg R
o A=GK (mod F) B=GK (mod F)

The last equality follows from the fact that F' and R have the same prime factors, and so, if u(G) # 0,
then G | F. Hence, if G | A, then A = GK(mod F) for some K € A with deg K < deg F' — deg G or
k=0.

Now, we note that if K € A\ M, then

1
1 1 1 1 /[|Rz 1
> o oorm Y e % (=)
A AP iy |LF+GK|: P LI CE AN R Ak
deg A<deg R deg L<deg R—deg F’ deg L<deg R—deg F’

A=GK(mod F)

Whereas, if K € M, then

1

1 1 1 1 1 (|Rz 1
Z I T Z T~ T T ( Fl 1>'
aem A2 |GK]Z LeM ILF +GK|z |GK|z ¢z —1\IFl|F|z

deg A<deg R deg L<deg R—deg F’

A=GK(mod F)
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Hence,

\ )( ; >
z : 2 : 1 2 : 1
KeA < Aem A2 Bem B2
deg K<deg F—deg G deg A<deg R deg B<deg R
0

KEO A=GK(mod F) B=GK (mod F)

1 Rz 1 >2
- - 1
(2 —1)2< Il |F| KZ

€A
deg K <deg F'—deg G
or

K=0
1
2 <yR|2 1 ) 1 1
+ — -
gz -1\ IFl|F]z/ G2 Kg K2
deg K<deg F—deg G
1 1
‘w X m
G = | K|
deg K<deg F'—deg G
1 (yR| 2|Ry% 1 2 > deg F' degG
(¢z = 1)’\IFGl "|F|Glz  IGl  |F2|G)2 |G| G|

By applying this to , and using to , we see that

* 1 2
Xgm L(3%)|
$(R)? $(R)? ~ deg P 1 ( SR . H(R) 1 2)
= deg R+ 2 — 2 11— — .
[RP T Rp ;R’P|—1+(q§1)2 IoE \Rﬁl'l( |P|%>

6. THE BRUN-TITCHMARSH THEOREM FOR THE DIVISOR FUNCTION IN F,[T]]

In this section we prove a specific case of the function field analogue of the generalised Brun-Titchmarsh
theorem. The generalised Brun-Titchmarsh theorem in the number field setting was proved by Shiu
[Shi80]. It gives upper bounds for sums over short intervals and arithmetic progressions of certain mul-
tiplicative functions. We will look at the case where the multiplicative function is the divisor function
in the function field setting.

The main results in this section are the following two theorems.

Theorem 6.1. Suppose «, 8 are fized and satisfy 0 < a < % and 0 < B < % Let X € M and y be a
positive integer satisfying fdeg X <y < deg X. Also, let A € A and G € M satisfy (A,G) =1 and
deg G < (1 — a)y. Then, we have that

Ydeg X
> d(N) <ap %
o ?(G)

deg(N—X)<y
N=A(mod G)

Intuitively, this seems to be a good upper bound. Indeed, all NV in the sum are of degree equal to
deg X, and so this suggests that the average value that the divisor function will take is deg X. Also,

there are qyﬁ ~ qyﬁ possible values for NV in the sum.

Theorem 6.2. Suppose «, 3 are fized and satisfy 0 < a < % and 0 < B < % Let X € M and y be a
positive integer satisfying fdeg X < y < deg X. Also, let A € A and G € M satisfy (A,G) =1 and
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deg G < (1 — )y. Finally, let a € Fy. Then, we have that

Ydeg X
D d(N) <ap %-
NeA
deg(N—X)=y
(N=-X)e M
N=A(mod G)

Our proofs of these two theorems are based on Shiu’s proof of the more general theorem in the number
field setting [Shi80]. We begin by proving preliminary results that are needed for the main part of the
proofs.

The Selberg sieve gives us the following result. A proof is given in [Web83|.

Theorem 6.3. Let S C A be a finite subset. For a prime P € A we define Sp =SNPA={Ae€S:
P | A}. We extend this to all square-free D € A: Sp =S N DA.

Furthermore, let @ C A be a subset of prime elements. For positive integers z we define Q, =

[ peco P. We also define Sg.. = S\ Uplo. Sp.
deg P<z

Suppose there exists a completely multiplicative function w and a function r such that for each D | Q. we
have #Sp = %#Sl) +7(D) and 0 < w(D) < |D|. Also, define 1 multiplicatively by (P) = % -
and Y(P°¢) =0 fore > 2.
We then have that
#S0. ::#(3\ Uple. sp) —#{AcS:(P|Aand P € Q) = degP > 2}
#S
st Y (DB

Y Fem

O(F D,EEM
deg F'<z &) deg D,deg E<z
FlQ. D,E|Q.

Corollary 6.4. Let X € M and y be a positive integer satisfying y < deg X. Also, let K € M and
A € A satisfy (A, K) = 1. Finally, let z be a positive integer such that deg K + z <y. Then,

qy 2z
Z 1< +0(q*).
N d(K)z < )
deg(N—X)<y
N=A(mod K)
p—(N)>z

Proof. Let us define
S={NeM:deg(N—-X)<y,N=A(mod K)}
and
Q ={P prime:degP < z,P{ K}.
Then, we have that

#SQ,Z = Z 17

NeM
deg(N—X)<y
N=A(mod K)

p—(N)>z

which is what we want to bound.

For D | Q, with deg D < z we have that

qy

#Sp =#{N e M :deg(N — X) <y,N = A(mod K), N =0(mod D)} = KD
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This follows from the fact that K and D are coprime and that deg K + deg D < deg K + z < y. For
D | Q, with deg D > z we have that

qy
[K D
where |cp| < 1. Therefore, we have w(D) = 1 and |r(D)| < 1 for all D | Q,. We also have that
(D) = ¢(D) for square-free D.

#Sp = +cp

We can now see that

P (F) pu(F)?
2 O(F) > P(F)’

FeM FeM
deg F'<z deg F<z
F|Q. (F,K)=1

and we have that

p(F)? Z p(E)? p(F)?
> =3 -
2, o) 2 oB) Az, olF)
deg F'<z deg F'<z
(F.K)=1
To this we apply Lemma and the fact that
u(E)? 1 7 K]
ME 11+ - =TT (1-|P S
2o = L= = ILO 1) =5

to obtain

Also, we have that

> |r<[D,E]>,§< 3 1>2<<q2z.

D,EeM DeM
deg D,deg E<z deg D<z
D,E|P.
The result now follows by applying Theorem [6.3] O

The proof of the following corollary is almost identical to the proof above.

Corollary 6.5. Let X € M and y be a positive integer satisfying y < deg X. Also, let K € M and
A€ A satisfy (A, K) = 1. Finally, let z be a positive integer such that deg K + z <y, and let a € F.
Then,

q’ 2
>, 1< +0(a*).
= O(K)z ( )

deg(N—X)=y
(N-X)eaM

N=A(mod K)
p—(N)>z

Lemma 6.6. We have that

w

1 q q q
) — + O(—).
_ 2 2
des P degP qg—1(w+1)

wlg

In particular, we can find an absolute constant 0 such that

w

1 q
g <0—.
deg P w?
deg P<w
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Proof. By using the prime polynomial theorem, we have that

1 ~ 1" ~d L (1
Z degP_Zn n+ <n> _Zn2+ <2>
deg P<w n=1 n=1
The proof follows by noting that
(S ) () o)t ol
—n? q—1\Z= n* n? ¢—1\ = (n+1)? n? w qg—1(w+1)2 w3/’

Lemma 6.7. Let 0 < o, 8 < %, let z > q be an integer, and let
w(z) = log, 2.
Then,

>, 1< g¥
NeM

deg N<z
p+(N)<w(z)
as z — 00, where 0 is as in Lemma[6.6. In particular, this implies that
> i<
NeM
deg N<z
p+(N)<w(2)
(under the condition that z > q).

Proof. Let 6 > 0. We will optimise on the value of § later. We have that

Z 1 Sq&z Z |N|—6 < q6z Z |N|—6 :q6z H (1_|_ |P|—6+ |P|_26—|—...>

NeM NeM NeM deg P<w(z)
deg N<z deg N<z p+(N)<w(z)
p+(N)<w(z) p+(N)<w(2)
1 1
__ 0z 6z
= T (=) < T (oo (=)
deg P<w(z) deg P<w(z)
1
< 52
=4 H (eXp<5log]P|)>’
deg P<w(z)

where the last two relations follow from the Taylor series for the exponential function.
Continuing,

qu(z)

1 1
1< 51 - < 61
> —exp(( qu)”aloqugZ degP>_eXp<( 0gq>z+510ng(z>2>’

NeM P<w(z)
deg N<z

p+(N)<w(2)
where the last inequality follows from Lemma By using the definition of w(z), we have that

g () 0z

w(z)? ~ (log, 2)?’

and if we take

WV
~ log 2’
then
S 1 (Y | Ve iy
Nou 0g 2 (log g)(log, 2)
deg N<z
P+ (N)<w(z)
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Lemma 6.8. Let z and r be a positive integers satisfying rlog,r < z. Then,

d(N) rlogr
> et (-)
NeM
deg N>%

p+(N)<Z

Proof. Let % < < 1. We will optimise on the value of § later. We have that

Z Méq(d—l)g Z diN) _ 61z Z d(N)

>4q
Nem VI Neq NP e NP
deg N>% deg N>% p+(N)<2
p+(N)<Z pr(N)<Z
o0
(19) <, (6-1)2 L 2 l+1
=4 H +|p|6+Z’p’l<S
deg;PgE =2
< 1 9 [+1
<o (men- D342 T pe 3 S
deg P<Z2 deg P<Z 1=2

where the last relation uses the Taylor series for the exponential function.

Note that

> Yy

1+1 3 1\’ 1’
\P\%Z\Prw > pelimg) 2 ()

(20) deg P<Z 1=2 P prime P prime |PJ® P prime
=0(1),
where the last relation uses the fact that 6 > 3 . Also, we can write ﬁ = |—1| + ﬁ (|P|1_5 - 1).

We have that

(21) Z‘}D,:;lﬂ("m(

deg P<Z q
and that
1 s 1—5 10g\P!)
> (e —1)— > |Z
deg P< 2 degP<Z
logq nl log q) deg P
dengf
n:l

where the second-to-last relation follows from a similar calculation as (21)).

We substitute , , and into to obtain

d(N .
Z (N) <Lz exp<logq(5—1);+2(1+c)q(1—5)r>.
You IV

deg N>Z

pr(N)<Z
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1 - . .
We can now take § =1 — ~ Z‘i‘ﬁ (by the conditions on 7 given in theorem, we have that % <d <1, as

required). Then,

d(N 1 1
Z <N)<<z26xp<— 4 (;gr+2(1+c)r411> < ZQexp<—T (;gr)_

O

Proof of Theorem [6.1. We will need to break the sum into four parts. First, we define z := 10Y- Now,
for any N in the summation range, we can write

(23) N =P .. PP .. P, ™
where deg Py < deg P, < ... <deg P, and j > 0 is chosen such that

deg (P ... P ) < 2 < deg (P .. P, Py ).
For convenience, we write

BN ::Plel . fjjej,

Dy ::Pj+1ej+1 R Pne".

We will consider the following cases:

(1) p—(Dn) > 37 ;

(2) p-(Dn) < 3z and deg By < 3z ;

(3) p—(DN) < w(z) and deg By > %z ;

(4) w(z) < p_(Dn) < £z and deg By > 37 ;

where

log,(2) ifz>gq.

w(z)::{l if z<gq

Case 1: We have tha

Y dN)= ) d(By)d(Dy)< D> d(B) > d(D),
BeM

NeM NeM S DeM
deg(N—X)<y deg(N—X)<y deg B<z deg(D—Xp)<y—deg B
N=A(mod G) N=A(mod G) (B,G)=1 D=Ag(mod G)
p—(Dn)>%2 p—(Dn)>32 p—(D)>5z

where X p is a monic polynomial of degree deg X — deg B such that deg (X — BX B) <y, and Ap is a
polynomial satisfying AgpB = A(mod G).

We note that

20

and so d(D) < 2« . Hence,

Y d(N)<. Y. d(B) > 1.

NeM BeM DeM
deg(N—-X)<y deg B<z deg(D—Xp)<y—deg B
N=A(mod G) (B,G)=1 D=Ap(modG)

p—(Dn)>1z p—(D)>3z=
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We can now apply Corollary [6.4] to obtain

S g ¥ e s (g ee) S OGR

NeM BeMm BeM 9(G)2 sem Pl
deg(N—X)<y degB<z deg B<z deg B<z
(24)  N=A(modG) (B.G)= (BG)=1 (B.G)=1
p,(DN)>%Z
2¢Y 22) s ¢z _ ¢¥degX
< +q7 ) < < ;
<¢>(G)Z (G) —  ¢(G)

where the second-to-last relation uses the fact that deg G < (1 — a)y and z = {5y.
Case 2: Suppose N satisfies case 2. Then, the associated Pj1 (from (23)) satisfies Pj;1%+ | N,

deg Pjy1 < %Z, and deg Pj 1%+ > %z. For a general prime P with deg P < %z we denote ep > 2 to
be the smallest integer such that deg P¢P > %z. We will need to note for later that

> opms, X e X et

degPﬁ%z degPSiz iz<degP§%z

Let us also note that for N with deg N < deg X we have that

0ol

A(N) <oy N[0 < [X|5 < gfi¥ = g5

So,
S oame Y Y et XY
NeM deg P<1: deg P<1: NeM
deg(N—X)< 2% g (N X)< 227 geg(N_X)<
]\(;iA(mod GZS’ (PG)=1 ]\?g A(mod G?)J (PG)=1 ]\(;iA(mod G?)J
p—(DN)S%Z N=0(mod P¢P) N=0(mod P¢P)
degBNS%z
(25) 1 1 1 1y 1 5
<g8~* Y O(1 Y O(qs?
< Y (g tOm) <ot X +06H)
deg P<5z deg P<3z
(P,G)=1
1 5 1
<q¥ =5+ 0(q¥7) < ¢¥ g7,
e > o) <d'g

where the last relation follows from the fact that z = {fy and deg G < (1 — a)y.

Case 3: Suppose N satisfies case 3. For the case where z < ¢ we have that w(z) = 1, meaning that
the only possible value N could take is 1. At most this contributes O(1).

So, suppose that z > ¢, and so w(z) = log, z. Case 3 tells us that %z < deg By < z and

p+(Bn) < p—(Dn) <w(2).
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Hence,

>

NeM

dN) <apq® > 1

NeM

23

deg(N—-X)<y deg(N—X)<y
N=A(mod G) N=A(mod G)
p—(Dn)<w(z) p—(Dn)<w(z)
%z<degBN§z %z<degBN§z
1
D S M
BeM NeM

%z<degB§z deg(N-X)<y
(B,G)=1 N=A(modG)
Pt (B)<w(2) N=0(mod B)

(26) < S (g rom)

BeM
%z<deg B<z

p+(B)<w(z)

Y
(gt X, 1)roud
BeM
%z<degB§z

p+(B)<w(2)
Y s, 1, 9,
<<<’qG|q‘s qt )—I-O(qs )
Y
¢ 1,

L
|G|

as z — 0o, where the second-to-last relation follows from Lemma and the last relation uses the
fact that degG < (1 — a)y and z = .

Case 4: The case z < 1 is trivial, and so we proceed under the assumption that z > 1. We have that

(27) > dN)= > d(B) > d(Dy).

NeM BeM NeM
deg(N-X)<y %z<degB§z deg(N—X)<y
N=A(mod G) (B,G)=1 N=A(mod G)

w(z)<p—(Dn)<32 w(z)<p-(Dn)<32

%z<degBN§z BNn=B
p—(Dn)>p+(BnN)

We now divide p_(Dy) into the blocks %z <p-(Dn) < Lzforr=2,3,...,r where

"= waz)J ’

For Dy satisfying ﬁz <p_(Dn) < %z we have that

QDy) < deg X < deng < 10(r +1) < &’
p—(Dn) Py of ap

and so

20
where g = 28,
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So, continuing from ,

NeM r=2 BeM NeM
deg(N-X)<y %z<deg B<z deg(N—X)<y
N=A(mod G) (B,G)=1 N=A(mod G)

w(z)gp,(DN)géz pp(B)<lz ) NEO(mgd B) )
1 T _ <1
(28) deg BN>352 T 2<p (DN)<sz
T1
<> a" > d(B) > 1,
r=2 BeM DeM
%z<deg B<z deg(N—Xp)<y—deg B
(B,G)=1 NEAB(mold Q)
p(B)<iz p—(D)> 52

where Xp is a monic polynomial of degree deg X — deg B such that deg X — BXp < y, and Ap is a
polynomial satisfying AgB = A(mod G).

Corollary [6.4] tells us that

¢ r+1 2z ¢ r+1
3 1S T
P GBI SC)Bl
deg(N—Xp)<y—deg B
N=Ap(mod G)
p—(D)> 77

where the last relation follows from the fact that deg B < z, z = {§y, and deg G < (1 — a)y. Hence,
continuing from :

T1

¢V 1 r d(B)
> d(N)<<m;Z(r+1)a > B

NeM r=2 BeM
deg(N—-X)<y 12<deg B<z
N=A(mod G) (B,G)=1

v<p-(Dn)< 52 p+(B)<iz
degBN>%z "

Finally, we wish to apply Lemma This requires that rlog,r < z. Now, when 1 < 2 < ¢ we have
that w(z) = 1 and 71 = z. Hence, rlog,r < zlog, ¢ = 2. When 2z > g we have that w(z) = log, z and

ry = [ﬁJ Hence, rlog,r < @(logq z —log,log, z) < 2, since z > ¢q. Hence,

T1

Yy 1 Yy Yy
Z d(N) < a Z(r+1)arexp<—rogr> < ¢q s 1 deg X.

z
Z oG L 9 @° <90
(29) deg(N—X)<y
N=A(mod G)
v<p_(DN)<3z
degBN>%z
The proof now follows from , , , and . O

Proof of Theorem[6.4. The proof of this theorem is almost identical to the proof of Theorem [6.1
Where we applied Corollary we should instead apply Corollary Also, the calculations

qy qy
Yo 1=+ 0) and dYooo1= +0(1)
NeM ’GP P‘ NeM ’GB|
deg(N—-X)<y deg(N—X)<y
N=A(mod G) N=A(mod G)

N=0(mod P¢P) N=0(mod B)
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should be replaced by

qY qY
>ooo1= +0(1) and >oo1= +0(1),
ep
Nea |G Per] Nea 5]
deg(N—X)=y deg(N—X)=y
(N-X)eaM (N-X)eaM
N=A(mod G) N=A(mod G)
N=0(mod P¢P) N=0(mod B)
respectively. O

7. FURTHER PRELIMINARY RESULTS

Lemma 7.1. Let ¢ be a positive real number, and let k > 2 be an integer. Then,

/C+i°°y'5dsz 0 | if0<y<1
— ilogy)* ! ify>1
Proof. See [Mur01, 4.1.6, Page 282] O

Lemma 7.2. For all R € A and all s € C with Re(s) > —1 we define

1— ‘P|_S_1
I =1 i
PR

Then, for all R € A and 7 = 1,2,3,4 we have that

](g)(O) < (log, logq\Rl)j H
PIR

1—|pP|7!
1+ P71
Remark 7.3. We must mention that, in the lemma and the proof, the implied constants may depend

on j, for example; but because there are only finitely many cases of j that we are interested in, we can
take the implied constants to be independent.

Proof. First, we note that
(30) fr(s) = gr(s) fr(s),

where

1 1
gR(S) = Z2log‘P’<’P’s+1 +1 + ’P’2s+2 _ 1) :
P|R

We note further that
#(s) =(9r()% + gh(5) ) fr(s),
(31) 1#(5) =(92()* + 39(5)g(5) + Gh(5) ) Fr(s).

#'(5) =(9r(5)" + 69r(5)29a(s) + 4gr()9k(s) + 39k(5)* + g (5)) Fr(s).
For all R € A and k =0,1,2,3 it is not difficult to deduce that

(log’PDk—H

(32) g (0) <> =P

PR

(logm) rH

The function ~——5— is decreasing at large enough x, and the limit as x* — oo is 0. Therefore, there
exist an independent constant ¢ > 1 such that for £k = 0,1,2,3 and all A, B € A with deg A < deg B
we have that
k+1 k+1
(loglA])™"" _ (log|B|)
|Al—1 — |B|-1
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Hence, taking n = w(R), we see that

(loglP)*" (logl P ! . G
@y b PIT S PT < 2 1<<Z7"
PIR P|R, n=1
<(my 4+ 1) < (log, logq|Rn]) < (log, 1ogq|R|)kJrl

where we have used the prime polynomial theorem and Lemma

So, by f and the fact that

1- [P
fr(0) = H W,
PR

we deduce that

1-|pP|™!

(J)(O) < (logq logq\RD H W

PIR

Lemma 7.4. Let R € A, and define zg' := deg R — log, 9«(R) " We have that

2+ (N) o (1—q7) 1—|PI! 4
P|R

NeM
deg N<zg’
(N,R)=1

1—|P|~!
! O((g 1+\P—1> ((deg R)*w(R) + (deg R)* 10g deg R)) .

Proof. STEP 1: Let us define the function F' for Res > 1 by

2w(N)
NeM
(N,R)=1

We can see that

ro= I (et )= I (7o)

P prime P prime

PtR PiR

11 (Hlf’l‘) I (1— |P\—8> _ Cals)? 1 (1— |P|_3>
P prime 1- ’P|7S P|R 1+ |P‘78 (_/4(25) PR 1+ |P|75

Now, let ¢ be a positive real number, and define yr := qu/. On the one hand, we have that

1 c+ioo YR 1 gw(N)  petioo YR w(N) YR\ 2
— F(1+s)—ds=— / ds = log (—)
7 e U 2 TN o T 2 A ()
(N,R)=1 deg N<zp'
N,R)=1
(34) (N.R)
2 2W(N) / 2
=(logq)® > AT (e — deg N)?,
NeM
deg N<zp'
(N,R)=1

where the second equality follows from Lemma
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On the other hand, for all positive integers n define the following curves:

r 2 1)me 2 1)me
ll(n)::c—(n+ )m’c+(n—|— )71’7,:|
L log q log q
o 2n+Dmi 1 (2n+ 1)mi
l2(n) i=[e+ logg = 4 log q }
1 @n4+lmi 1 (2n+ )7
la(n) := a1t logg = 4 loggq }
o1 2n+1 2n 4 1)mi
la(n) == — = ( )i ,C— ( ) ]
L4 log q log q
L(n) 2—l1(n) U l2( )uU lg( ) @] l4(n)

Then, we have that
(35)
1 c+i00 yRS
— F(1
. (1+s) 3

T Je—ico

I Yr® / Yr® / Yr® / Yr®
=— lim / F(l1+s F(l+s F(l+s F(l1+s
T Nn—00 ( L(n) ( ) s3 l2(n) ( ) 53 l3(n) ( ) s3 la(n) ( ) s?

27

STEP 2: For the first integral in we note that F(1 + s)ysigs has a fifth-order pole at s = 0 and
double poles at s = M for m = +1,42,...,+n. By applying Cauchy’s residue theorem we see that

(36)  lim / F 1+s)yR ds = 2 Ress_ OF(s—l—l)yR ommi F(1 4 )yR
n—o00 1 3 ~Togq S
mEZ
m7#0
STEP 2.1: For the first residue term we have that
Z/R 1 d 2.2 1 1— P>t
s=0 F’ =— lim — 1 T S——— —_ 5.
(87)  Ressmo F(s +1)75 = 37 lim 75 <C““(S+ ) Ca(25 +2) Ig{ 1+ Pl )YF
If we apply the product rule for differentiation, then one of the terms will be
1 1 1—|P|=s~1\ a*
— 1 1
P <C““(S+ s (23+2)H<1—|—\P\ == 1>ds4yR
_ (1 =g ") (logg)? 1-|p|™! "
- 24 1] FEEIALR
P|R
(1—q~)(logq)® 1- P~ 4 1- P! 3
= 1 — .
51 Ig% TP (deg R)* + O ogqlg% TP (deg R)°w(R)

Now we look at the remaining terms that arise from the product rule. By using the fact that (4(1+s) =

L__ and the Taylor series for ¢—%, we have for k = 0,1,2,3,4 that

—
(38) i Y s = oq),
s—0 (log q)k—1 dsk
Similarly,
a* d*
(39) lim = (25 +2)7 = lim (1 - q*HS) ~0(1),

By , , and Lemma [7.2) n, we see that the remaining terms are of order

1—|P|!
Iqu2H<1+:p: 1>(degR)3logdegR.
PR
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Hence,

yr® _(1—q ")(logg)® 1—|PI™
2Ress—0 F(s+1) 3 :( 1;( ) H 14_:}3}_1 (deg R)*
PIR

(40) _
+0 ((log q)2 ( I1 %) ((deg R)3w(R) + (deg R)®log deg R)> :

P|R

STEP 2.2: Now we look at the remaining residue terms in (36). By similar (but simpler) means as
above we can show that

Res__2mmi F(1+ s)y—RS =0 L(logq)2 H ﬂ deg R
5= Toga s m3 1+ |P|~t ’

~ loggq 3

P|R
and so
| ur® _ 0 )
(41) ZResszzk%; F(1+s) = O((logq) <H P degR |.
meZ P|R
m##0
STEP 2.3: By , and , we see that
(42)
1 yr®  _(1—q ")(logg)® 1-|p|™! 4
lim — F(1 2= ds = S
oo T /L(n) (145)75ds 12 Ig% 1+ |P| T (deg R)
1—|p|I~t
+0 <(10g q)* < H HP;1> ((deg R)3w(R) + (deg R)?log deg R)) .
PIR

STEP 3: We now look at the integrals over la(n) and l4(n). There exists an absolute constant s such
that for all positive integers n and all s € la(n),l4(n) we have that F(s + 1)yr® < s|R|°"L. One can
now easily deduce for i = 2,4 that

1 S
(43) lim / F(1+ )2 ds| = 0.
n—oo [ 71 lz(n) S
STEP 4: We now look at the integral over I3(n). For all positive integers n and all s € I3(n) we have
that
1 2
Ca(2s+2)
and
1—|P|=s1 1+|P|"1
(I (22 (1
P|R | PR~ [P P|R
2
<([[1+= ) 2>\Ry—i
PR 20— 1/ \ppg
8
< H8>|R| 4<<< 1><<1.
PR pir [Pl

We can now easily deduce that

1 S
(44) lim ,/l( )F(1+s)3§§ds‘ = 0(1).
3(n

n—oo | T
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STEP 5: By . , , and , we deduce that
22N _(1-q) 1-|p["!
— deg N)? deg R)*

NemM P|R
deg N<zg'

(N,R)=1

+ O(( H 1‘7‘:]};:) ((deg R)3w(R) + (deg R)?log deg R)) .

PR
O
Lemma 7.5. We have that
2w (N) —1 3¢+ 1
=y q; z+1=0(2).
N IV q q
deg N<z
Proof. For s > 1 we define
-y
TN |s+1°
Nea VP
We can see that
2 2 2 2
F(s) = <1+ + + +...>: (-1)
Pl:i[me ‘P‘S+1 |P|2(S+1) |P|3(S+1) P prime 1- ‘P‘%H
1— —1
o PRGTD (s + 1) 1o
= 11 L\ ((2s+2) Zq " <_ S)'
P prime (1 — W)
By comparing the coefficients of powers of ¢7*, we see that
x
g—1 , 3q+1
—-1) = 1.
2 IN\ <Zn+ > Q<Z ) 2q © T T
NeM n=2
deg N<zx
O
Lemma 7.6. Let R € M. We have that
ow(N) 1 9 1—|P|7! 2
————— | (degR)" < ———— |(deg R)".
2z T < (I ggps ) es ) = (T 5 s ) (s )
eM PIR PR
deg N<deg R
(N,R)=1
Proof. We have that
gw(N) ow(E) w(N) 9
- )< —_— deg R)".
(X W)(ET)s T <t
NeM E|R NeM
deg N<deg R deg N<2deg R
(N,R)=1
where the last relations follows from Lemma [.5l We also note that
2w (E) 2
>y M L1
E|R E|R P|R [Pl
This proves the first relation in the lemma. The second relation follows from Lemma O

Lemma 7.7. Let F,K € M, z >0, and a € F}. Suppose also that %x <deg KF < %x. Then,

>
|H|

H|K

degngdeQgKF

> d(N)d(KF +aN) < ¢*z*

NeM
deg N=x—deg KF
(N,F)=1

1
|KF|
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Proof. We have that,
> d(N)d(KF + aN)

NeM
deg N=x—deg KF
(N,F)=1
<2 ) Y d(KF+aN)
NeM G|N
deg ]\g;%ielg KF deg ngfdzg KF
< ) > d(KF+aN)
GeM NeM
deg GS% deg N=x—deg KF
(G,F)=1 cGIN
- > > > dEF )
H|K GeM NeM
deg H< 2=dee KF degGS% deg N=x—deg KF
- (G, F)=1 GIN
(G,K)=H
— 3 > > d(HK'F + aHN')
H|K GeM N'eM
deg H<2=42 KF deg G< =B KL deg N'=z—deg KF—deg H
= 2 (G,F)Zl G/|N/
(G, K)=H

where N',G’, K are defined by HN' = N, HG' = G, HK' = K. Continuing, we have that
> d(N)d(KF + aN)

NeMm
deg N<zx—deg KF
(N,F)=1
< Y A Y] > d(K'F + aN')
HIK GeM N'em
deg H< 2=deg KF deg G< 7“”*1523' KF deg N'=z—deg KF—deg H
- (G, F)=1 G'|N’
(G, K)=H
DN Y > d(M)
HIK GG'AfingF deg(M K/F)ME.A(/il KF—degH
z—deg KF deg G< &—4¢ eg — =x—deg —deg
deg HS 2g — €g (G_7F):?L (M_K’F)EaM
(G,K)=H M=K'F(modG")
1 d(H) 1
LI TN S
KE 22 W 2, 90
deg H< 2= KE deg G Z=deg KE
(G, F)=1
(G, K)=H
d(H)
<q°2?
R 2 A

rz—deg KF
deg H<5—3-~

The third relation holds by Theorem 6.2 with 3 = ¢ and a = } (one may wish to note that (K'F,G’) =
1 and that the other conditions of the theorem are satisfied because %x < degKF < %m) The last
relation follows from Lemma .10 U

Lemma 7.8. Let F, K € M and x > 0 satisfy deg KF < x. Then,

d(H
Y A(N)A(KF + N) < ¢"2® ) (H!)
NeM H|K
deg N=x degHgg

(N, F)=1
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Proof. The proof is similar to the proof of Lemma We have that

Y dN)KF+N)<2 Y Y dKF+N)< > > d(KF+N)

NeM NeM G|N GeM  NeM
deg N=x deg N= mdegG degG< deg N=x
(N,F)=1 (N F)= (G,F)= 1 GV

Y Y AKF+N)

H|K GeM  NeM
deg H<Z deg GX§ deg N=zx

(G,F)= 1 GIN

(G )=
>y S dHK'F+HN),
HK  GeM N'eM

deg H<%Z deg G<3 deg N'=zx—deg H

(G, F)= 1 G'IN'
(G,K)=H

where N',G’, K are defined by HN' = N, HG' = G, HK' = K. Continuing, we have that

> AN)EF+N)< Y dH) > > d(K'F + N)

NeM H|K GeM N'emM

deg N=z¢ deg H<Z deg G<3 deg N'=x—deg H
(N,F)=1 (G,F)=1 G'|N’
(G, K)=H
> dH) > > d,
HIK GeM MeM
deg H<Z degG<m deg(M—X)<z—deg H
-2 (G,F)=1 M=K'F(modG’)
(G,K):H

where we define X := 7%~ 9¢# We can now apply Theorem . to obtain that

d(H
S AN)AKF +N) <z S |H| > e Dy <H|>
NeM H|K GeM H|K
deg N=x degll'{gi deg G<3 deg[lfgg
(N,F)=1 (G,F):l
(G,K)=H

Lemma 7.9. Let ' € M and z1, zo be non-negative integers. Then, for all € > 0 we have that

1 It : 19
Z 1 < m(qzquQ) if 21+ 22 < {gdeg I’
A,B,C,DEM < ¢( a1 (2 + 2)%  if 21+ 22 > 13 deg F.
deg AB=z;
deg CD=z2
(ABCD,F)=1
AC=BD(mod F)
AC#BD

Proof. We can split the sum into the cases deg AC' > deg BD, deg AC < deg BD, and deg AC =
deg BD with AC # BD. The first two cases are identical by symmetry.

When deg AC' > deg BD, we have that AC = KF + BD where K € M and deg KF > deg BD.
Furthermore,
2deg KF =2deg AC > deg AC' + deg BD = deg AB 4+ deg CD = 21 + 29,
from which we deduce that # < deg KF < z1 + 29; and
deg KF +deg BD = deg AC' + deg BD = z1 + 29,
from which we deduce that deg BD = z1 + 20 — deg K F'.

When deg AC' = deg BD, we must have that deg AC = deg BD = # (in particular, this case applies
only when z1 4 29 is even). Also, we can write AC = KF + BD, where deg KF < deg BD = %
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and K need not be monic.

So, writing N = BD, we have that

> 1<2 > > d(N)d(KF + N)

A,B,C,DeM + KeM dew N— NeM d KF
deg AB=2z; A2 deg KF<z1+ eg z1+2z2—deg
deg CD=xz9 ° s (N, F)=
(ABCD,F)=1
AC=BD(mod F)
(45) AC+#BD

+ > d  d(N)d(KF+N)

KeA NeM
degKF<¥ degN:@
(N,F)=1

STEP 1: Let us consider the case when 21+ z9 < % deg F'. By using well known bounds on the divisor
function, we have that

> 3 d(N)d(KF + N)
KeM NeM
zl+22 <deg KF<z1+2z2 deg N= (Z]{[—i;)z deg KF
< <q21 qZQ) Z Z .
KeM NeM
12 cdeg KF<z1 42 de8 N= (21\1] J%z)g 1deg KF
14¢ 1
< ( Z1 22) 2 I
<(¢™q > T
KeM

422 cdeg KF<z1+22

45 21 + 29
<(a0*) 7]

14+€e 1

< (qzl qZQ) W

As for the sum

> Y d(N)(KF + N),

KeA NeM
deg KF< Zl;ZQ deg N:%
(N,F)=1

we note that it does not apply to this case where z+29 < 2 deg F because deg KF > deg I’ > 20 Z1+z2
which does not overlap with range deg K F' < Z1+Z2 in the sum.

Hence,

14e 1
> () g

A,B,C,.DeM

deg AB=2z;

deg CD=z9

(ABCD,F)=1
AC=BD(mod F)

AC#BD

STEP 2: We now consider the case when z; + 29 > % deg F'.
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STEP 2.1: We consider the subcase where % < degKF < W. This allows us to apply
Lemma [Z.7] for the first relation below.

> > d(N)d(KF + N)

KeM S tey) dog N NeM dew KF
z1t22 3(21+%2) deg N=z1+z22—deg
T2 <deg KF< =21 (NP1

1 1 d(H
<G (2 + 2) > ] > aun)
KeM H|K
21‘522 <deg KF< 3(212'22) deg H< z1+z2—2deg KF

1 1 d(H
SqZIqZQ(Zl +Z2)2|F| § ‘K| § |FH|)
KeM H\K
deg K<z1+2z9

1 d(H) 1
— 71 572 2_ - _
HeM KeA
deg H<z1+22 deg I;{gllz{ﬁrm
1
<¢*'q* (1 + 22)3m Z
H
deg H%ZI%Q

d(H)
[H|?

1
LG (2 4 )P —.
F|

STEP 2.2: Now we consider the subcase where W < deg KF < z1 + z9. We have that

> > d(N)d(KF + N)
KeM NeM
3(z14+z2) <deg KF<z1+22 degN:é\l[JFf;ldeg KF
= ) > d(N)d(KF + N)
NeM KeM
deg N< 21122 deg KF=z1+22—deg N
(N,F)=1
< > AW > d(M)
NeM MeM
deg N< 211-22 deg(M—X(ny)<z1+z2—deg N
(N,F)=1 M=N(mod F)

where we define X(N) — T#+za—deg N

We can now apply Theorem One may wish to note that

319
(21 +22) > ——deg F

= —deg N >
Yy =2z1+ 22 egiN =~ <110

e~ w

and so

40
deg F < —y=(1—
g < —y (1—-a)y
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where 0 < a < %, as required. Hence, we have that

> > d(N)d(KF + N)
KeM NeM
3(z14+z2) <deg KF<z1+22 deg N:(%ﬁ)z;ldeg KF
1 d(N)
Lg G (21 + 22) —
5 2, N
degNS#
(N,F)=1
1 12
qZ1q22 (Zl _|_ 22)7 < )
a2 W
deg N<z1+22
1
<<qz1q22 Zl+223 .
ST

STEP 2.3: We now look at the sum
> > d(N)A(KF+N).

KecA NeMm
deg KF< 21322 deg N:#
(N,F)=1

By Lemma [7.§ we have that

Z Z d(N)d(KF + N) <q = (21 + 22)° Z Z 7H

KeA NeM KeA  H|K |H

deg KF<A3%2 deg N=217%2 deg KF<211%2
(N,F)=1
1
R e S POk
| KcA ‘K| H|K
deg KF<¥
1
qu1+z2 (Zl + 22)3’?|7
where the last relation uses a similar calculation as that in Step 2.1.
STEP 2.4: We apply steps 2.1, 2.2, and 2.3 to and we see that
1
Z 1< ¢ ¢ (a1 + Zzﬁm
A,B,C,DeM
deg AB=2z;
deg CD=z9
(ABCD,F)=1
AC=BD(mod F)
AC#BD
for 21 + 2o > 32 degF O

In fact, we can prove the following, more general Lemma.

Lemma 7.10. Let F' € M, z1, 29 be non-negative integers, and let a € Fy. Then, for all e > 0 we
have that

1 (21 22 Lt ; < Yiec F
1 < 47 Zf21+22_10 eg
A,B,C,DEM < r(lp) 2 (21 + 22)°  if 214 22 > 15 deg F,
deg AB=2z;
deg CD=2z2
(ABCD,F)=1

AC=aBD(mod F)
AC#BD
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Proof. The case where a = 1 is just Lemma The proof of the case where a # 1 is very similar
to the proof of Lemma In fact it is easier, because the the case where deg AC' = deg BD cannot
exist: We would require that AC' and BD are both monic, but also require that at least one of AC

and BD have leading coefficient equal to a # 1. O
Proposition 7.11. Let R € M and define zg := deg R — log, 2@(B) - Also, let a € Fy. Then,
1 3
> uwE)(F) >, ——— <|R|(degR)".
EF=R ABCcpem |ABCD|2
deg AB<zRp
deg CD<zp
(ABCD,R)=1
AC=aBD(mod F)
AC#BD
Proof. We apply Lemma with € = 5—10 to deduce that
1 1 3t 1 2z 3
> < D (qzlqz2> + > a2 q2 (21 + 22)
A,B,C,DEM |ABCD| 2 ’F| ZlszSZR qs(F) 21,212§ZR
ggg ég%zﬁ zl+22§% deg F’ % deg FF<z1+22<2deg R
(ABCD,R)=1
AC=aBD(mod F)
AC#BD

1 1 z1 2z
+¢(F)(degR)3 2. 2 ara

’F’7_26 21<zZR 22<ZR

1 > 3

- <¢*"(deg R)° S uE)+ > ul OE)

> ——26
EF=R A,B,C,DeM ‘ABCD’ EF=R EF=R |F|
deg AB<zpR
deg CD<zp
(ABCD,R)=1
AC=BD(mod F)
AC#BD

<¢*"(deg R)*2°(®) 1 |R|
<|R|(degR)’,

where the second—to—last relation uses the following.

> u(E) < ) E) R) > |u(E (

EF=R |F|7 26 EF=R EF=R PIE P|E
P2%|R PR
B Y e oL+ P = R = IR
EF R P|E

8. THE FOURTH MOMENT

We now proceed to prove Theorem In the proof we implicitly state that some terms are of lower
order than the main term and that is easy to check. We do not give the justification explicitly, although
all the results one needs for a rigorous justification are given in Section [

Proof of Theorem[2.6. Let x be a Dirichlet character of modulus R. By lemmas and we
have that

LE)f=2 2 MAXB L) 2 000 + 2600 + ).

A,BEM |AB|?
deg AB<deg R
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where

zr :=deg R — logq(QW(Q)),

x(A)x(B
a(y) == j{: AEAJAJ%AE,
A,BEM |AB|>
deg AB<zpg
x(A)x(B
)= % XAXB)
A, BEM |AB|2
zr<deg AB<deg R

and c(x) is defined as in (L0)). Then,

S L(%,X>‘4 =Y (2a(x) +2b(x) +C(X))2-

x mod R x mod R
We will show that Z* ( )|? has an asymptotic main term of higher order than Z* R\b(x) |2
)2 2
and Z mod R X)|*. From this and the Cauchy-Schwarz inequality, we deduce that Z R|a(x)]

gives the leadlng term in the asymptotic formula.

STEP 1: We have that

S ap=Y" Y XAOXBD) s LS~ aoy(sD)

x mod R xmod R A,B,C,DeM |ABCD|§ A,B,C,.DeM ’ABCD| 2xmodR
deg AB<zpR deg AB<zR
deg CD<zp degCD<zp

- Y L umer),

I&RCﬁeﬂ1L4BCjN2 EF=R
deg AB<zg F|(AC—-BD)
degCD<zp

(ABCD,R)=1

where the last equality follows from Lemma (3.7 Continuing,

S P = Y wmerF) Y

ymod R EF=R AB.CDem [ABCD|2
deg AB<zp
deg CD<zgr
(ABCD,R)=1
F|(AC—-BD)
1 1
= D mERE) Y, ot Dl ) pr—
EF=R ABCD6M|ABCD| EF=R AﬁcpeM|ABCDP
deg AB<zp deg AB<zpR
(46) degCD<zgp deg CD<zp
(ABCD,R)=1 (ABCD,R)=1
F|(AC—BD) F|(AC—BD)
AC=BD AC#BD
1 1
= Ejmmmm>< > 1>+§:u@MW) >, ——
<EF:R ABCDem |ABCD|z EF=R ABCDem |ABCD|z
deg AB<zpR deg AB<zpR
deg CD<zp deg CD<zp
(ABCD,R)=1 (ABCD,R)=1
AC=BD F|(AC—BD)
AC#BD

STEP 1.1: We will look at the first term on the far-RHS. Since AC' = BD, we can write A = GU, B =
GV,C = HV,D = HU, where GG, H,U,V are monic and U,V are coprime. Let us write N = UV, and
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note that there are 2¢(N) ways of writing N = UV with U, V being coprime. Then,

Z 1

oy L
A.BCDem [ABCD|?

deg AB<zpg
degCD<zp
(ABCD,R)=1
AC=BD
S DR S T )
- GHUV] [N] G|
(47) G,HUVeM NeM GeM
(U,V):l deg NSZR deg Ggw
deg G2UV <zg (N.R)=1 (G.R)=1
deg H2UV <zg
(GHUV,R)=1
2
2w(N) 1)\? 2w(N) 1
e —_— _ + - -
2. T 2. @ 2 W 2. @)
dNEM ! GEMd N ,](\176./\]<lf< GEMd N
eg N<zR degg<u z2r'<deg N<zp degg<w
(=1 (G.R)=1 (N.R)=1 (G R)=1

where zg’ := deg R — log, gw(R),

Let us look at the first term on the far-RHS of . We apply Lemma When x = M and
deg N < zp', we have that zwéf)” = O(1). Hence

O
Z W\ &
deg N<zg' deg G< 2R N

(N,R)=1 (G.R=

®(R)\’ 22 [, 2
:<2]R\> NEE;A \M(ZR —degN—l—O(lng(R)))

deg N<zp’
(N,R)=1

(2B’ 22 [ 2
(48) <2]R|> N;/l m((zR —degN) —i—O(degRlogw(R)))

deg N<zg'
(N,R)=1

3
1-q! (L—1P) 4
= -~ 7 I(d
48 H ( e ) deef)
P prime
P|R

+0<( I W) ((degR)?’w(R)+(degR)3logdegR)>,

-1
P prime 1+ |P|
P|R

where the last equality follows from Lemma [7.4 and Lemma

Now we look at the second term on the far-RHS of . Because zp’ < deg N < zg, we have that
deg G < log, (i)w(R). Using this and Lemma [4.12] we have that

V2
1 1 R
Z 7S Z ?<< QZ)(R)w(R)
S, 07, AT
deg G R8T deg G<log, (=
(G, R)=1 G.RT




38 JULIO CESAR ANDRADE!2 AND MICHAEL YIASEMIDES!® JANUARY 21, 2020

Also, by similar means as in Lemma we can see that

QW(N) 2w(N)
> T S > N S w(R)degR
ZR'(S]]VXGGI%}/[XISZR zR’gjt\i]eGg%ng
Hence,
220 L\ (2N (opny?
(49) Z Z — ) <57 ) (w(R)) degR.
IN| G| R|
M G
ZR/ij\ifgg N<zgr deg Gggzj%vflgeg N
(N,R)=1 GR—

By , and , we have that
(S awem)( ¥ L)

1
EF=R A,B,C,DEM |ABCD|?
deg AB<zp
deg CD<zpg
(ABCD,R)=1
AC=BD

R (L= 1P
T ¢*(R) H <1+|P|_1>(degR)4

P prime
P|R

+0<¢*<R>< 11

P prime
P|R

(1= [P Y

TP ) ((deg R)3w(R) + (deg R)?log deg R))

STEP 1.2: For the second term on the far-RHS of we simply apply Proposition From this,
Step 1.1, and , we deduce that

S a0

x mod R
1-qt' (1—(PIY)°
PIR
x (1= |PI)° 3 3
+0| ¢ (R)( H 1+]P[‘1> ((degR) w(R) + (deg R) logdegR> .
P}gl‘"}i%ne

STEP 2: We will now look at Z* |b(x)|?. We have that

x mod R

* 1
TP D O =é(R) > —
x mod R x mod R A,B,C,DeM |ABCD| 2
zr<deg AB<deg R
zr<degCD<deg R

(ABCD,R)=1
AC=BD(mod R)

—or) Y !

oy L
AB.CDem |ABCDI?

zr<deg AB<deg R
zr<deg CD<deg R
(ABCD,R)=1
AC=BD

> :
1
A,B,C,DEM |[ABCD|2
zr<deg AB<deg R
zr<deg CD<deg R
(ABCD,R)=1
AC=BD(mod R)
AC#BD
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STEP 2.1: Looking at the first term on the far-RHS, we apply the same technique as in to obtain

oR) 3 !

L
AB.CDem |ABCDI?

zr<deg AB<deg R
zr<deg CD<deg R
(ABCD,R)=1
AC=BD
2w(N) 1 2
B D i ( 2 a)
deg N<deg R 3R—degN<degG<dchfdcgN
(N,R)=1 2 Gr—1
gw(N) 1 \2 gw(N) 1\2
<o(R) Y ( ) ) om0 > ).
Wk WA b R A=
eg N<zp zr=deg N _ 4.5 G deg R—deg zr'<deg N<deg deg G< deg R—de
(N,R)=1 2 <(Gi%)§1 2 (N,R)=1 ¢ (G, R)=1
where zg" := deg R — log, gw(R),
We look at the first term on the far-RHS:
R w(N) 1 2
o 3 ( 2 @)
deévjsé\i‘}q/ ZR—degN<dG€C/:idegR7degN
(N, R)=1 ’ (G,gR):l :
—&(R - L
w W o e
NeM GeM GeM
deg N<zp' degG<w deg G< zR—;legN
(N,R)=1 (G,R)=1 (G,R)=1
220 ($(R) ’
<¢P(R) Z ] (ww(R)—i—logw(R))
NeM
deg N<zg'
(N,R)=1
o(R 5 2 2w (N)
<in(fg) w5 T
NeM
deg N<zgr"
(N,R)=1
$(R)\’ 21— 1P >
P|R

where for the second relation we applied Lemma twice. For the use of this lemma one may wish
deg R—deg N > zr—deg N
2 = 2

to note that, because deg N < zg’, we have that > log, (%)M(R), and so when

x = M we have that Qw;?‘” = O(1). For the last relation we applied Lemma

Tr =
.6

deg Rgdeg N or
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Now we look at the second term on the far-RHS of . Because zg’' < deg N < deg R, we have that

w < log, 9= . Hence,

ZW(N) 1 2 QW(N) 1 2
o) > N,( 2 ,G|> OB 3 yzvr( 2 IG\>

NeM GeM NeM GeM

zr'<deg N<deg R deg G deg fi—deg N deg N<deg R w(R)
(N,R)=1 (G, R)=1 (NR)=1 i
¢(R)>3 9 w(N)
<IR| < w(R)
m ) CE 2 T
deg N<zp'
(N,R)=1
$(R)\’ 2 1P|t 2
R|| —= R ———— ) (deg R

where, again, we have used Lemmas [£.12] and [7.6]

Hence,

¢(R) >

oyl
ABCDem |ABCD|2

o (30 (L 25 o

P|R
zp<deg AB<deg R
zr<degCD<deg R
(ABCD,R)=1
AC=BD
3
(1-1P")
<" (R 7 ) (deg R)*w(R).
o T Y peb ) e

P prime
P|R

STEP 2.2: We now look at the second term on the far right-hand-side of :

S(R) Y 1;=¢<R> e S DI

1
A,B,C,DeM |ABCD| zp<z1,22<deg R (q21 +Z2) 2 A,B,C,DeM
zr<deg AB<deg R deg AB=2z1
zr<degCD<deg R deg CD=2z2
(ABCD,R)=1 (ABCD,R)=1
AC=BD(mod R) AC=BD(mod R)
AC#BD AC#BD
1 z1+22
=¢(R)7R Z g 2 (21+22)°
r<z1,22<deg R
—1\3
3 . 1—|P|
P prime

P|R

The second relation follows from Lemma with F':= R. This can be applied because

z21+ 22 > 2zR:2degR—2logq2°’( ) > %degR

for large enough deg R.
STEP 2.3: Hence, we see that

37 OO <o )( 1T

xmod R P prime
P|R

_1pI-1)3
(11+|’];||_1)> (deg R)3w(R).
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STEP 3: We will now look at Z;mOdR\c(x)\Q. We have that

D O [ S 120 R S 0| R S (X 0 e S X PO I

x mod R x mod R xmod R x mod R x mod R
X even X even
Now,
X(AC)X(BD)
> leolalP= 3 > :
|ABCD|3

x mod R xmod R A,B,C,DeM
deg AB=deg R—1
deg CD=deg R—1

1 1
=6(R) > +o(R) Y
A,B,C,DEM |ABCD|2 A,B,C,DEM |ABCD|2
deg AB=deg R—1 deg AB=deg R—1
deg CD=deg R—1 deg CD=deg R—1
(ABCD,R)=1 (ABCD,R)=1
AC=BD AC=BD
AC#BD

For the first term on the far-RHS we have that

St 2wl @)

T
AB.CDem [ABCDI2 NeM Gem
deg AB=deg R—1 deg N<deg R—1 deg G—deg R—deg N—1
deg CD=deg R—1 2
(ABCD,R)=1
AC=BD
gw(N) 9
= JE— deg R)".
Z IN] < ( eg )
NeM
deg N<deg R—1
For the second term we have that
L ¥ o (deg )’
) D 1< B (eg )
1 )
AB.CDem |[ABCDI2 B A,B.C,DEM ®(R)
deg AB=deg R—1 deg AB=deg R—1
deg CD=deg R—1 deg CD=deg R—1
(ABCD,R)=1 (ABCD,R)=1
AC=BD AC=BD
AC#BD AC#BD
where we have used Lemma [7.9 Hence,
—1\3
2 3 * (1 — ‘P’ ) 3
> leo0) < |RI(deg R)” < <R>( I pr ) des BPw(®).

x mod R P prime
P|R

Similarly, by using Lemma for the even case, we can show, for a = 0, 1,2, 3, that

> v MACR(EBD) (1-1PI Y

1
xmod R A,B,C,DeM ‘ABCD‘ 2 P prime
deg AB=deg R—a P|R
deg CD=deg R—a

ACYX(BD
> ooy MR ran)’ <o T
xmod R A,B,C,DeM |ABCD| 2 P prime
X even deg AB=deg R—a P|R
deg CD=deg R—a

Hence, by using the Cauchy-Schwarz inequality, we can deduce that

* B —1\3
> wunﬂ<¢wgm:11 a-iph”

: 14 |P|71
x mod R P prime
P|R

(1—|P|7Y)°
1+ |P|~t

)(deg R)3w(R).

41

<<|R|(degR)3 < ¢*(R)< H 1+’P|1)(degR)?’w(R)a

> (deg R)3w(R).
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STEP 4: From steps 1 to 3, and the use of the Cauchy-Schwarz inequality (as described at the start
of the proof), the result follows. O
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